
7/23/03 http://Amir.Herzberg.name 1

DIMACS Security & Cryptography
Crash Course

Lecture 1: Principles & Encryption

Prof. Amir Herzberg
Computer Science Department, Bar Ilan University
http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without
modification. For other use please contact author.

7/23/03 http://Amir.Herzberg.name 2

Agenda
! What is security?

" Arbitrary adversary principle
" Kerckhoffs� `law` � don�t assume secret design

! Encryption: ciphers and cryptosystems
" From early ciphers to one time pad
" Perfect (unconditional) secrecy
" Stream ciphers and pseudo-random bit generators
" (Pseudo) Random Permutations as block ciphers
" Practical block ciphers and their security
" Minimal Assumptions Principles and cryptanalysis tolerance
" Modes of operation of block ciphers
" Encryption schemes (cryptosystems)
" Cryptosystem security under Indistinguishability test
" CPA-IND secure cryptosystem from PRP (block cipher)

! Cryptographic constructions and proofs in general
! Conclusions and summary of principles

7/23/03 http://Amir.Herzberg.name 3

What is `security`?
! Consider multiple parties (entities, agents)
! With (often) adversarial interests
! Ensure (some) interests of some parties

" Often viewed as preventing threats / risks
! How?

" Discourage adversarial behavior
! Education, Punishment, Incentives

" Prevent damage in spite of adversarial behavior
! This is very general - economy, legal,�
! Let�s focus on information (computer) science�

7/23/03 http://Amir.Herzberg.name 4

What is `security` for information?
! Discourage adversarial behavior

" By providing proof (e.g. to court)
" By appropriate incentives (mechanism design)
" By reputation (reviews, history) � more later (PKI)

! Prevent damage in spite of adversarial behavior
" Arbitrary Adversary Principle: Assume restrictions on

capabilities of adversary � not on adversary�s strategy!
" Computational restrictions � limited computational abilities,

e.g. speed, memory, �
" Access restrictions (can�t use console, can�t change OS, can�t

read memory � in particular keys�)
" Can we assume the adversary does not know the design??

7/23/03 http://Amir.Herzberg.name 5

Kerckhoff’s Principle: Known Design
! Attacking (e.g. cryptanalysis) of unknown

design can be much harder
! But using non-secret designs�

" No need to replace system once design is exposed
" No need to worry that design was exposed
" Establish standards for multiple applications:

! Efficiency of production and of test attacks / cryptanalysis

! Kerckhoff’s Known Design Principle:
adversary knows the design � everything
except the secret keys

7/23/03 http://Amir.Herzberg.name 6

Consider Encryption…

symmetric key crypto: shared secret key (kE,B=kD,B) - today
public-key crypto: public encryption key kE,B, matching private

decryption key kD,B - tomorrow

Plaintext m Plaintext m
Ciphertext
c= E[kE,B](m)

k
E,B

encryption
Algorithm

E

decryption
Algorithm

D

Key to encrypt
to Bob

Key Bob uses
to decrypt

kD,BAlice

Bob

m= D[kD,B](c)=
= D[kD,B](E[kE,B](m))

7/23/03 http://Amir.Herzberg.name 7

Symmetric (shared secret key) Encryption

! Encryption: transforming secret message
(plaintext) into garbled ciphertext

! Adversary should not learn anything about
plaintext even if it gets ciphertext

! Classic goal of security / cryptography
" In fact cryptography = secret writing
" Predates computers� used by Romans and earlier

! Let�s begin with some (simple) examples

E D
m mm

k k
A B

7/23/03 http://Amir.Herzberg.name 8

Early Encryption
! Early encryption used mono-alphabetic ciphers

" A set {<Ek,Dk>} of permutation + inverses: m=Dk(Ek(m))
" Such that the input (and output) domain is the set of characters
" This is special case of block ciphers (here block=character)

! At-Bash cipher:
" Jeremiah 51, 41: " ששךאיך נלכדה". . .
" The word � ששך refers to � בבל (Babylon) by simple letter

substitution: ת ↔ ש ,א ↔ ב �
" Namely: substitute first letter of alphabet (א) by last (ת), second

letter (ב) by one-before-last (ש), etc�
! Used here probably for political reasons � afraid to say Babylon

explicitly� No proof for `real` use for secrecy
! But we do know Ceasar used ciphers�

7/23/03 http://Amir.Herzberg.name 9

Caesar Cipher

! Rotate the 26 letters of the alphabet by 3:

! As formula:
c = E(p) = p+3 (mod 26)

! The secrecy is in the algorithm (!!!!)
! There is one key (fixed permutation)
! Trivial to decipher (if algorithm is known)

" But even if not known… Kerckhoff is right!

7/23/03 http://Amir.Herzberg.name 10

Keyed Caesar Cipher
! Rotate letters by key k, where 0 ≤ k < 26.
! As formula: c = Ek(p) = p + k (mod 26)
! Exhaustive Key Search Attack: try all (26) possible

keys…
! Not very secure…
! Sufficient key length Principle:

" Number of possible keys should be large enough
" To make attacks infeasible, using best adversary

resources (HW) expected during `sensitivity period` of data
" Using exhaustive key search or other feasible attacks

! Idea: use each key to encrypt just one char!

7/23/03 http://Amir.Herzberg.name 11

Monoalphabetic Substitution Cipher

" Map each letter to some other letter (mapping is the key)

" Ci=K[Pi]
" Many keys (26! for 26 letters � more than 280)
" Attack using letter distribution statistics (E leads

- 13%)
" Statistical attack

! Identify letters by their frequencies, e.g.
Pr(�E�)=13%

! Also called Ciphertext only attack.
" Need a better idea�

7/23/03 http://Amir.Herzberg.name 12

One-time Pad (Caesar) Cipher
! Idea 2: use each key to encrypt just one char!
! Use just the 26 permutations c=p+k�
! But use different key for each letter: ci=pi+ki
! Therefore: Pr(pi=`A`|ci=`B`)=Pr(ki=1)=1/26

" Assuming Pr(pi=`A`)=1/26 for a moment
! In fact for every pi, ci hold Pr(pi|ci)=Pr(pi)
! #Plaintext gives no info about message
! Even if adversary has unbounded time
! As long as each key is chosen randomly
! More common: Bitwise One-Time Pad�

7/23/03 http://Amir.Herzberg.name 13

Bit-wise One Time Pad
! Each ciphertext bit is XOR of plaintext & key

" pi∈∈∈∈ {0,1}, ki∈∈∈∈ {0,1}, ci=pi⊕⊕⊕⊕ ki

! Each key bit used only once
! Requires infinite secret shared random key
! Requires perfect synchronization to decrypt
! Shannon [S49]: unconditional secrecy�

7/23/03 http://Amir.Herzberg.name 14

Unconditional (Perfect) Secure Cipher
! Information-theory definition of secrecy (by Shannon)

! Let M be (finite) set of plaintext messages, Pr(m) probability of message m∈∈∈∈ M

! Let K be the key space, Pr(k) probability of key k∈∈∈∈ K

" Usually uniform � Pr(k)=1/|K|

! A cipher is a set {Ek} of permutations over M

! A cipher {Ek} is unconditionally (perfectly) secure if for every m’∈∈∈∈ M and
distribution on M holds: Pr(m’=m|Ek(m))=Pr(m’=m), for random k and m.

! One-time Pad is perfect cipher� but requires |K|=|M|

" Can we use same key k for two (or more) messages: c2i=p2i+ki , c2i+1=p2i+1+ki ?

" No, bad idea� known ciphertext attack: given ki = c2i - p2i

" Is there some short-key cipher (same key for multiple messages)?

7/23/03 http://Amir.Herzberg.name 15

Shannon’s Perfect Security Theorem
! Theorem [Shannon]: If cipher E is unconditionally

secure, then |K|≥|M|
! Hence: one- time pad is as efficient as possible
! Sometimes, this is not a problem: setup long enough

key in advance
! But often it is difficult to setup such long key:

" Motivating Shannon to call this `theoretical secrecy`
" Establish key between parties via the network
" Support high-bandwidth and/or use secure � but limited �

key storage
" Collecting necessary randomness for the key

7/23/03 http://Amir.Herzberg.name 16

Collecting Randomness
! Surprisingly hard
! Physical devices/chips (e.g., sample radio):

expensive, slow, unavailable to software
! Measuring human actions: slow and requires

human interaction
! Both: bits often biased and dependent
! More common solution: use stream cipher -

key changes every bit/byte/block

7/23/03 http://Amir.Herzberg.name 17

Early Stream Ciphers: Polyalphabetic
! Polyalphabetic ciphers: use character substitution

but with changing keys (`alphabets`)
! Vigenére�s cipher: Monoalphabetic substitution

shifted, e.g. one position per letter: Ci=K[i+Pi]
" Statistical attack harder, since different positions are used
" Long message � can use statistics for repeating positions

$ Limited key usage principle
" Known Plaintext attack: if attacker has

encryption of any message, she can easily
find out the substitution (known shift)

! Plaintext: BACK
! Ciphertext: LLAL
! K[B]=L, K[E]=A

" Chosen Plaintext attack:
even easier if attacker can choose�

! Plaintext: AAAA�
! Ciphertext: ELCG� = K[A], K[B], K[C], �

B

C

D
EF

H
G

I

J
K L

AB

C

D E

F

H
G

I

J

K

L

A

7/23/03 http://Amir.Herzberg.name 18

Pseudo-Random Bits Generator (PRG)
based stream cipher

! PRG is a function that given short random string
(seed), creates long stream which is
indistinguishable from random bits

! Computationally secure (beware of snake-oil)

7/23/03 http://Amir.Herzberg.name 19

But can we have good block cipher?
! Keys must be pretty long
! Blocks must be pretty long

" Typically 64-128 bits/block
! Knowledge of some plaintext- ciphertext pairs should not

expose key or other plaintext- ciphertext pairs
! A random permutation is certainly enough�

" Think of it as being built dynamically:
! New input x: select (unused) value for p(x) randomly
! Repeating input x: return (previously used) p(x)
! key = identifier of permutation

! Problem: too many random permutations
" 2l strings, therefore 2l! permutations over l bits

! Solution?

7/23/03 http://Amir.Herzberg.name 20

Pseudo-Random Permutation

A
b, x

ga= Ek

gã =r

a∈∈∈∈ R{0,1}, k ∈∈∈∈ RK , r ∈∈∈∈ R{ fun: {0,1}l $ {0,1}l }

gb(x)
Guess of a

! Adversary has oracle access to two black
boxes � one containing the PRP, the other a
random function�

7/23/03 http://Amir.Herzberg.name 21

Defining Pseudo-Random Permutation
! Given algorithm Af with oracle to function

f:{0,1}l${0,1}l

! Let
where k∈∈∈∈ RK and r is a random function r:{0,1}l${0,1}l

! Let ADVPRP
E(t,q)=MAX{ADVA,E} for A limited to time t

and q queries
" Should be negligible for feasible t, q
" Ideally: ADVPRP

E(t,q)=c·1/(|K|-t)
! Asymptotically: for every positive polynomials p, T and

Q, for `sufficiently long` block size l, ADVPRP
E(t,q)<1/p(l)

for every t<T(l), q<Q(l).
! Adversary controls plaintext $ chosen plaintext attack

" Exercise: modify definition to allow also chosen ciphertext

)1Pr()1Pr(, =−== rEPRP
EA AAADV k

7/23/03 http://Amir.Herzberg.name 22

Pseudo-Random Function

A
b, x

ga= fk

gã =r

a∈∈∈∈ R{0,1}, k ∈∈∈∈ RK , r ∈∈∈∈ R{ fun: {0,1}l $ {0,1}l� }

gb(x)
Guess of a

! Like PRP, except a function, not permutation
! Domain and range may differ
! Constructions: PRP from PRF, PRF from PRP

7/23/03 http://Amir.Herzberg.name 23

Using PRPs and PRFs
! Share pseudo random function / permutation

" By sharing a secret (pseudo-random) key
" Derive many sub-keys: kauth=Ek(�auth�),

k2003=Ek(2003),�
" See such applications later (e.g. in TLS/SSL)

! Generate pseudo-random bits
! Criteria for a good cipher

" Also: use ciphers when you need PRP
! But how can we confirm a cipher is a PRP?

7/23/03 http://Amir.Herzberg.name 24

Confirming Security for Cipher
! Unconditional security: often not feasible / too wasteful
! Conditional security: Block Cipher as PRP

" Proof of reduction to a `hard` problem
! Break scheme $ prove P=NP, etc.
! Break scheme $ cryptoanalyze standard design
! Not practical � wasteful constructions, asymptotic proofs
! More useful: construct more advanced functions from ciphers

" Check for known (families of) attacks
! Allow strong attack models (chosen plaintext/ciphertext, etc.)
! What about other attacks?

" Confirm by failure of extensive cryptanalysis efforts
! Very expensive and time consuming
! Using public designs (Kerckhoff�s idea) helps
! #done for few standards

7/23/03 http://Amir.Herzberg.name 25

Practical Block Ciphers
! DES � Data Encryption Standard

" 16-round Feistel cipher
" 64 bits input/output blocks, 56 bits key

! Vulnerable to exhaustive search � key too short
! Also: attacks with e.g. q=240 chosen plaintexts

" Designed in 70�s by IBM for NIST
" Criticized for unpublished design decisions

! Although actual design is public
" Efficient hardware implementations; slower software

! Triple DES � used mostly in banking
" Three applications of DES with two keys:

DES3
k1,k2(m)=Ek1(Dk2(Ek1(m)))

" Key: 112 bits; compatible: DES3
k,k(m)=DESk(m)

" `Double DES` subject to meet-in-middle attack

7/23/03 http://Amir.Herzberg.name 26

Meet in the Middle Attack

! Goal: `effective key length` of 112 bits
! Given m, let c=DES2

k,k�(m)=Ek(Ek�(m))
! For x�=056 to 156: y[x�]=Ex�(m)
! For x=056 to 156: z[x]=Dx(c)
! Find all <x,x�> s.t. y[x�]=z[x]

" These are candidate keys (k=x, k�=x�)
" At most 256 such pairs (usually less)
" Test with another plain-ciphertext pair

! Notice: attack works for any cipher/PRP

7/23/03 http://Amir.Herzberg.name 27

Practical Block Ciphers - AES

! AES - Advanced Encryption Standard
" A new NIST standard
" Selected among 18 proposals submitted to a lengthy,

open design and evaluation process
" Proposal name: Rijndael
" Goals: improve security and (SW) efficiency (cf. DES)
" Keys with a length of 128, 192, or 256 bits

! We hope attack requires almost 2128 AES computations
" Blocks: 128 bits

7/23/03 http://Amir.Herzberg.name 28

Cryptanalysis-tolerant Cipher
! Suppose E, E� are two candidate ciphers

" E.g., a standard (AES) and a proprietary
" Maybe AES will be cryptanalyzed? Maybe our

proprietary cipher is easy to cryptanalyze?
! Cascade [EG85]: E*=E◦E�
! E* is PRP if either E or E� is PRP

" We say that cascade is cryptanalysis tolerant

EE�

7/23/03 http://Amir.Herzberg.name 29

Cascading Ciphers (PRPs)
! Given two PRP candidate functions, f and f�,

define: hk,k�(x) = fk(f�k�(x))
! Claim: if either f or f� is a PRP, then h is a

PRP.
! Proof sketch: Suppose Adv can distinguish h

from random permutation. Then to distinguish
f, select k� and use Adv on fk(f�k�(x)); similarly
for f�. █

! Motivating iterative PRP / Block Cipher design

7/23/03 http://Amir.Herzberg.name 30

Minimal Assumptions Principles
! Perfect (unconditional) security is best � but

usually infeasible
! Assumptions should be tested (cryptanalysis)

" Extensively
" For specific key and input length

! Asymptotic analysis helps but not enough for practice

! Use alternative assumptions (cryptanalysis-
tolerance), avoid multiple assumptions

! Assumptions should be easy to test
" Simple, well defined, pessimistic
" Fixed input length, deterministic functions

7/23/03 http://Amir.Herzberg.name 31

Are Block Ciphers Good for Encryption?
! Block ciphers (modeled as PRPs) are easy to test

" Fixed input length, deterministic functions
! But� `real` plaintext is variable-length!
! Also� what if we encrypt same plaintext?

" With block ciphers, we get the same ciphertext
" Sometimes Ok, sometimes � exposure

! Solution: `Modes of Operation` of a cipher
" Define how to use cipher for encryption
" Transforming to stream cipher / support VIL
" Randomized (probabilistic) encryption

7/23/03 http://Amir.Herzberg.name 32

Modes of Operation
! Define how to use cipher for encryption

" Electronic code book (ECB) mode: encrypt each plaintext
block separately (`trivial` mode)

! Other modes allow�
" Use cipher as PRG
" Variable Input Length (VIL)
" Randomization � hide repeating plaintext

! Use Initialization Vector (IV) � (normally random)
" Other goals

! Cipher Block Chaining
(CBC) mode:

! Analysis � in exercise
! First, define encryption�

� x[l]x[2]x[1]

EIV E E

k � c[l]c[2]c[1]

7/23/03 http://Amir.Herzberg.name 33

A shared key encryption scheme…
! Is a triple of algorithms: <KG, E, D>

" Key Generation, Encryption, Decryption
! All three: probabilistic, efficient algorithms

" Asymptotic analysis: efficient=poly time
! For every key k and plaintext p holds:

p=Deck(Enck(p)).

7/23/03 http://Amir.Herzberg.name 34

Defining Secure Encryption
! Intuition: without secret key, Adversary learns nothing useful

about the plaintext
! Questions:

" What is `useful` new knowledge about plaintext?
" What is the distribution of the plaintext?
" Can we be sure of security? Under what assumptions?

! Security as indistinguishability�
" Let attacker select any two plaintexts

! Could be very similar� or some special message
" Select encryption of one of the two
" Attacker should not be able to find which!
" Attack model: known/chosen plaintext, chosen

ciphertext�

7/23/03 http://Amir.Herzberg.name 35

Chosen Plaintext Indistinguishability Test
! Given algorithm AE with oracle to Ek

" Chosen plaintext attack
! CPA-IND: (CPA Indistinguishability Test)

" k% KG ();
" (p[1], p[2], state)% AE (�select inputs�);
" b ∈∈∈∈ R {0,1};
" b� % AE (�distinguish�, p[1], p[2], state);
" If b� =b return (win) else return (loss);

2
1)""Pr(,,,

,,, −=−= ><−
>< winINDCPAADV DEKGAINDCPA

DEKGA

7/23/03 http://Amir.Herzberg.name 36

CPA-IND Secure Cryptosystem
! Let C=<KG,E,D>
! ADVCPA-IND

C(t,q)=MAX{ADVA,E} for A limited to
time t and q queries
" Should be negligible for feasible t, q

! Asymptotically: for every positive polynomials
p, T and Q, for `sufficiently long` block size l,
ADVCPA-IND

C(t,q)<1/p(l) for every t<T(l), q<Q(l).
! Exercise: define for chosen ciphertext attack

7/23/03 http://Amir.Herzberg.name 37

Indistinguishability Test is Strong
! Two encryptions of the same message should be

indistinguishable
" Otherwise adversary can ask for another encryption of

known message and identify it
" Encryption must be randomized and/or state variable

! With state variable, encryption depends on history
" In practice: usually encryption is randomized

! No assumption about the plaintext
" May be just two messages, �0� and �1�
" May be biased (90% is �0�)

! Yet� PRP/PRF # CPA-IND Secure Cryptosystem!

7/23/03 http://Amir.Herzberg.name 38

CPA-IND Secure Cryptosystem from PRP

! Let Ck be a block cipher (PRP) or PRF
! Then encrypt each message m using

Ek(m)=r||Ck(m⊕⊕⊕⊕ r), where r is random
! Observation: this is simply CBC-mode of Ck

with a single block!
" Proof extends to multiple-block CBC

! Theorem [GM89]: Ek(m) is IND-CPA secure.

7/23/03 http://Amir.Herzberg.name 39

f

g
x

g(x)

In General: Cryptographic Constructions
! Build new crypto function f,

using construction Π using
function g

! Notation: f= Πg

! Idea: make f for goal F,
from g designed for goal G

! Goal G is simpler, weaker,
easier to test� or we
simply have good
candidates for G!

7/23/03 http://Amir.Herzberg.name 40

ADVg
ADVg

f

gx

g(x)

ADVf

Fraud on f

x�

f(x�)

Fraud on g

Cryptographic Constructions
Proving security
! Show how, given an

algorithm ADVf that
breaks f, you can use
it as an oracle to
attack g:

7/23/03 http://Amir.Herzberg.name 41

f

g
x

g(x)

Cryptographic Constructions
Demonstrating insecurity
! Usual method:

" Let g� be an arbitrary function for goal G.
" Design g which also satisfies G:

! Security of g follows (easily?) from security of g�
! But g is not good for the construction�
! Namely: the function f which

is constructed using g does
not satisfy goal F.

! Example�

7/23/03 http://Amir.Herzberg.name 42

Conclusion: Principles of Cryptography
! Arbitrary Adversary Principle: Assume restrictions

on capabilities of adversary � not on adversary�s
strategy!

! Kerckhoffs� principle: designs are public, only keys
are secret

! Sufficient key length Principle:
" Number of possible keys should be large enough
" To make attacks infeasible, using best adversary resources

expected during `sensitivity period` of data
! Limited key usage principle
! Base security on simple, well-tested assumptions,

preferably - allow for failure of some assumption
(cryptanalysis-tolerance)

