
Public-Seed	Pseudorandom	
Permutations

Stefano	Tessaro
UCSB

DIMACS	Workshop	
New	York

June	8,	2017

Joint	work	with	Pratik	Soni (UCSB)

We	look	at	existing class	of	cryptographic	
primitives	and	introduce/study	the	first	
“plausible”	assumptions	on	them.

Pratik Soni, Stefano Tessaro
Public-Seed Pseudorandom Permutations

EUROCRYPT 2017

Cryptographic	schemes	often	built	from	
simpler	building	blocks

Is	there	a	universal and	simple	building	block	
for	efficient	symmetric	cryptography?

𝐻

𝐾 ⊕ 𝑖𝑝𝑎𝑑 ||	𝑀

𝐾 ⊕ 𝑜𝑝𝑎𝑑

𝐻

hash	function	
(e.g.,	SHA-3)

𝐸+

𝑀,

𝐼𝑉

𝑀/

𝐸+

𝑀ℓ

block	cipher	
(e.g.,	AES)

Main	motivation:	Single	object	requiring	optimized	implementation!

Recent	trend: = permutation

𝜋
0

0
𝜋 𝜋

𝑀, 𝑀/ 𝑀3

𝑀

𝑯(𝑀)

efficiently computable and invertible permutation

𝑟

𝑟-bit	blocks:

Example.	Sponge	construction	(as	in	SHA-3)	[BDPvA]

𝑛 − 𝑟

Several	permutation-based	constructions

…

Hash	functions,	authenticated	encryption	schemes,	PRNGs,	
garbling	schemes	…

Permutation	instantiations

Fixed-key	block	ciphers

Ad-hoc	designs
e.g.,	in	SHA-3, AE
schemes, … Designed	to	withstand	cryptanalytic	

attacks against	constructions	using	
them!	e.g.,	no	collision	attack

e.g.,	𝜋 ∶ 𝑥 ↦ AES(0,/@, 𝑥)
𝐀𝐄𝐒

0,/@
Faster	hash	functions	[RS08],	fast	garbling	[BHKR13]

Permutations	assumptions

Ideal	goal: Standard-model reduction!
“If 𝜋 satisfies 𝑋 then 𝐶[𝜋] satisfies 𝑌.”

e.g., 𝐶 = SHA−3;
𝑌 = Anything	non-trivial
𝑋 =	? ? ?

Unfortunately: No	standard-model	proofs	known	
under	non-tautological	assumptions!

𝑆Q0

0

𝜋 𝜋 𝜋

What	security	properties	do	we	expect	from	a	permutation?

Security	of	permutation-based	crypto

Provable	security Cryptanalysis
Random	permutation	model! Application specific	attacks

𝜋 is	random	+	adversary	given	
oracle	access	to	𝜋 and 𝜋R,

clearly	unachievable	
[CGH98]	…
…	security	against	generic

attacks!

Insights	are	hard	to	recycle	
for	new	applications

Very	little	permutation-
specific	cryptanalysis	

Example	– OWFs	from	permutations

𝑥 𝑦 = 𝜋 𝑥𝜋

Clearly:	Cannot	be	one	way!

𝜋: {0,1}X → 0,1 X

𝜋R,(𝑦)𝜋R,

So,	how	do	we	make	a	one-
way	function	out	of	𝜋?

𝜋𝑥
𝑦

𝑧 𝑧

Naïve	idea:	Truncation 𝑓: 0,1 X → 0,1 X//

Not one	way:	
∀𝑦: 𝜋R,(𝑦, 𝑧) preimage	
of	𝑧

𝜋
𝑥

𝑦

𝑧 𝑧

Better	candidate:	𝑔: 0,1 X// → 0,1 X//

Conjectured one-way	for	
𝜋 = SHA-3	permutation	

0

𝑥

Wanted: Basic	(succinct,	non-tautological)	security	property	
satisfied	by	𝜋 which	implies	one-wayness of	𝑔?	

Hash	functions

Permutations

ideal	model standard	model

random	oracle

random	
permutation

CRHF,	OWFs,	UOWHFs,	
CI,	UCEs…

What	kind	of	cryptographic	hardness	can	we	expect	
from	a	permutation?

Permutations	vs	hash	functions

This	work,	in	a	nutshell

inspired	by	the	UCE	framework [BHK13]

First plausible and	useful standard-model	
security	assumption	for	permutations.	

“Public-seed	Pseudorandom	Permutations”	
(psPRPs)

Two	main	questions:

Can	we	get	
psPRPs at	all?	

Are	psPRPs
useful?

psPRPs – Landscape	preview
Deterministic	&	Hedged	PKE

Immunizing	
backdoored PRGs

CCA-secure	Enc.	

…

Hardcore	functions
KDM-secure
symmetric	key	Enc.	

Point-function	
Obfuscation

Efficient	garbling	from	fixed-key	block-ciphers

Message-locked
Encryption	(MLE)𝐩𝐬𝐏𝐑𝐏𝐩𝐬𝐏𝐑𝐏 𝐔𝐂𝐄

e.g.,	
Sponges

Feistel

Roadmap

1.Definitions

2.Constructions	&	Applications

3.Conclusions

Co-related input hash
Functions (CIH)

𝑃 = (𝐺𝑒𝑛, 𝜋, 𝜋R,)

𝐺𝑒𝑛 𝑥 𝜋h 𝑥

𝜋 ∶ 0,1 X → 0,1 X

𝜋h1i 𝑠

Seed	
generation	

𝑦 𝜋hR, 𝑦𝜋hR,

Forward
evaluation

Backward
evaluation

(2) ∀𝑥 ∶ 𝜋hR, 𝜋h 𝑥 = 𝑥

(1) 𝜋h ∶ 0,1 X → 0,1 X

Syntax:	Seeded permutations

𝐷

𝑠 ← Gen(1i)

𝜋p /	𝜋hR,

5

𝜌 ← Perms(𝑛)

𝜌/𝜌R,≈

Stage	1:
• Oracle	access
• Secret	seed

Stage	2:
• Learns	seed
• No	oracle	access

Secret-seed	security:	Pseudorandom	permutations	(PRPs)

Limited	
information	

flow

0/1

𝑓 ← Func(∗, 𝑛) 𝑓
𝑠 ← Gen(1i)

ℎh

UCE	security

𝑆source

𝐿

𝐻 = (𝐺𝑒𝑛, ℎ)

distinguisher 𝐷

Bellare Hoang Keelveedhi

0/1

𝒔

𝑠 ← Gen(1i)

≈

leakage

𝜌 ← Perms(𝑛) 𝜌/𝜌R,
𝑠 ← Gen(1i)

𝜋h/𝜋hR,

psPRP security	[This	work]

𝑆source

𝐿

distinguisher 𝐷 0/1

𝒔

≈

𝑃 = (𝐺𝑒𝑛, 𝜋, 𝜋R,)
Makes	both	forward
and	backward
queries!

(+, 0X)(+, 0X)

𝜋h/𝜋hR, 𝜌/𝜌R,

𝑆

𝐿 = 𝑦

𝐷

𝒔

𝑦

Outputs	1	iff
𝑦 = 𝜋h 0X

1

1

with	prob.	1

with	prob.	1/2X

𝑦

Observation: 𝐩𝐬𝐏𝐑𝐏-security	impossible against	all	PPT	sources!

≈

Solution: Restrict	class	of	considered	sources!	

Definition. 𝑃 𝐩𝐬𝐏𝐑𝐏[𝒮]-secure: ∀	𝑆 ∈ 𝒮,∀PPT 𝐷:
𝜋h/𝜋hR, ≈ 𝜌/𝜌R,

all	sources

𝒮 𝑆

𝐿

𝐷 0/1

𝒔

𝜋h/𝜋hR, 𝜌/𝜌R,

all
sources

𝒮h�h
𝒮h�� unpredictable

reset-secure

Here:	unpredictable	and	reset-secure	sources

Both	restrictions	capture	unpredictability	of	source	queries!

𝒮h�� ⊆ 𝒮h�h 𝐩𝐬𝐏𝐑𝐏 𝒮h�h 	stronger	
assumption	than	𝐩𝐬𝐏𝐑𝐏 𝒮h��⟹

Source	restrictions	– unpredictability

𝑆 𝜌/𝜌R,
(𝜎�, 𝑥�)

𝑦�
𝐿

𝑄′

𝑄 ← 𝑄 ∪ {𝑥�, 𝑦�}

Pr	[𝑄�	 ∩ 	𝑄 ≠ 𝜙] = negl(𝜆)

⊆𝒮h��: 𝐴 is	computationally	unbounded,	poly	queries

𝒮���: 𝐴 is	PPT iO⟹𝐩𝐬𝐏𝐑𝐏[𝒮���] impossible	[BFM14]

𝜎� ∈ 	 {+,−}

Goal:	Must	be	hard	for	𝐴 to	
predict	𝑆’s	queries	or	their	
inverses𝐴

≈

Source	restrictions	– reset-security

⊆𝒮h�h: 𝑅 is	computationally	unbounded,	poly	queries

𝒮��h: 𝑅 is	PPT

𝑆 𝜌/𝜌R,

𝑅

𝐿

𝜌/𝜌R,

0/1 𝜌 ← Perms(𝑛) 𝜌, 𝜌� ← Perms(𝑛)

Fact. 𝒮h�� ⊆ 𝒮h�h

𝑆 𝜌/𝜌R,

𝑅

𝐿

𝜌�/𝜌�R,

0/1

Recap	– Definitions

Central	assumptions	in	
UCE	theory

Equally	useful?

Roadmap

1.Definitions

2.Constructions	&	Applications

3.Conclusions

Example	– Truncation

𝜋h𝑥

𝑦

𝑧 𝑧

0

𝑥 𝑔h 𝑥 = 𝜋h 𝑥, 0XR� [1. . 𝑘]

Lemma. If	𝜋 𝐩𝐬𝐏𝐑𝐏[𝒮h��]-secure	and	𝑚 +𝜔 log𝜆 ≤

𝑘 ≤ 𝑛 − 𝜔 log𝜆 ,	then	𝑔 is	PRG.

𝑠 ← Gen(1i)
𝑥 ← 	 0,1 XR�	

(𝑦, 𝑧) ← 𝜋h(𝑥, 0)
𝑏 ← 𝐷(𝑠, 𝑧) 𝑆

𝜋h
(𝑥, 0XR�) (𝑦, 𝑧)

𝐷𝑧 𝑏

𝑔h: 0,1 � → 0,1 �

𝒔

Thus,	also	a	OWF ...

𝑠 ← Gen(1i)
𝑥 ← 	 0,1 XR�	

(𝑦, 𝑧) ← 𝜋h(𝑥, 0)
𝑏 ← 𝐷(𝑠, 𝑧)

Proof	– Cont’d

𝑆

𝜋h
(𝑥, 0XR�) (𝑦, 𝑧)

𝐷𝑧 𝑏

𝒔

𝑆

𝜌
(𝑥, 0XR�) (𝑦, 𝑧)

𝑧

𝒔≈
𝐷 𝑏

if	𝑆 ∈ 𝒮h��

random!

𝑠 ← Gen
𝑧 ← 	 0,1 �

𝑏 ← 𝐷(𝑠, 𝑧)

Proof	– Unpredictability	of	𝑆

𝑆

𝜌
(𝑥, 0XR�) (𝑦, 𝑧)

𝑧 𝑅 𝑄

𝜌/𝜌R,

Fact. Pr (𝑥, 0XR�), 𝑦, 𝑧 ∩ 	𝑄 ≠ 𝜙 ≤ �
/�
+ �

/ ¡¢

𝑞 = 𝐩𝐨𝐥𝐲(𝑛)
queries

Next
Can	we	get	
psPRPs at	all?	

Are	psPRPs
useful?

Constructions	
from UCEs

Heuristic
Instantiations

Constructions	of
UCEs

Direct	applications	
Garbling	from	fixed-key	

block	ciphers
Common	denominator:	
CP-sequential	indifferentiability

How	to	build	UCEs	from	psPRPs?

𝐻

		𝜋h/𝜋hR,

⟹𝑃 𝐩𝐬𝐏𝐑𝐏[𝒮h�h]-secure 𝐻[𝑃] 𝐔𝐂𝐄[𝒮h�h]-secure.
Ideal	theorem.

𝑀 ∈ 0,1 ∗ 𝐻h(𝑀)

What	does	𝐻	need	to	satisfy	for	this	to	be	true?

𝐻[𝑃]

𝐴 𝐴≈
𝐻

0/1

𝑓

Sim

0/1

Indifferentiability [MRH04]

Definition. 𝐻 indiff.	from	RO	if	∃ PPT Sim ∀ PPT 𝐴:
𝐻	+	𝜌/𝜌R, ≈ 𝑓	+	Sim

?𝜌/𝜌R,

𝜌 ← Perms(𝑛)

𝑓 ← Funcs(∗, 𝑛)

𝐴, 𝐴,
≈

𝐻

0/1

𝑓

Sim

0/1

CP-sequential	indifferentiability

Def. 𝐻 CP-indiff.	from	RO	if	∃ PPT Sim ∀ PPT (𝐴,, 𝐴/):
𝐻	+	𝜌/𝜌R, ≈ 𝑓	+	Sim

𝜌/𝜌R,

𝜌 ← Perms(𝑛)

𝑓 ← Funcs(∗, 𝑛)

𝐴/ 𝐴/

𝑠𝑡 𝑠𝑡

From	psPRPs to	UCEs

Similar	to	[BHK14]. But:	
• Needs	full	
indifferentiability

• UCE	domain	extension

⟹
𝑃 𝐩𝐬𝐏𝐑𝐏[𝒮h�h]-secure

𝐻[𝑃] 𝐔𝐂𝐄[𝒮h�h]-secure.

Theorem.

𝐻 CP-indiff from RO

𝐻

		𝜋h/𝜋hR,

Corollary.	Every	perm-based	indiff.	hash-function	
transforms	a	psPRP into	a	UCE!

𝑆∗ 𝑆∗

From	psPRPs to	UCEs	– Proof	

𝐻

𝜋h/𝜋hR,

𝑆 𝐷

𝒔 𝐻

𝜌/𝜌R,

𝑆 𝐷

𝒔 𝑓

𝑆 𝐷

𝒔≈ ≈

𝑆 reset-secure
𝐻 is	CP-indiff from	𝑅𝑂

by	CP-indiff.by 𝐩𝐬𝐏𝐑𝐏[𝒮h�h]-
security	if	𝑆∗ ∈ 𝒮h�h

𝜌 ← Perms(𝑛) 𝑓 ← Funcs(∗, 𝑛)𝑠 ← Gen(1i)

𝑅∗

𝑅∗

𝑆∗

𝑆∗

ℎ 𝜌/𝜌R,

𝑆 𝑅 𝑆 𝑅

𝑓
≈

Sim

𝑆 𝑅

𝑓 Sim

𝑓«

𝑆 𝑅

ℎ

𝜌/𝜌R,

𝜌�/𝜌�R,

cpi

≈
cpi

Reset-security	of	𝑺∗?

≈
𝑆 is	reset-secure!

Good	news	#1

Corollary. Every	perm-based	indiff.	hash-
function	transforms	a	psPRP into	a	UCE!

Many	practical	hash	designs	from	
permutations	are	indifferentiable from	
RO!

UCE	is	a	meaningful	security	target	–
several	applications!

Examples	– Sponges	

𝑦

Corollary,	𝑃 𝐩𝐬𝐏𝐑𝐏 𝒮h�h -secure⟹ 	Sponge[𝑃]
𝐔𝐂𝐄 𝒮h�h -secure.

Theorem.	[BDVP08] Sponge indifferentiable from RO.

𝑀 ∈ {0,1}∗

𝑆Q𝑟

n	 − 𝑟

0

0

𝜌

𝑟

𝜌 𝜌

𝑀, 𝑀/ 𝑀®

𝜋h 𝜋h 𝜋h

Validates the	Sponge	paradigm	for	UCE	applications!

Good	news	#2	– No	need	for	full	indifferentiability
truncates 𝑛-bits	to	𝑟-bits

𝜌𝑛 𝑛 𝑟

Chop

Not	indifferentiable!	
• For	random	𝑦,	get	𝑥 =
𝜌R,(𝑦)

• Query	construction	on	𝑥,	
check	consistency	with	
first	𝑟 bits	of	𝑦

𝐴
Chop

𝜌/𝜌R,
𝐴

𝑓

Sim

0/1 0/1

Chop	– Cont’d

Theorem.	Chop is	CP-indiff from	RO	when	𝑛 − 𝑟 ∈ 𝜔(log 𝜆).

Corollary. 𝑃 𝐩𝐬𝐏𝐑𝐏 𝒮h�h -secure⟹ Chop[𝑃] 𝐔𝐂𝐄[𝒮h�h]-
secure.

𝐔𝐂𝐄 𝒮h��𝐩𝐬𝐏𝐑𝐏 𝒮h��

truncates 𝑛-bits	to	𝑟-bits

𝜌𝜋h𝑛 𝑛 𝑟

From Chop 𝑃 to	VIL	UCE:	Domain	extension	techniques	
[BHK14]

What	about	the	converse?

psPRPs UCEs

psPRPs from	UCEs

𝐴, 𝐴,

≈
𝑃

0/1

𝜌/𝜌R,

Sim

0/1

𝑓𝐴/ 𝐴/

𝑠𝑡 𝑠𝑡

⟹
𝐻	𝐔𝐂𝐄[𝒮h�h]-secure

𝑃[𝐻] 𝐩𝐬𝐏𝐑𝐏[𝒮h�h]-secure.

Theorem.

𝑃 CP-indiff from RP

From	UCEs	to	psPRPs – Feistel

impossible
[CPS08]

[HKT11][DS16] [DKT16]

#rounds	for	indifferentiability

???

𝑓, 𝑓/ 𝑓± 𝑓² 𝑓³ 𝑌 ∈ {0,1}/X

𝜓³[𝒇]

𝑋 ∈ {0,1}/X

Corollary. psPRPs exist iff UCEs	exist!!!*

*	wrt reset-secure	sources

Corollary.𝑯 𝐔𝐂𝐄 𝒮h�h -secure⟹ 𝜓³[𝑯] 𝐩𝐬𝐏𝐑𝐏[𝒮h�h]-
secure.

Theorem. 5-round Feistel is CP-indiff from RP

[HKT11][DS16] [DSKT16]

#rounds	for	CP-sequential	indifferentiability

This	work!!!

Round-complexity	of	Feistel
for	UCE-to-psPRP transformation?

5-round	proof	is	quite	involved!

Our	5-round	Sim:

impossible
[LR88]

[HKT11][DS16] [DSKT16]

#rounds	of	Feistel for	psPRP-security

This	work!!!Open:	Do	4-rounds	suffice?

• Relies	on	chain	completion	
techniques

• Heavily	exploits	query	ordering

• Very	different	chain-completion	
strategy	from	previous	works,	no	
recursion needed

𝑓, 𝑓/ 𝑓± 𝑓² 𝑓³

𝑋, 𝑋/ 𝑋± 𝑋² 𝑋³ 𝑋·

𝑋Q 𝑋³
Set

uniform
Set

uniform

forceVal forceVal

detect detect

???

A	couple	of	
extra	results!

(In	passing!)

Heuristic	Instantiations

	𝐸

𝑠 ← {0,1}�

psPRP 𝒮h�h -secure

psPRP 𝒮h�� -secure𝜋

𝑠 ← {0,1}�

From	seedless permutations:

From	block	ciphers:

Ideal-cipher	model

RP	model

𝐺𝑒𝑛:

𝜋h 𝑥 = 𝐸(𝑠, 𝑥)

𝜋h 𝑥 = 𝑠 ⊕ 𝜋(𝑠 ⊕ 𝑥)

𝐺𝑒𝑛:

Fast	Garbling	from	psPRPs

Our	variant:	𝐸 0�, 𝑥 ⇒ 𝜋h(𝑥),	fresh	seed	𝑠 generated	
upon	each	garbling	operation!

Garbling	scheme	from	[BHKR13]
• Only	calls	fixed-key	block	cipher

𝑥 → 𝐸(0�, 𝑥)

• Proof	in	RP	model

• Very	fast – no	key	re-schedule

Theorem. Secure when	𝜋𝒔 is 𝐩𝐬𝐏𝐑𝐏[𝒮h��].

Garbled AND-Gate

𝐸 0X, 𝑥ºQ ⊕ 𝑥»Q ⊕ 𝑥ºQ ⊕ 𝑥»Q ⊕ 𝑥¼Q	

𝐸 0X, 𝑥ºQ ⊕ 𝑥», ⊕ 𝑥ºQ ⊕ 𝑥», ⊕ 𝑥¼Q	

𝐸 0X, 𝑥º, ⊕ 𝑥»Q ⊕ 𝑥º, ⊕ 𝑥»Q ⊕ 𝑥¼Q	

𝐸 0X, 𝑥º, ⊕ 𝑥», ⊕ 𝑥º, ⊕ 𝑥», ⊕ 𝑥¼,	

𝑥ºQ,	𝑥º,
𝑥¼Q,	𝑥¼,AND𝑥»Q, 𝑥»,

Roadmap

1.Definitions

2.Constructions	&	Applications

3.Conclusions

Constructions

Conclusion

First (useful) standard	model	
assumptions	on	permutations

Applications
psPRPs

(Some)	open	questions

Beyond	psPRPs:
- Simpler	assumptions	on	permutations?	

More	on	psPRPs:
- More	efficient	constructions	from	UCEs?
- Weaker	assumptions?
- Cryptanalysis?

ps-Pseudorandomness as	a	paradigm:
- UCE =	psPRF

- Applications	of	psX?

Is	SHA-3	a	CRHF	under	any	non-trivial	assumption?

Thank	you!
Paper	on	ePrint really	soon	…

For	now:	http://www.cs.ucsb.edu/~tessaro/papers/SonTes17.pdf

