Lattice Assumptions in Crypto: Status Update

Chris Peikert
University of Michigan

(covers work with Oded Regev and Noah Stephens-Davidowitz to appear, STOC'17)

10 March 2017

Lattice-Based Cryptography

Lattice-Based Cryptography

Lattice-Based Cryptography

Main Attractions

- Efficient: linear, embarrassingly parallel operations

Lattice-Based Cryptography

Main Attractions

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)

Lattice-Based Cryptography

Main Attractions

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions

Lattice-Based Cryptography

Main Attractions

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions
- Solutions to 'holy grail' problems in crypto: FHE and related

Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error 'rate' α

Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error 'rate' α
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1} \approx\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad, & b_{2} \approx\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle \in \mathbb{Z}_{q}
\end{array}
$$

Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error 'rate' α
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad & b_{1}=\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1} \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad & b_{2}=\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2} \in \mathbb{Z}_{q}
\end{array}
$$

Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error 'rate' α
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1}=\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1} \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad & b_{2}=\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2} \in \mathbb{Z}_{q}
\end{array}
$$

- Decision: distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right)$

Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error 'rate' α
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1}=\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1} \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad & b_{2}=\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2} \in \mathbb{Z}_{q}
\end{array}
$$

- Decision: distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right)$

LWE is Hard and Versatile

worst case
(n / α)-SIVP on \leq search-LWE \leq decision-LWE \leq much crypto
n-dim lattices
(quantum [R'05]) [BFKL'93,R'05,...]

Learning With Errors [Regev'05]

- Parameters: dimension n, integer modulus q, error 'rate' α
- Search: find secret $\mathrm{s} \in \mathbb{Z}_{q}^{n}$ given many 'noisy inner products'

$$
\begin{array}{ll}
\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} & , \quad b_{1}=\left\langle\mathbf{a}_{1}, \mathbf{s}\right\rangle+e_{1} \in \mathbb{Z}_{q} \\
\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad, \quad & b_{2}=\left\langle\mathbf{a}_{2}, \mathbf{s}\right\rangle+e_{2} \in \mathbb{Z}_{q}
\end{array}
$$

- Decision: distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right)$

LWE is Hard and Versatile

worst case
(n / α)-SIVP on \leq search-LWE \leq decision-LWE \leq much crypto
n-dim lattices
(quantum [R'05]) [BFKL'93,R'05,...]

- Classically, GapSVP \leq search-LWE (worse params) [P'09,BLPRS'13]

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

夫 Any "somewhat smooth" $q=p_{1} \cdots p_{t}$ (large enough primes p_{i}) [P'09]

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

夫 Any "somewhat smooth" $q=p_{1} \cdots p_{t}$ (large enough primes p_{i}) [P'09]
\star Any $q=p^{e}$ for large enough prime p

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

夫 Any "somewhat smooth" $q=p_{1} \cdots p_{t}$ (large enough primes p_{i}) [P'09]
\star Any $q=p^{e}$ for large enough prime p
[ACPS'09]
\star Any $q=p^{e}$ with uniform error $\bmod p^{i}$

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

夫 Any "somewhat smooth" $q=p_{1} \cdots p_{t}$ (large enough primes p_{i}) [P'09]
\star Any $q=p^{e}$ for large enough prime p
[ACPS'09]
\star Any $q=p^{e}$ with uniform error $\bmod p^{i}$ [MM'11]

* Any $q=p^{e}$ - but increases α

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

夫 Any "somewhat smooth" $q=p_{1} \cdots p_{t}$ (large enough primes p_{i}) [P'09]
\star Any $q=p^{e}$ for large enough prime p
[ACPS'09]
\star Any $q=p^{e}$ with uniform error $\bmod p^{i}$ [MM'11]
\star Any $q=p^{e}$ — but increases α [MP'12]
夫 Any q via "mod-switching" - but increases α [P'09,BV'11,BLPRS'13]

LWE Hardness and Parameters

- Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

- One reduction for best known parameters: any $q \geq \sqrt{n} / \alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q :
* Any prime $q=\operatorname{poly}(n)$

夫 Any "somewhat smooth" $q=p_{1} \cdots p_{t}$ (large enough primes p_{i}) [P'09]
\star Any $q=p^{e}$ for large enough prime p
[ACPS'09]
\star Any $q=p^{e}$ with uniform error $\bmod p^{i}$
[MM'11]

* Any $q=p^{e}$ — but increases α [MP'12]
夫 Any q via "mod-switching" - but increases α [P'09,BV'11,BLPRS'13]
- Increasing q, α yields a weaker ultimate hardness guarantee.

LWE is Efficient (Sort Of)

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$

LWE is Efficient (Sort Of)

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$
$\left(\cdots \mathbf{a}_{i} \cdots\right)\left(\begin{array}{c}\vdots \\ \mathrm{s} \\ \vdots\end{array}\right)+e=b \in \mathbb{Z}_{q}$
- Can amortize each a_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.

LWE is Efficient (Sort Of)

$$
\left(\cdots \mathbf{a}_{i} \cdots\right)\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+e=b \in \mathbb{Z}_{q}
$$

- Getting one pseudorandom scalar requires an n-dim inner product $\bmod q$
- Can amortize each a_{i} over many secrets s_{j}, but still $\tilde{O}(n)$ work per scalar output.
- Cryptosystems have rather large keys: $\Omega\left(n^{2} \log ^{2} q\right)$ bits:

$$
p k=\underbrace{\left(\begin{array}{c}
\vdots \\
\mathbf{A} \\
\vdots
\end{array}\right)}_{n}, \quad\left(\begin{array}{c}
\vdots \\
\mathbf{b} \\
\vdots
\end{array}\right)\} \Omega(n)
$$

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
.
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
.
\end{array}\right) \in \mathbb{Z}_{q}^{n} \quad \begin{aligned}
& \text { Get } n \text { pseudorandom scalars } \\
& \text { from just one cheap product } \\
& \text { operation? }
\end{aligned}
$$

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n} \quad \begin{aligned}
& \text { Get } n \text { pseudorandom scalars } \\
& \text { from just one cheap product } \\
& \text { operation? }
\end{aligned}
$$

Question

- How to define the product ' \star ' so that $\left(\mathrm{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathrm{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one cheap product operation?

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one cheap product operation?

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathbf{b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ' \star ' $=$ multiplication in a polynomial ring: e.g., $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

Fast and practical with FFT: $n \log n$ operations $\bmod q$.

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathbf{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n}
$$

- Get n pseudorandom scalars from just one cheap product operation?

Question

- How to define the product ' \star ' so that $\left(\mathbf{a}_{i}, \mathrm{~b}_{i}\right)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

Answer

- ' \star ' $=$ multiplication in a polynomial ring: e.g., $\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$.

Fast and practical with FFT: $n \log n$ operations $\bmod q$.

- Same ring structures used in NTRU cryptosystem [HPS'98], \& in compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

Wishful Thinking. . .

$$
\left(\begin{array}{c}
\vdots \\
\mathbf{a}_{i} \\
\vdots
\end{array}\right) \star\left(\begin{array}{c}
\vdots \\
\mathrm{s} \\
\vdots
\end{array}\right)+\left(\begin{array}{c}
\vdots \\
\mathbf{e}_{i} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\vdots \\
\mathbf{b}_{i} \\
\vdots
\end{array}\right) \in \mathbb{Z}_{q}^{n} \quad \begin{aligned}
& \text { Get } n \text { pseudorandom scalars } \\
& \text { from just one cheap product } \\
& \text { operation? }
\end{aligned}
$$

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R=\mathbb{Z}[X] /(f(X))$ for irred. f of degree n (or $R=\mathcal{O}_{K}$)

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R=\mathbb{Z}[X] /(f(X))$ for irred. f of degree n (or $R=\mathcal{O}_{K}$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R=\mathbb{Z}[X] /(f(X))$ for irred. f of degree n (or $R=\mathcal{O}_{K}$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- Integer modulus q defining $R_{q}:=R / q R$ and $R_{q}^{\vee}:=R^{\vee} / q R^{\vee}$

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R=\mathbb{Z}[X] /(f(X))$ for irred. f of degree n (or $R=\mathcal{O}_{K}$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- Integer modulus q defining $R_{q}:=R / q R$ and $R_{q}^{\vee}:=R^{\vee} / q R^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R=\mathbb{Z}[X] /(f(X))$ for irred. f of degree n (or $R=\mathcal{O}_{K}$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- Integer modulus q defining $R_{q}:=R / q R$ and $R_{q}^{\vee}:=R^{\vee} / q R^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}

Search: find secret ring element $s \in R_{q}^{\vee}$, given independent samples

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} \quad, \quad b_{1}=a_{1} \cdot s+e_{1} \in R_{q}^{\vee} \\
a_{2} \leftarrow R_{q} \quad, \quad & b_{2}=a_{2} \cdot s+e_{2} \in R_{q}^{\vee}
\end{array}
$$

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- Ring R, often $R=\mathbb{Z}[X] /(f(X))$ for irred. f of degree n (or $R=\mathcal{O}_{K}$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- Integer modulus q defining $R_{q}:=R / q R$ and $R_{q}^{\vee}:=R^{\vee} / q R^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}

Search: find secret ring element $s \in R_{q}^{\vee}$, given independent samples

$$
\begin{array}{ll}
a_{1} \leftarrow R_{q} & , \quad b_{1}=a_{1} \cdot s+e_{1} \in R_{q}^{\vee} \\
a_{2} \leftarrow R_{q} & , \quad
\end{array} b_{2}=a_{2} \cdot s+e_{2} \in R_{q}^{\vee}
$$

Decision: distinguish $\left(a_{i}, b_{i}\right)$ from uniform $\left(a_{i}, b_{i}\right) \in R_{q} \times R_{q}^{\vee}$

Hardness of Ring-LWE [LPR'10]

Hardness of Ring-LWE [LPR'10]

worst-case $\left(n^{c} / \alpha\right)$-SIVP on ideal lattices in R
 \leq_{\nwarrow} search $R-\mathrm{LWE}_{q, \alpha} \leq$ decision $R-\mathrm{LWE}_{q, \alpha}$
 (quantum,
 any $R=\mathcal{O}_{K}$)
 (classical,
 any Galois R)

(Ideal $\mathcal{I} \subseteq R$: additive subgroup, $x \cdot r \in \mathcal{I}$ for all $x \in \mathcal{I}, r \in R$.)

Hardness of Ring-LWE [LPR'10]

$$
\begin{array}{r}
\text { worst-case }\left(n^{c} / \alpha\right) \text {-SIVP } \\
\text { on ideal lattices in } R \quad \text { search } R-\text { LWE }_{q, \alpha} \leq{ }_{\zeta} \leq \text { decision } R \text {-LWE } \\
\begin{array}{c}
(\text { quantum, }, \\
\text { any } \left.R=\mathcal{O}_{K}\right)
\end{array} \\
(\text { classical, } \\
\text { any Galois } R)
\end{array}
$$

Large disparity in known hardness of search versus decision:

Hardness of Ring-LWE [LPR'10]

> (classical,
> any Galois R)

Large disparity in known hardness of search versus decision:
Search: any number ring, any $q \geq n^{c} / \alpha$.

Hardness of Ring-LWE [LPR'10]

$$
\begin{array}{r}
\text { worst-case }\left(n^{c} / \alpha\right)-\text { SIVP } \\
\text { on ideal lattices in } R \quad \text { search } R \text {-LWE }_{q, \alpha} \leq{ }_{\kappa} \leq \text { decision } R \text {-LWE } \\
\begin{array}{c}
\text { (quantum, }, \\
\text { any } \left.R=\mathcal{O}_{K}\right)
\end{array} \\
(\text { classical, } \\
\text { any Galois } R)
\end{array}
$$

Large disparity in known hardness of search versus decision:
Search: any number ring, any $q \geq n^{c} / \alpha$.
Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime $q=\operatorname{poly}(n)$.

Hardness of Ring-LWE [LPR'10]

$$
\begin{gathered}
\text { worst-case }\left(n^{c} / \alpha\right)-\mathrm{SIVP} \leq \text { search } R-\mathrm{LWE}_{q, \alpha} \leq \text { decision } R-\mathrm{LWE}_{q, \alpha} \\
\text { on ideal lattices in } R \quad \begin{array}{c}
\text { (quantum, } \\
\text { any } \left.R=\mathcal{O}_{K}\right)
\end{array} \\
\text { (classical, } \\
\text { any Galois } R)
\end{gathered}
$$

Large disparity in known hardness of search versus decision:
Search: any number ring, any $q \geq n^{c} / \alpha$.
Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime $q=\operatorname{poly}(n)$.

Can then get any q by mod-switching, but increases α [LS'15]

Hardness of Ring-LWE [LPR'10]

worst-case (n^{c} / α)-SIVP on ideal lattices in R

Large disparity in known hardness of search versus decision:
Search: any number ring, any $q \geq n^{c} / \alpha$.
Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime $q=\operatorname{poly}(n)$.

Can then get any q by mod-switching, but increases α [LS'15]

- Decision has no known worst-case hardness in non-Galois rings.

Hardness of Ring-LWE [LPR'10]

worst-case (n^{c} / α)-SIVP on ideal lattices in R

Large disparity in known hardness of search versus decision:
Search: any number ring, any $q \geq n^{c} / \alpha$.
Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime $q=\operatorname{poly}(n)$.

Can then get any q by mod-switching, but increases α [LS'15]

- Decision has no known worst-case hardness in non-Galois rings.
- But no examples of easy(er) decision when search is worst-case hard!

New Results [PRs'17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

> worst-case $\left(n^{c} / \alpha\right)-$ SIVP \leq decision R-LWE $_{q, \alpha}$ on ideal lattices in $R \quad$ quantum, any $R=\mathcal{O}_{K}$, any $q \geq n^{c-1 / 2} / \alpha$

New Results [PRs'17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

$$
\begin{gathered}
\text { worst-case }\left(n^{c} / \alpha\right)-\text { SIVP } \leq \text { decision } R-\text { LWE }_{q, \alpha} \\
\text { on ideal lattices in } R \quad \text { quantum, } \\
\text { any } R=\mathcal{O}_{K}, \text { any } q \geq n^{c-1 / 2} / \alpha
\end{gathered}
$$

Bonus Theorem: LWE is Pseudorandom for Any Modulus

quantum, any $q \geq \sqrt{n} / \alpha$

New Results [PRS'17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

$$
\begin{gathered}
\text { worst-case }\left(n^{c} / \alpha\right) \text {-SIVP } \leq \text { decision } R \text {-LWE }_{q, \alpha} \\
\text { on ideal lattices in } R \quad \text { quantum, } \\
\text { any } R=\mathcal{O}_{K}, \text { any } q \geq n^{c-1 / 2} / \alpha
\end{gathered}
$$

Bonus Theorem: LWE is Pseudorandom for Any Modulus

quantum, any $q \geq \sqrt{n} / \alpha$

- Both theorems match or improve the previous best params:

New Results [PRS'17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

$$
\begin{gathered}
\text { worst-case }\left(n^{c} / \alpha\right)-\mathrm{SIVP} \leq \text { decision } R \text {-LWE }_{q, \alpha} \\
\text { on ideal lattices in } R \leq \begin{array}{c}
\text { quantum, } \\
\text { any } R=\mathcal{O}_{K}, \text { any } q \geq n^{c-1 / 2} / \alpha
\end{array}
\end{gathered}
$$

Bonus Theorem: LWE is Pseudorandom for Any Modulus

quantum, any $q \geq \sqrt{n} / \alpha$

- Both theorems match or improve the previous best params:

One reduction to rule them all.

New Results [PRS'17]

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

$$
\begin{aligned}
& \text { worst-case }\left(n^{c} / \alpha\right) \text {-SIVP } \leq \text { decision } R-\text { LWE }_{q, \alpha} \\
& \text { on ideal lattices in } R \leq \text { quantum, } \\
& \qquad \text { any } R=\mathcal{O}_{K} \text {, any } q \geq n^{c-1 / 2} / \alpha
\end{aligned}
$$

Bonus Theorem: LWE is Pseudorandom for Any Modulus

quantum, any $q \geq \sqrt{n} / \alpha$

- Both theorems match or improve the previous best params:

One reduction to rule them all.

- Seems to adapt to 'module' lattices/LWE w/techniques from [LS'15]

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp (\tilde{O}(\sqrt{n})$)-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp (\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics)
[CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly (n) factors typically used for crypto

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp (\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics)
[CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly (n) factors typically used for crypto
- Doesn't apply to R-LWE or NTRU

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp (\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly (n) factors typically used for crypto
- Doesn't apply to R-LWE or NTRU
(unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp (\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics)
[CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly (n) factors typically used for crypto
- Doesn't apply to R-LWE or NTRU
(unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
- Use R-LWE over (slower) rings like $\mathbb{Z}[X] /\left(X^{p}-X-1\right) \quad[B C L v V ' 16]$

Which Rings To Use?

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- Quantum poly-time $\exp (\tilde{O}(\sqrt{n}))$-Ideal-SIVP in prime-power cyclotomics (modulo heuristics)
[CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly (n) factors typically used for crypto
- Doesn't apply to R-LWE or NTRU
(unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
- Use R-LWE over (slower) rings like $\mathbb{Z}[X] /\left(X^{p}-X-1\right) \quad[B C L v V ' 16]$
- Use 'higher rank' problem Module-LWE over cyclotomics/others

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision- $\operatorname{LWE}_{q, \alpha}$ with non-negl advantage. Define

$$
p(\beta)=\operatorname{Pr}\left[\mathcal{O} \text { accepts on } \operatorname{LWE}_{q, \exp (\beta)} \text { samples }\right]
$$

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision- $\operatorname{LWE}_{q, \alpha}$ with non-negl advantage. Define

$$
p(\beta)=\operatorname{Pr}\left[\mathcal{O} \text { accepts on } \operatorname{LWE}_{q, \exp (\beta)} \text { samples }\right] .
$$

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision- $\operatorname{LWE}_{q, \alpha}$ with non-negl advantage. Define

$$
p(\beta)=\operatorname{Pr}\left[\mathcal{O} \text { accepts on } \operatorname{LWE}_{q, \exp (\beta)} \text { samples }\right]
$$

Key Properties

(1) $p(\beta)$ is 'smooth' (Lipschitz) because D_{σ}, D_{τ} are $\left(\frac{\tau}{\sigma}-1\right)$-close.

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision- $\operatorname{LWE}_{q, \alpha}$ with non-negl advantage. Define

$$
p(\beta)=\operatorname{Pr}\left[\mathcal{O} \text { accepts on } \mathrm{LWE}_{q, \exp (\beta)} \text { samples }\right] .
$$

Key Properties

(1) $p(\beta)$ is 'smooth' (Lipschitz) because D_{σ}, D_{τ} are $\left(\frac{\tau}{\sigma}-1\right)$-close.
(2) For all $\beta \geq \log n, p(\beta) \approx p(\infty)=\operatorname{Pr}[\mathcal{O}$ accepts on uniform samples], because huge Gaussian error is near-uniform $\bmod q \mathbb{Z}$.

Overview of LWE Reduction

- Theorem: quantumly, (n / α)-SIVP \leq decision- $\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision- $\operatorname{LWE}_{q, \alpha}$ with non-negl advantage. Define

$$
p(\beta)=\operatorname{Pr}\left[\mathcal{O} \text { accepts on } \operatorname{LWE}_{q, \exp (\beta)} \text { samples }\right]
$$

Key Properties

(1) $p(\beta)$ is 'smooth' (Lipschitz) because D_{σ}, D_{τ} are $\left(\frac{\tau}{\sigma}-1\right)$-close.
(2) For all $\beta \geq \log n, p(\beta) \approx p(\infty)=\operatorname{Pr}[\mathcal{O}$ accepts on uniform samples $]$, because huge Gaussian error is near-uniform $\bmod q \mathbb{Z}$.
(3) $p(\log \alpha)-p(\infty)$ is noticeable, so there is a noticeable change in p somewhere between $\log \alpha$ and $\log n$.

Exploiting the Oracle

- Theorem: quantumly, (n / α)-SIVP \leq decision- $-\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$

Exploiting the Oracle

- Theorem: quantumly, (n / α)-SIVP \leq decision- - LWE $_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Classical part of [Regev'05] reduction:

Exploiting the Oracle

- Theorem: quantumly, (n / α)-SIVP \leq decision- $\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Classical part of [Regev'05] reduction:

Exploiting the Oracle

- Theorem: quantumly, (n / α)-SIVP \leq decision- $\operatorname{LWE}_{q, \alpha} \quad \forall q \geq \sqrt{n} / \alpha$
- Classical part of [Regev'05] reduction:

- Idea: perturb t, use \mathcal{O} to check whether we're closer to \mathcal{L}^{*} by how $\alpha=d r / q$ changes.

We get a 'suffix' of $p(\cdot)$.

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $\mathbf{e} \Leftrightarrow$ params $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$. Gaussian error rate of α_{i} in the i th dimension.

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $\mathbf{e} \Leftrightarrow$ params $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$. Gaussian error rate of α_{i} in the i th dimension.
- Classical part of [LPR'10] reduction:

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $\mathbf{e} \Leftrightarrow$ params $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$. Gaussian error rate of α_{i} in the i th dimension.
- Classical part of [LPR'10] reduction:

$\mathrm{BDD}_{\mathcal{I}^{*}}$, offset $\mathbf{e} \quad D_{\mathcal{I}, \mathbf{r}}$ samples
- Now oracle's acceptance prob. is $p(\boldsymbol{\beta})$, mapping $\left(\mathbb{R}^{+}\right)^{n} \rightarrow[0,1]$.
$\star \lim _{\beta_{i} \rightarrow \infty} p(\boldsymbol{\beta})=p(\infty)$: huge error in one dim is 'smooth' $\bmod R^{\vee}$.

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $\mathbf{e} \Leftrightarrow$ params $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$. Gaussian error rate of α_{i} in the i th dimension.
- Classical part of [LPR'10] reduction:

$\mathrm{BDD}_{\mathcal{I}^{*}}$, offset $\mathbf{e} \quad D_{\mathcal{I}, \mathbf{r}}$ samples
- Now oracle's acceptance prob. is $p(\boldsymbol{\beta})$, mapping $\left(\mathbb{R}^{+}\right)^{n} \rightarrow[0,1]$.
$\star \lim _{\beta_{i} \rightarrow \infty} p(\boldsymbol{\beta})=p(\infty)$: huge error in one dim is 'smooth' $\bmod R^{\vee}$.
\star Problem: Reduction never* produces spherical error (all α_{i} equal), so it's hard to get anything useful from \mathcal{O}.

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $\mathbf{e} \Leftrightarrow$ params $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$. Gaussian error rate of α_{i} in the i th dimension.
- Classical part of [LPR'10] reduction:

$\mathrm{BDD}_{\mathcal{I}^{*}}$, offset $\mathbf{e} \quad D_{\mathcal{I}, \mathbf{r}}$ samples
- Now oracle's acceptance prob. is $p(\boldsymbol{\beta})$, mapping $\left(\mathbb{R}^{+}\right)^{n} \rightarrow[0,1]$.
$\star \lim _{\beta_{i} \rightarrow \infty} p(\boldsymbol{\beta})=p(\infty)$: huge error in one dim is 'smooth' $\bmod R^{\vee}$.
\star Problem: Reduction never* produces spherical error (all α_{i} equal), so it's hard to get anything useful from \mathcal{O}.
\star Solution from [LPR'10]: randomize the α_{i} : increase by $n^{1 / 4}$ factor.

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has n-parameter BDD offset $\mathbf{e} \Leftrightarrow$ params $\boldsymbol{\alpha}=\left(\alpha_{i}\right)$. Gaussian error rate of α_{i} in the i th dimension.
- Classical part of [LPR'10] reduction:

$\mathrm{BDD}_{\mathcal{I}^{*}}$, offset $\mathbf{e} \quad D_{\mathcal{I}, \mathbf{r}}$ samples
- Now oracle's acceptance prob. is $p(\boldsymbol{\beta})$, mapping $\left(\mathbb{R}^{+}\right)^{n} \rightarrow[0,1]$.
$\star \lim _{\beta_{i} \rightarrow \infty} p(\boldsymbol{\beta})=p(\infty)$: huge error in one dim is 'smooth' $\bmod R^{\vee}$.
\star Problem: Reduction never* produces spherical error (all α_{i} equal), so it's hard to get anything useful from \mathcal{O}.
* Solution from [LPR'10]: randomize the α_{i} : increase by $n^{1 / 4}$ factor.
* Improvement: randomization increases α_{i} by only $\omega(1)$ factor.

Final Thoughts and Open Problems

- decision- R - LWE $_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q

Final Thoughts and Open Problems

- decision- R - LWE $_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\operatorname{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Final Thoughts and Open Problems

- decision- R - $\mathrm{LWE}_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\operatorname{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Open Questions

Final Thoughts and Open Problems

- decision- R - LWE $_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\operatorname{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Open Questions

(1) Hardness for spherical error:
\star Avoid $n^{1 / 4}$ degradation in the α_{i} rates?

* Support unbounded samples?

Final Thoughts and Open Problems

- decision- R - LWE $_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\mathrm{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Open Questions

(1) Hardness for spherical error:
\star Avoid $n^{1 / 4}$ degradation in the α_{i} rates?
^ Support unbounded samples?
2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)

Final Thoughts and Open Problems

- decision- R - LWE $_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\operatorname{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Open Questions

(1) Hardness for spherical error:
\star Avoid $n^{1 / 4}$ degradation in the α_{i} rates?

* Support unbounded samples?
(2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)
(3) Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?

Final Thoughts and Open Problems

- decision- R - $\mathrm{LWE}_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\operatorname{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Open Questions

(1) Hardness for spherical error:
\star Avoid $n^{1 / 4}$ degradation in the α_{i} rates?
^ Support unbounded samples?
(2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)
(3) Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?
(4) Evidence for/against Ring-LWE \leq Ideal-SIVP?

Final Thoughts and Open Problems

- decision- R - $\mathrm{LWE}_{q, \alpha}$ is worst-case hard for any $R=\mathcal{O}_{K}$, modulus q
- decision- $\mathrm{LWE}_{q, \alpha}$ is hard for any q; approx factor independent of q

Open Questions

(1) Hardness for spherical error:
\star Avoid $n^{1 / 4}$ degradation in the α_{i} rates?

* Support unbounded samples?
(2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)
(3) Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?
(4) Evidence for/against Ring-LWE \leq Ideal-SIVP?
(5) Classical reduction matching params of quantum reductions?

