Lattice Assumptions in Crypto: Status Update

Chris Peikert University of Michigan

(covers work with Oded Regev and Noah Stephens-Davidowitz to appear, STOC'17)

10 March 2017

Main Attractions

Efficient: linear, embarrassingly parallel operations

Main Attractions

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)

Main Attractions

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions

Main Attractions

- Efficient: linear, embarrassingly parallel operations
- Resists quantum attacks (so far)
- Security from worst-case assumptions
- Solutions to 'holy grail' problems in crypto: FHE and related

> Parameters: dimension n, integer modulus q, error 'rate' α

> Parameters: dimension n, integer modulus q, error 'rate' α

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\begin{aligned} \mathbf{a}_1 &\leftarrow \mathbb{Z}_q^n \quad , \quad \boldsymbol{b}_1 \approx \langle \mathbf{a}_1 \; , \; \mathbf{s} \rangle \in \mathbb{Z}_q \\ \mathbf{a}_2 &\leftarrow \mathbb{Z}_q^n \quad , \quad \boldsymbol{b}_2 \approx \langle \mathbf{a}_2 \; , \; \mathbf{s} \rangle \in \mathbb{Z}_q \end{aligned}$$

÷

 \blacktriangleright Parameters: dimension $n_{\rm i}$ integer modulus $q_{\rm i}$ error 'rate' α

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

$$\mathbf{a}_{1} \leftarrow \mathbb{Z}_{q}^{n} \quad , \quad \mathbf{b}_{1} = \langle \mathbf{a}_{1} , \mathbf{s} \rangle + e_{1} \in \mathbb{Z}_{q}$$
$$\mathbf{a}_{2} \leftarrow \mathbb{Z}_{q}^{n} \quad , \quad \mathbf{b}_{2} = \langle \mathbf{a}_{2} , \mathbf{s} \rangle + e_{2} \in \mathbb{Z}_{q}$$

width αq

 \blacktriangleright Parameters: dimension n, integer modulus q, error 'rate' α

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

Decision: distinguish (a_i, b_i) from <u>uniform</u> (a_i, b_i)

- \blacktriangleright Parameters: dimension n, integer modulus q, error 'rate' α
- ▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

Decision: distinguish (a_i, b_i) from <u>uniform</u> (a_i, b_i)

LWE is Hard and Versatile

 \blacktriangleright Parameters: dimension n, integer modulus q, error 'rate' α

▶ Search: find secret $\mathbf{s} \in \mathbb{Z}_q^n$ given many 'noisy inner products'

Decision: distinguish (a_i, b_i) from <u>uniform</u> (a_i, b_i)

LWE is Hard and Versatile

worst case (n/α) -SIVP on \leq search-LWE \leq decision-LWE \leq much crypto n-dim lattices 7 7 (quantum [R'05]) [BFKL'93,R'05,...] Classically, GapSVP \leq search-LWE (worse params) [P'09,BLPRS'13]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

• One reduction for best known parameters: any $q \ge \sqrt{n}/\alpha$

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

• One reduction for best known parameters: any $q \ge \sqrt{n}/\alpha$

$\mathsf{Search}\mathsf{-}\mathsf{LWE} \leq \mathsf{Decision}\mathsf{-}\mathsf{LWE}$

Messy. Many incomparable reductions for different forms of q:

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

• One reduction for best known parameters: any $q \geq \sqrt{n}/lpha$

$\mathsf{Search}\mathsf{-}\mathsf{LWE} \leq \mathsf{Decision}\mathsf{-}\mathsf{LWE}$

Messy. Many incomparable reductions for different forms of q:

★ Any prime
$$q = poly(n)$$

[R'05]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

▶ One reduction for best known parameters: any $q \ge \sqrt{n}/lpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - * Any prime q = poly(n) [R'05]
 - ★ Any "somewhat smooth" $q = p_1 \cdots p_t$ (large enough primes p_i) [P'09]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

▶ One reduction for best known parameters: any $q \ge \sqrt{n}/\alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - * Any prime q = poly(n) [R'05]
 - ★ Any "somewhat smooth" $q = p_1 \cdots p_t$ (large enough primes p_i) [P'09]
 - * Any $q = p^e$ for large enough prime p

[R'05]

[ACPS'09]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

▶ One reduction for best known parameters: any $q \ge \sqrt{n}/\alpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - * Any prime q = poly(n) [R'05]
 - ★ Any "somewhat smooth" $q = p_1 \cdots p_t$ (large enough primes p_i) [P'09]
 - \star Any $q = p^e$ for large enough prime p
 - ★ Any $q = p^e$ with uniform error mod p^i

[R'05]

[ACPS'09]

[MM'11]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

• One reduction for best known parameters: any $q \ge \sqrt{n}/lpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - * Any prime q = poly(n) [R'05]
 - ★ Any "somewhat smooth" $q = p_1 \cdots p_t$ (large enough primes p_i) [P'09]
 - ★ Any $q = p^e$ for large enough prime p [ACPS'09]
 - ★ Any $q = p^e$ with uniform error mod p^i [MM'11]
 - ★ Any $q = p^e$ but increases α

[MP'12]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

• One reduction for best known parameters: any $q \geq \sqrt{n}/lpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - * Any prime q = poly(n) [R'05]
 - ★ Any "somewhat smooth" $q = p_1 \cdots p_t$ (large enough primes p_i) [P'09]
 - * Any $q = p^e$ for large enough prime p [ACPS'09]
 - ★ Any $q = p^e$ with uniform error mod p^i [MM'11]
 - ★ Any $q = p^e$ but increases α
 - * Any q via "mod-switching" but increases α [P'09,BV'11,BLPRS'13]

[MP'12]

Parameters: dimension n, integer modulus q, error 'rate' α

Worst case SIVP \leq Search-LWE

• One reduction for best known parameters: any $q \geq \sqrt{n}/lpha$

Search-LWE \leq Decision-LWE

- Messy. Many incomparable reductions for different forms of q:
 - * Any prime q = poly(n) [R'05]
 - ★ Any "somewhat smooth" $q = p_1 \cdots p_t$ (large enough primes p_i) [P'09]
 - ★ Any $q = p^e$ for large enough prime p [ACPS'09]
 - * Any $q = p^e$ with uniform error mod p^i [MM'11]
 - ★ Any $q = p^e$ but increases α [MP'12]
 - * Any q via "mod-switching" but increases α [P'09,BV'11,BLPRS'13]
- lncreasing q, α yields a weaker ultimate hardness guarantee.

LWE is Efficient (Sort Of)

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e = \mathbf{b} \in \mathbb{Z}_q$$

 Getting one pseudorandom scalar requires an *n*-dim inner product mod *q*

LWE is Efficient (Sort Of)

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e = \mathbf{b} \in \mathbb{Z}_q$$

- Getting one pseudorandom scalar requires an *n*-dim inner product mod *q*
- Can amortize each a_i over many secrets s_j, but still Õ(n) work per scalar output.

LWE is Efficient (Sort Of)

$$(\cdots \mathbf{a}_i \cdots) \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + e = \mathbf{b} \in \mathbb{Z}_q$$

- Getting one pseudorandom scalar requires an *n*-dim inner product mod *q*
- Can amortize each a_i over many secrets s_j, but still Õ(n) work per scalar output.
- Cryptosystems have rather large keys: $\Omega(n^2 \log^2 q)$ bits:

$$pk = \underbrace{\begin{pmatrix} \vdots \\ \mathbf{A} \\ \vdots \\ n \end{pmatrix}}_{n} , \quad \begin{pmatrix} \vdots \\ \mathbf{b} \\ \vdots \\ \vdots \end{pmatrix} \right\} \Omega(n)$$

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get *n* pseudorandom scalars from just one cheap product operation?

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one cheap product operation?

Question

• How to define the product ' \star ' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one cheap product operation?

Question

- ▶ How to define the product '★' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?
- Careful! With small error, coordinate-wise multiplication is insecure!

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one cheap product operation?

Question

▶ How to define the product '★' so that $(\mathbf{a}_i, \mathbf{b}_i)$ is pseudorandom?

Careful! With small error, coordinate-wise multiplication is insecure!

Answer

• ' \star ' = multiplication in a polynomial ring: e.g., $\mathbb{Z}_q[X]/(X^n+1)$.

Fast and practical with FFT: $n \log n$ operations mod q.

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one cheap product operation?

Question

How to define the product '*' so that (a_i, b_i) is pseudorandom?

Careful! With small error, coordinate-wise multiplication is insecure!

Answer

• '*' = multiplication in a polynomial ring: e.g., $\mathbb{Z}_q[X]/(X^n+1)$.

Fast and practical with FFT: $n \log n$ operations mod q.

Same ring structures used in NTRU cryptosystem [HPS'98],
 & in compact one-way / CR hash functions [Mic'02,PR'06,LM'06,...]

$$\begin{pmatrix} \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \star \begin{pmatrix} \vdots \\ \mathbf{s} \\ \vdots \end{pmatrix} + \begin{pmatrix} \vdots \\ \mathbf{e}_i \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \mathbf{b}_i \\ \vdots \end{pmatrix} \in \mathbb{Z}_q^n$$

Get n pseudorandom scalars from just one cheap product operation?

▶ Ring *R*, often $R = \mathbb{Z}[X]/(f(X))$ for irred. *f* of degree *n* (or $R = \mathcal{O}_K$)

▶ Ring *R*, often $R = \mathbb{Z}[X]/(f(X))$ for irred. *f* of degree *n* (or $R = \mathcal{O}_K$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)

- ▶ Ring *R*, often $R = \mathbb{Z}[X]/(f(X))$ for irred. *f* of degree *n* (or $R = \mathcal{O}_K$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- ▶ Integer modulus q defining $R_q := R/qR$ and $R_q^{\vee} := R^{\vee}/qR^{\vee}$

- ▶ Ring *R*, often $R = \mathbb{Z}[X]/(f(X))$ for irred. *f* of degree *n* (or $R = \mathcal{O}_K$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- ▶ Integer modulus q defining $R_q := R/qR$ and $R_q^{\vee} := R^{\vee}/qR^{\vee}$
- Gaussian error of width $\approx \alpha q$ over R^{\vee}

- ▶ Ring *R*, often $R = \mathbb{Z}[X]/(f(X))$ for irred. *f* of degree *n* (or $R = \mathcal{O}_K$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- ▶ Integer modulus q defining $R_q := R/qR$ and $R_q^{\vee} := R^{\vee}/qR^{\vee}$
- Gaussian error of width $pprox \alpha q$ over R^{\vee}

Search: find secret ring element $s \in R_q^{\vee}$, given independent samples

Learning With Errors over Rings (Ring-LWE) [LPR'10]

- ▶ Ring *R*, often $R = \mathbb{Z}[X]/(f(X))$ for irred. *f* of degree *n* (or $R = \mathcal{O}_K$) Has a 'dual ideal' R^{\vee} (w.r.t. 'canonical' geometry)
- ▶ Integer modulus q defining $R_q := R/qR$ and $R_q^{\vee} := R^{\vee}/qR^{\vee}$
- Gaussian error of width $pprox \alpha q$ over R^{\vee}

Search: find secret ring element $s \in R_q^{\vee}$, given independent samples

Decision: distinguish (a_i, b_i) from uniform $(a_i, b_i) \in R_q \times R_q^{\vee}$

(Ideal $\mathcal{I} \subseteq R$: additive subgroup, $x \cdot r \in \mathcal{I}$ for all $x \in \mathcal{I}, r \in R$.)

Large disparity in known hardness of search versus decision:

Large disparity in known hardness of search versus decision: Search: any number ring, any $q \ge n^c/\alpha$.

Large disparity in known hardness of search versus decision: Search: any number ring, any $q \ge n^c/\alpha$. Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime q = poly(n).

Large disparity in known hardness of search versus decision:

Search: any number ring, any $q \ge n^c/\alpha$.

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime q = poly(n).

Can then get any q by mod-switching, but increases α [LS'15]

Large disparity in known hardness of search versus decision:

Search: any number ring, any $q \ge n^c/\alpha$.

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime q = poly(n).

Can then get any q by mod-switching, but increases α [LS'15]

Decision has no known worst-case hardness in non-Galois rings.

Large disparity in known hardness of search versus decision:

Search: any number ring, any $q \ge n^c/\alpha$.

Decision: any Galois number ring (e.g., cyclotomic), any highly splitting prime q = poly(n).

Can then get any q by mod-switching, but increases α [LS'15]

- Decision has no known worst-case hardness in non-Galois rings.
- But no examples of easy(er) decision when search is worst-case hard!

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

 $\begin{array}{l} \text{worst-case } (n^c/\alpha)\text{-}\mathsf{SIVP} \\ \text{on ideal lattices in } R & \leq & \mathsf{decision } R\text{-}\mathsf{LWE}_{q,\alpha} \\ & \mathfrak{f} \\ & \mathsf{any } R = \mathcal{O}_K, \text{ any } q \geq n^{c-1/2}/\alpha \end{array}$

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

 $\begin{array}{l} \text{worst-case } (n^c/\alpha)\text{-SIVP} \\ \text{on ideal lattices in } R & \leq \underset{\P}{} \frac{\text{decision } R\text{-LWE}_{q,\alpha}}{\underset{any \; R \;=\; \mathcal{O}_K, \; any \; q \; \geq \; n^{c-1/2}/\alpha} \end{array}$

Bonus Theorem: LWE is Pseudorandom for Any Modulus

$$\begin{array}{ll} \text{worst case } (n/\alpha)\text{-}\mathsf{SIVP on} & \leq \underset{\label{eq:starses} quantum, any }{} q \geq \sqrt{n}/\alpha \end{array}$$

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

 $\begin{array}{l} \text{worst-case } (n^c/\alpha)\text{-SIVP} \\ \text{on ideal lattices in } R & \leq \underset{\P}{\text{decision }} R\text{-LWE}_{q,\alpha} \\ & \underset{any \; R \;=\; \mathcal{O}_K, \; any \; q \geq n^{c-1/2}/\alpha}{\text{decision }} R\text{-LWE}_{q,\alpha} \end{array}$

Bonus Theorem: LWE is Pseudorandom for Any Modulus

Both theorems match or improve the previous best params:

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

Bonus Theorem: LWE is Pseudorandom for Any Modulus

$$\begin{array}{ll} \text{worst case } (n/\alpha)\text{-SIVP on} \\ n\text{-dim lattices} & \overbrace{f}^{} \\ \\ \text{quantum, any } q \geq \sqrt{n}/\alpha \end{array}$$

Both theorems match or improve the previous best params:

One reduction to rule them all.

Main Theorem: Ring-LWE is Pseudorandom in Any Ring

Bonus Theorem: LWE is Pseudorandom for Any Modulus

$$\begin{array}{ll} \text{worst case } (n/\alpha)\text{-}\mathsf{SIVP on} \\ n\text{-}\dim \text{ lattices} \\ \qquad & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

Both theorems match or improve the previous best params:

One reduction to rule them all.

Seems to adapt to 'module' lattices/LWE w/techniques from [LS'15]

Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

► Quantum poly-time exp(Õ(√n))-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- ► Quantum poly-time exp(Õ(√n))-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- ► Quantum poly-time exp(Õ(√n))-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- ▶ Doesn't apply to R-LWE or NTRU (unknown if R-LWE ≤ Ideal-SIVP)

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- ► Quantum poly-time exp(Õ(√n))-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- ▶ Doesn't apply to *R*-LWE or NTRU (unknown if *R*-LWE ≤ Ideal-SIVP)

Options

Keep using R-LWE over cyclotomics

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- ► Quantum poly-time exp(Õ(√n))-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- Doesn't apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
- ▶ Use R-LWE over (slower) rings like $\mathbb{Z}[X]/(X^p X 1)$ [BCLvV'16]

- Our results don't give any guidance: they work within a single ring R, lower-bounding the hardness of R-LWE by R-Ideal-SIVP
- We have no nontrivial relations between lattice problems over different rings. (Great open question!)

Progress on Ideal-SIVP

- ► Quantum poly-time exp(Õ(√n))-Ideal-SIVP in prime-power cyclotomics (modulo heuristics) [CGS'14,BS'16,CDPR'16,CDW'17]
- Quite far from the (quasi-)poly(n) factors typically used for crypto
- Doesn't apply to R-LWE or NTRU (unknown if R-LWE \leq Ideal-SIVP)

Options

- Keep using R-LWE over cyclotomics
- Use R-LWE over (slower) rings like $\mathbb{Z}[X]/(X^p X 1)$ [BCLvV'16]
- Use 'higher rank' problem Module-LWE over cyclotomics/others

▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q, α} $\forall q \ge \sqrt{n}/\alpha$

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q, α} $\forall q \ge \sqrt{n}/\alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q,α} $\forall q \ge \sqrt{n}/\alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision-LWE_{q,α} with non-negl advantage. Define $p(\beta) = \Pr[\mathcal{O} \text{ accepts on LWE}_{q,\exp(\beta)} \text{ samples}].$

▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q,α} $\forall q \ge \sqrt{n}/\alpha$

Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision-LWE_{q, α} with non-negl advantage. Define

 $p(\beta) = \Pr[\mathcal{O} \text{ accepts on } \mathsf{LWE}_{q, \exp(\beta)} \text{ samples}].$

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q,α} $\forall q \ge \sqrt{n}/\alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision-LWE_{q,α} with non-negl advantage. Define $p(\beta) = \Pr[\mathcal{O} \text{ accepts on LWE}_{q,\exp(\beta)} \text{ samples}].$

Key Properties

• $p(\beta)$ is 'smooth' (Lipschitz) because D_{σ} , D_{τ} are $(\frac{\tau}{\sigma} - 1)$ -close.

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q,α} $\forall q \ge \sqrt{n}/\alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision-LWE_{q, α} with non-negl advantage. Define $p(\beta) = \Pr[\mathcal{O} \text{ accepts on LWE}_{q,\exp(\beta)} \text{ samples}].$

Key Properties

- **1** $p(\beta)$ is 'smooth' (Lipschitz) because D_{σ} , D_{τ} are $(\frac{\tau}{\sigma} 1)$ -close.
- Ø For all $\beta ≥ \log n$, $p(\beta) ≈ p(\infty) = \Pr[\mathcal{O} \text{ accepts on uniform samples}]$, because huge Gaussian error is near-uniform mod $q\mathbb{Z}$.

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q,α} $\forall q \ge \sqrt{n}/\alpha$
- Reduction strategy: 'play with' α, detect when it decreases.

Suppose \mathcal{O} solves decision-LWE_{q, α} with non-negl advantage. Define $p(\beta) = \Pr[\mathcal{O} \text{ accepts on LWE}_{q,\exp(\beta)} \text{ samples}].$

Key Properties

- **1** $p(\beta)$ is 'smooth' (Lipschitz) because D_{σ} , D_{τ} are $(\frac{\tau}{\sigma} 1)$ -close.
- Por all β ≥ log n, p(β) ≈ p(∞) = Pr[O accepts on uniform samples], because huge Gaussian error is near-uniform mod qZ.
- p(log α) − p(∞) is noticeable, so there is a noticeable change in p somewhere between log α and log n.

▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q, α} $\forall q \ge \sqrt{n}/\alpha$

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q, α} $\forall q \ge \sqrt{n}/\alpha$
- Classical part of [Regev'05] reduction:

- ▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q, α} $\forall q \ge \sqrt{n}/\alpha$
- Classical part of [Regev'05] reduction:

 $(D_{\mathcal{L},r}$ samples come from previous iteration, quantumly. They're eventually narrow enough to solve SIVP on \mathcal{L} .)

▶ Theorem: quantumly, (n/α) -SIVP ≤ decision-LWE_{q, α} $\forall q \ge \sqrt{n}/\alpha$

Classical part of [Regev'05] reduction:

Extending to the Ring Setting

• The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- ▶ *R*-LWE proof has *n*-parameter BDD offset $e \Leftrightarrow$ params $\alpha = (\alpha_i)$. Gaussian error rate of α_i in the *i*th dimension.

Extending to the Ring Setting

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- ▶ *R*-LWE proof has *n*-parameter BDD offset $e \Leftrightarrow$ params $\alpha = (\alpha_i)$. Gaussian error rate of α_i in the *i*th dimension.
- Classical part of [LPR'10] reduction:

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has *n*-parameter BDD offset e ⇔ params α = (α_i). Gaussian error rate of α_i in the *i*th dimension.
- Classical part of [LPR'10] reduction:

Now oracle's acceptance prob. is p(β), mapping (ℝ⁺)ⁿ → [0, 1].
 ★ lim_{βi→∞} p(β) = p(∞): huge error in one dim is 'smooth' mod R[∨].

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has *n*-parameter BDD offset e ⇔ params α = (α_i). Gaussian error rate of α_i in the *i*th dimension.
- Classical part of [LPR'10] reduction:

- ▶ Now oracle's acceptance prob. is $p(\beta)$, mapping $(\mathbb{R}^+)^n \rightarrow [0, 1]$.
 - ★ $\lim_{\beta_i \to \infty} p(\beta) = p(\infty)$: huge error in one dim is 'smooth' mod R^{\vee} .
 - * Problem: Reduction never* produces spherical error (all α_i equal), so it's hard to get anything useful from \mathcal{O} .

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has *n*-parameter BDD offset e ⇔ params α = (α_i). Gaussian error rate of α_i in the *i*th dimension.
- Classical part of [LPR'10] reduction:

- Now oracle's acceptance prob. is $p(\beta)$, mapping $(\mathbb{R}^+)^n \to [0, 1]$.
 - ★ $\lim_{\beta_i \to \infty} p(\beta) = p(\infty)$: huge error in one dim is 'smooth' mod R^{\vee} .
 - * Problem: Reduction never* produces spherical error (all α_i equal), so it's hard to get anything useful from \mathcal{O} .
 - ★ Solution from [LPR'10]: randomize the α_i : increase by $n^{1/4}$ factor.

- The LWE proof relies on 1-parameter BDD distance $d \Leftrightarrow$ error rate α
- R-LWE proof has *n*-parameter BDD offset e ⇔ params α = (α_i). Gaussian error rate of α_i in the *i*th dimension.
- Classical part of [LPR'10] reduction:

- ▶ Now oracle's acceptance prob. is $p(\beta)$, mapping $(\mathbb{R}^+)^n \rightarrow [0, 1]$.
 - ★ $\lim_{\beta_i \to \infty} p(\beta) = p(\infty)$: huge error in one dim is 'smooth' mod R^{\vee} .
 - * Problem: Reduction never* produces spherical error (all α_i equal), so it's hard to get anything useful from \mathcal{O} .
 - * Solution from [LPR'10]: randomize the α_i : increase by $n^{1/4}$ factor.
 - * Improvement: randomization increases α_i by only $\omega(1)$ factor.

• decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- Hardness for spherical error:
 - * Avoid $n^{1/4}$ degradation in the α_i rates?
 - * Support unbounded samples?

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- Hardness for spherical error:
 - * Avoid $n^{1/4}$ degradation in the α_i rates?
 - ★ Support unbounded samples?
- 2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- Hardness for spherical error:
 - * Avoid $n^{1/4}$ degradation in the α_i rates?
 - ★ Support unbounded samples?
- Hardness for smaller error with fewer samples? (Extend [MP'13]?)
- Ontrivially relate Ideal-SIVP or Ring-LWE for different rings?

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- Hardness for spherical error:
 - * Avoid $n^{1/4}$ degradation in the α_i rates?
 - ★ Support unbounded samples?
- 2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)
- Ontrivially relate Ideal-SIVP or Ring-LWE for different rings?
- Evidence for/against Ring-LWE \leq Ideal-SIVP?

- decision-R-LWE_{q, α} is worst-case hard for any $R = \mathcal{O}_K$, modulus q
- decision-LWE_{q, α} is hard for any q; approx factor independent of q

- Hardness for spherical error:
 - * Avoid $n^{1/4}$ degradation in the α_i rates?
 - * Support unbounded samples?
- 2 Hardness for smaller error with fewer samples? (Extend [MP'13]?)
- **③** Nontrivially relate Ideal-SIVP or Ring-LWE for different rings?
- Evidence for/against Ring-LWE \leq Ideal-SIVP?
- **5** Classical reduction matching params of quantum reductions?