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Techniques exist for numerically robust cascaded set operations on planar polygonal regions: Boolean
operations (union, intersection, difference) and Minkowski sum1. Numerically robust means that the sym-
metric difference with the ideal exact output is small. Cascaded means that the numerical representation
has bounded complexity so that the output can become the input again. So called ECG (Exact Computation
Geometry) is obviously numerically robust but cannot be cascaded with bounded bit-complexity, and thus
some form of geometric rounding is required. Existing rounding techniques for polygons include nearest
pair rounding [2], shortest path rounding [4], and snap rounding [1].

Recently, the speaker and Elisha Sacks of Purdue University have developed a numerically robust
inconsistency-sensitive arrangement algorithm for implicit polynomial curves. This algorithm is efficient
and accurate both in theory and practice (Figure 1). This result implies numerically robust cascaded Boolean
set operations on planar regions bounded by implicit polynomial curves. The Minkowski sum presents a
problem in general because it raises the algebraic degree of the curves and hence the complexity of the
representation. However, the set of circular polygons (planar regions bounded by straight line segments
and circular arcs) is closed under Boolean operations and the Minkowski sum. Thus the new arrangement
algorithm implies numerically robust cascaded set operations on circular polygons.

This talk addressed the following practical question: are the new results good for anything? The apparel
industry, for example, almost exclusively uses polygonal representations, even for parts with curved bound-
aries. With robust cascaded set operations on polygons, one can create practical algorithms for minimal
rectangle enclosure of multiple2 clothing parts3 [3] (Figure 2).

However, the representation of a clothing part to the required accuracy4 requires up to 100 vertices per
part. According to experts in the industry, at most a half dozen line segments and a half dozen circular arcs
would suffice to represent any clothing part.

The new results permit us for the first time to implement minimal enclosure of multiple circular poly-
gons. This talk will compare the running time of minimal enclosure of multiple parts represented using
polygonal approximations vs. using circular polygons. The results of these experiments will help determine
if direct representation of curves is a worthwhile endeavor or if polygonal approximations are sufficient for
practical purposes.
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1A⊕B = {a+ b | a ∈ A andb ∈ B}.
2But not too many, since minimal enclosure is NP-hard.
3Under translation: because fabric has a grain, arbitrary rotation is not permitted.
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Figure 1: Region bounded by implicit cubic curve, rotated and XORed with itself 8 times, each rotation half
the one before. Number of vertices= 23971, edges= 47185, and cells= 23216.
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Figure 2: Minimal enclosing rectangle of five polygons with 55, 61, 66, 65 and 72 vertices. Iteration 1 is
a square container with compaction applied. For iterations 2-5, the algorithm set the target area to be 1%
less than the previous layout after compaction. Iteration 5 was infeasible. The algorithm set the target for
iteration 6 to be 0.01% smaller than the area of iteration 4, and similarly, iteration 7 and 8 have targets
0.01% than the previous layouts after compaction. Iteration 8 was infeasible, and therefore iteration 7 is
within 0.01% of optimum.
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