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Extended Abstract

In [6] we used various tools from toric (or sparse) elimination theory, in order
to predict the support of the implicit equation of a parametric curve or (hy-
per)surface. The problem of switching from a rational parametric representation
to an implicit, or algebraic, representation of a curve, surface, or hypersurface
lies at the heart of several algorithms in computer-aided design, cf. e.g. [1–3,
5, 8, 10]. Three implicitization algorithms (based on interpolation) are immedi-
ately improved by our construction. More specifically, we use information on the
support and certain coefficients of the toric (or sparse) resultant. The computed
support of the implicit equation depends on the sparseness of the parametric
expressions and is much tighter than the one predicted by degree arguments.
Our Maple implementation illustrates many cases in which we obtain the exact
support. We refer to our method as IPSOS .

In this paper we show how certain coefficients of the implicit equation (sparse
resultant) can be predicted as well. This is illustrated with the Fröberg/Dickenstein
example which exhibits significant sparseness. example Moreover, we exploit the
application of the IPSOS algorithm to the implicitization method of moving
lines, which expresses implicit equations in compact determinantal forms. We
also show that IPSOS is suitable for generic implicitization because the for-
mulation of the algorithm in terms of Newton polytopes and mixed volumes,
which exploit the structure in the parametric expressions, depends only on their
nonzero terms. On the other hand, we exploit information on the support of the
toric (or sparse) resultant by considering the extreme monomials as described in
[7, 12].

Our motivation comes mainly from three implicitization algorithms based on
interpolation. The first one (see [3]) treats parametric families of curves, surfaces
and hypersurfaces. The method has a very wide range of applicability, can handle
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base points, and works both symbolically and numerically, depending on the
way one performs the integrations. It may be improved as follows: The method
looks for an implicit equation of a particular degree at a time. This implies that
any information on the degree of the implicit equation (such as upper bounds)
may accelerate execution. More importantly, the method constructs a symmetric
singular square matrix and computes a basis of its nullspace. The dimension of
this matrix equals the number of possible monomials in the implicit equation,
which is in principle

(
m+n

m

)
, where the number of parametric equations is n and

the algorithm seeks an implicit equation of degree m. The examples show (cf. the
table below) that we succeed to constrain the monomials that will appear in the
implicit equation, hence diminishing dramatically the size of the matrices. One
last improvement concerns the block-Hankel structure of the matrix, but this
goes beyond the scope of the current paper. Hankel-like structural properties of
implicitization matrices are established in [9].

Our second motivation are algorithms based on perturbed resultant matrices,
which yield the implicit equation even in the presence of base points, e.g. [4, 10].
The problem reduces to sparse interpolation, which is substantially accelerated
when we can accurately predict the output support. More specifically, the algo-
rithm of Ben-Or and Tiwari requires a number of evaluations which is linear in
the bound on the support cardinality [13].

The method of moving lines for implicitization (see [11]) uses a family of lines
that follow the curve to set up an overdetermined linear system. A determinant
of the matrix of this linear system is the implicit equation of the curve. It is
possible to compute a symbolic determinant without developing it, simply by
evaluating it at a sufficient number of points. Knowledge of the monomials that
appear in the implicit equation speeds up this computation.

The table below shows the results obtained by IPSOS on some examples
that we studied in [6], as well as the (very sparse) Fröberg-Dickenstein example.
The results are optimal.

Problem
Input
Degree

Degree of
Implicit Eq.

General
# monomials

# monomials
from IPSOS

Unit Circle 2 2 6 3 (optimal)
Descartes Folium 3 3 10 3 (optimal)
Fröberg-Dickenstein 63 63 20 257 (optimal)
Buchberger 1,2 4 35 2 (optimal)
Busé 3 5 56 4 (optimal)
Bilinear 1,1 2 10 9 (optimal)

The Fröberg-Dickenstein example in IPSOS

We use the Fröberg-Dickenstein example3 to illustrate IPSOS and how the
coefficients of the extremal monomials turn out to belong to {−1, +1}. Consider
3 see Proceedings of the 1st Latin-American workshop on Polynomial Systems, July

2003, Buenos Aires, Argentina, A. Dickenstein, I. Emiris, Eds.
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the polynomial parametric equations:

x = t32, y = t48 − t56 − t60 − t62 − t63

With IPSOS we find that the points corresponding to non-zero monomials in
the implicit equation (toric resultant) are delimited by the y-axis and the two
lines:

x = (−(3/2)y + 48 and x = −(63/32)y + 63.

Counting the points with integer coordinates inside (and on the sides) of the
triangle, we see that there are 257 such points.
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These points correspond exactly to the 257 non-zero monomials of the im-
plicit equation (toric resultant).
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