Parity Edge-Coloring of Graphs

Douglas B. West

Department of Mathematics University of Illinois at Urbana-Champaign west@math.uiuc.edu

(Joint with David Bunde, Kevin Milans, Hehui Wu)

Ques. What graphs embed in a *k*-dimensional cube?

Ques. What graphs embed in a *k*-dimensional cube?

• *k*-coloring the edges by the *k* coordinates yields natural necessary conditions. In this coloring:

(1) On every cycle, every color appears even # times.

(2) On every path, some color appears odd # times.

Ques. What graphs embed in a *k*-dimensional cube?

• *k*-coloring the edges by the *k* coordinates yields natural necessary conditions. In this coloring:

(1) On every cycle, every color appears even # times.(2) On every path, some color appears odd # times.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Some graphs (C_{2m+1} , $K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Ques. What graphs embed in a *k*-dimensional cube?

• *k*-coloring the edges by the *k* coordinates yields natural necessary conditions. In this coloring:

(1) On every cycle, every color appears even # times.(2) On every path, some color appears odd # times.

• Some graphs (C_{2m+1} , $K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Def. Parity edge-coloring = edge-coloring having (2). Parity edge-chrom. num. $p(G) = \min \#$ colors needed.

Ques. What graphs embed in a *k*-dimensional cube?

• *k*-coloring the edges by the *k* coordinates yields natural necessary conditions. In this coloring:

(1) On every cycle, every color appears even # times.(2) On every path, some color appears odd # times.

• Some graphs (C_{2m+1} , $K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Def. Parity edge-coloring = edge-coloring having (2). Parity edge-chrom. num. $p(G) = \min \#$ colors needed.

Obs. $p(G) \ge \chi'(G)$, and $H \subseteq G \Rightarrow p(H) \le p(G)$. **Pf.** Every parity edge-coloring is a proper edge-coloring. Every parity edge-col. of *G* is a parity edge₅col. of *H*.

Def. Parity walk = walk using each color even #times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)$ = least #colors in a spec.

◆□▶ ◆母▶ ◆ヨ▶ ◆ヨ▶ = うへで

Def. Parity walk = walk using each color even #times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)$ = least #colors in a spec.

Obs. $\hat{p}(G) \ge p(G)$.

Def. Parity walk = walk using each color even #times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)$ = least #colors in a spec.

Obs. $\hat{p}(G) \ge p(G)$.

Thm. $\hat{p}(K_n) = p(K_n) = \chi'(K_n) = n - 1$ when $n = 2^k$, with a unique coloring.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Def. Parity walk = walk using each color even #times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)$ = least #colors in a spec.

Obs. $\hat{p}(G) \ge p(G)$.

Thm. $\hat{p}(K_n) = p(K_n) = \chi'(K_n) = n - 1$ when $n = 2^k$, with a unique coloring.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm. [Main Result] $\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$ for all n.

Def. Parity walk = walk using each color even #times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)$ = least #colors in a spec.

Obs. $\hat{p}(G) \ge p(G)$.

Thm. $\hat{p}(K_n) = p(K_n) = \chi'(K_n) = n - 1$ when $n = 2^k$, with a unique coloring.

Thm. [Main Result] $\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$ for all n.

Conj. $p(K_n) = 2^{\lceil \lg n \rceil} - 1$ for all *n*. (Known for $n \le 16$.)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thm. (Daykin-Lovász [1975]) If *S* is a family of *n* finite sets, and *B* is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \ge n$.

• Marica-Schönheim [1969] proved it for *B* = set diff.

Thm. (Daykin-Lovász [1975]) If *S* is a family of *n* finite sets, and *B* is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \ge n$.

• Marica-Schönheim [1969] proved it for *B* = set diff.

Thm. If *S* is a family of *n* finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v : u, v \in S\} \ge 2^{\lceil \lg n \rceil}$.

Thm. (Daykin-Lovász [1975]) If *S* is a family of *n* finite sets, and *B* is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \ge n$.

• Marica-Schönheim [1969] proved it for *B* = set diff.

Thm. If *S* is a family of *n* finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v : u, v \in S\} \ge 2^{\lceil \lg n \rceil}$.

Pf. View S as $V(K_n)$. For $uv \in E(K_n)$, let $f(uv) = u \oplus v$.

Thm. (Daykin-Lovász [1975]) If *S* is a family of *n* finite sets, and *B* is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \ge n$.

• Marica-Schönheim [1969] proved it for *B* = set diff.

Thm. If *S* is a family of *n* finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v : u, v \in S\} \ge 2^{\lceil \lg n \rceil}$.

Pf. View *S* as $V(K_n)$. For $uv \in E(K_n)$, let $f(uv) = u \oplus v$. In traversing an edge, the color is the set of elements added or deleted to get the name of the next vertex.

Thm. (Daykin-Lovász [1975]) If *S* is a family of *n* finite sets, and *B* is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \ge n$.

• Marica-Schönheim [1969] proved it for *B* = set diff.

Thm. If *S* is a family of *n* finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v : u, v \in S\} \ge 2^{\lceil \lg n \rceil}$.

Pf. View *S* as $V(K_n)$. For $uv \in E(K_n)$, let $f(uv) = u \oplus v$. In traversing an edge, the color is the set of elements added or deleted to get the name of the next vertex.

: a parity walk must end where it starts.

:. *f* is a spec, and the number of colors (symmetric differences) is at least $2^{\lceil \lg n \rceil} - 1$. Add \emptyset for $u \oplus u$.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

The image of each edge in T is an edge in Q_k .

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

The image of each edge in T is an edge in Q_k .

 \exists color with odd usage on the *u*,*v*-path, so $f(u) \neq f(v)$.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

The image of each edge in T is an edge in Q_k .

- \exists color with odd usage on the *u*,*v*-path, so $f(u) \neq f(v)$.
- Embeddability in hypercubes is NP-complete for trees (Wagner–Corneil [1990]), so computing p(G) is also.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

The image of each edge in T is an edge in Q_k .

- \exists color with odd usage on the *u*,*v*-path, so $f(u) \neq f(v)$.
- **Cor.** (Havel-Movárek [1972]) A graph *G* embeds in Q_k \Leftrightarrow *G* has a *k*-pec where every cycle is a parity walk.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

The image of each edge in T is an edge in Q_k .

- \exists color with odd usage on the *u*,*v*-path, so $f(u) \neq f(v)$.
- **Cor.** (Havel-Movárek [1972]) A graph *G* embeds in Q_k \Leftrightarrow *G* has a *k*-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Q_k as done above.

Prop. A tree *T* is a subgraph of $Q_k \iff p(T) \le k$.

Pf. It suffices to show $p(T) = k \Rightarrow T$ embeds in Q_k .

Fix $r \in V(T)$. Define $f(v) \in V(Q_k)$ by letting bit *i* be the parity of color *i* usage on the *r*, *v*-path in *T*.

The image of each edge in T is an edge in Q_k .

 \exists color with odd usage on the *u*,*v*-path, so $f(u) \neq f(v)$.

Cor. (Havel-Movárek [1972]) A graph *G* embeds in Q_k \Leftrightarrow *G* has a *k*-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Q_k as done above.

Each remaining edge *e* completes a cycle. When e = uv, the color on *e* is the only color with odd usage on the *u*, *v*-path in *T*. Hence $f(u) \leftrightarrow f(v)$ in Q_k .

Cor. If *G* is connected, then $p(G) \ge \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Cor. If *G* is connected, then $p(G) \ge \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If *T* is a spanning tree of *G*, then $p(G) \ge p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \le n(Q_{p(T)}) = 2^{p(T)}$.

Cor. If *G* is connected, then $p(G) \ge \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If *T* is a spanning tree of *G*, then $p(G) \ge p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \le n(Q_{p(T)}) = 2^{p(T)}$. Equality: P_n and C_n embed in $Q_{\lceil \lg n \rceil}$.

Cor. If *G* is connected, then $p(G) \ge \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If *T* is a spanning tree of *G*, then $p(G) \ge p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \le n(Q_{p(T)}) = 2^{p(T)}$. Equality: P_n and C_n embed in $Q_{\lceil \lg n \rceil}$.

Odd cycles will need one more!

Cor. If *G* is connected, then $p(G) \ge \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If *T* is a spanning tree of *G*, then $p(G) \ge p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \le n(Q_{p(T)}) = 2^{p(T)}$. Equality: P_n and C_n embed in $Q_{\lceil \lg n \rceil}$.

- Odd cycles will need one more!
- **Obs.** Always $p(G) \le p(G-e) + 1$.

Pf. Put optimal pec on G - e; add new color on e. Each path is okay in G whether it uses e or not.

Cor. If *G* is connected, then $p(G) \ge \lceil \lg n(G) \rceil$, with equality for paths and even cycles.

Pf. If *T* is a spanning tree of *G*, then $p(G) \ge p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G) = n(T) \le n(Q_{p(T)}) = 2^{p(T)}$. Equality: P_n and C_n embed in $Q_{\lceil \lg n \rceil}$.

- Odd cycles will need one more!
- **Obs.** Always $p(G) \le p(G e) + 1$.

Pf. Put optimal pec on G - e; add new color on e. Each path is okay in G whether it uses e or not.

Cor. If *n* is odd, then $\lceil \lg n \rceil \le p(C_n) \le \lceil \lg n \rceil + 1$.

Lower Bound for Odd Cycles

Lem. Every pec of C_n is a spec, so $p(C_n) = \hat{p}(C_n)$.

Pf. The edges with odd usage in an open walk W form a path P joining the ends of W.

P has some odd-used color; :. *W* is not a parity walk.

Lower Bound for Odd Cycles

Lem. Every pec of C_n is a spec, so $p(C_n) = \hat{p}(C_n)$.

Pf. The edges with odd usage in an open walk *W* form a path *P* joining the ends of *W*. *P* has some odd-used color; ∴ *W* is not a parity walk.

Lem. If *n* is odd, then $\hat{p}(C_n) \ge p(P_{2n})$.

Pf. Spec of C_n yields pec of P_{2n} .

Each path in P_{2n} arises from an open walk in C_n or one trip around the cycle (which is odd length).

Lower Bound for Odd Cycles

Lem. Every pec of C_n is a spec, so $p(C_n) = \hat{p}(C_n)$.

Pf. The edges with odd usage in an open walk *W* form a path *P* joining the ends of *W*. *P* has some odd-used color; ∴ *W* is not a parity walk.

Lem. If *n* is odd, then $\hat{p}(C_n) \ge p(P_{2n})$.

Pf. Spec of C_n yields pec of P_{2n} .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ う へ ()

Each path in P_{2n} arises from an open walk in C_n or one trip around the cycle (which is odd length).

Thm. If *n* is odd, then $p(C_n) = \lceil \lg n \rceil + 1$.

Example Showing $p \neq \hat{p}$

• Unrolling technique (like lower bound for odd cycle)

Example Showing $p \neq \hat{p}$

• Unrolling technique (like lower bound for odd cycle)

Obs. $\hat{p}(G) \ge p(P_{18}) = 5.$

Pf. Copy a spec of *G* onto P_{18} (path edges doubled). An *x*, *y*'-subpath of P_{18} comes from an open walk in *G*. An *x*, *x*'-subpath of P_{18} comes from an odd walk in *G*.
Complete Graphs, $n = 2^k$

Def. canonical coloring of K_{2^k} = edge-coloring f defined by f(uv) = u + v, where $V(K_{2^k}) = \mathbf{F}_2^k$.

$$\begin{array}{c} 01 \\ 00 \end{array} \begin{array}{c} 11 \\ 10 \end{array} \begin{array}{c} = 01 \\ = 11 \\ = 10 \end{array}$$

Complete Graphs, $n = 2^k$

Def. canonical coloring of K_{2^k} = edge-coloring f defined by f(uv) = u + v, where $V(K_{2^k}) = \mathbf{F}_2^k$.

$$\begin{array}{c} 01 \\ 00 \end{array} \begin{array}{c} 11 \\ 10 \end{array} \begin{array}{c} = 01 \\ = 11 \\ = 10 \end{array}$$

Prop. If $n = 2^k$, then $p(K_n) = \hat{p}(K_n) = \chi'(K_n) = n - 1$.

Pf. Canonical coloring uses n - 1 colors (0^k not used).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

It is a spec: When the ends of a walk W differ in bit *i*, the total usage of colors flipping bit *i* is odd, so \exists odd-usage color on W.

Complete Graphs, $n = 2^k$

Def. canonical coloring of K_{2^k} = edge-coloring *f* defined by f(uv) = u + v, where $V(K_{2^k}) = \mathbf{F}_2^k$.

$$\begin{array}{c} 01 \\ 00 \end{array} \begin{array}{c} 11 \\ 10 \end{array} \begin{array}{c} = 01 \\ = 11 \\ = 10 \end{array}$$

Prop. If $n = 2^k$, then $p(K_n) = \hat{p}(K_n) = \chi'(K_n) = n - 1$.

Pf. Canonical coloring uses n - 1 colors (0^k not used).

It is a spec: When the ends of a walk W differ in bit *i*, the total usage of colors flipping bit *i* is odd, so \exists odd-usage color on W.

Cor.
$$\hat{p}(K_n) \le 2^{\lceil \lg n \rceil} - 1 \le 2n - 3.$$

Conj. $p(K_n) = 2^{\lceil \lg n \rceil} - 1.$ (**Thm.** $\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1.$)

-1.)

Just Above the Threshold: K_2, K_3, K_5

• It suffices to prove $p(K_{2^{k}+1}) = 2^{k+1} - 1$. k = 0: $p(K_2) = 1$; k = 1: $p(K_3) = 3$; k = 2?

Prop. $p(K_5) = 7$.

Just Above the Threshold: K_2, K_3, K_5

• It suffices to prove $p(K_{2^{k}+1}) = 2^{k+1} - 1$. k = 0: $p(K_2) = 1$; k = 1: $p(K_3) = 3$; k = 2?

Prop. $p(K_5) = 7$.

Pf. Each color forms a matching \Rightarrow used at most twice. 10 edges, ≤ 6 colors \Rightarrow at least four colors used twice.

Two colors used twice must not form parity path P_5 .

 colors of size two are used at the same four vertices, but then only three can be used twice.

Just Above the Threshold: K_2, K_3, K_5

• It suffices to prove $p(K_{2^{k}+1}) = 2^{k+1} - 1$. k = 0: $p(K_2) = 1$; k = 1: $p(K_3) = 3$; k = 2?

Prop. $p(K_5) = 7$.

Pf. Each color forms a matching \Rightarrow used at most twice. 10 edges, ≤ 6 colors \Rightarrow at least four colors used twice. Two colors used twice must not form parity path P_5 .

:. colors of size two are used at the same four vertices, but then only three can be used twice.

Prop. $p(K_9) = 15$. (Longer ad hoc argument.)

Structure of colorings

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Pf. 4-constraint: If f(uv) = f(xy), then f(uy) = f(vx) (since every color is at every vertex).

Structure of colorings

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Pf. 4-constraint: If f(uv) = f(xy), then f(uy) = f(vx) (since every color is at every vertex).

Aim: Map $V(K_n)$ to \mathbf{F}_2^k so f is the canonical coloring.

Every edge is a canonically colored K_2 . Let R be a largest vertex set on which f restricts to a canonical coloring. If $R \neq V(K_n)$, we obtain a larger such set.

Structure of colorings

Thm. If f is a spec of K_n with every color class a perfect matching, then f is canonical & n is a 2-power.

Pf. 4-constraint: If f(uv) = f(xy), then f(uy) = f(vx) (since every color is at every vertex).

Aim: Map $V(K_n)$ to \mathbf{F}_2^k so f is the canonical coloring.

Every edge is a canonically colored K_2 . Let R be a largest vertex set on which f restricts to a canonical coloring. If $R \neq V(K_n)$, we obtain a larger such set.

With $|R| = 2^{j-1}$, we are given a bijection from R to \mathbf{F}_2^{j-1} under which f is the canonical coloring.

f canonical on $R \Rightarrow$ any color used within R pairs up R.

f canonical on $R \Rightarrow$ any color used within R pairs up R.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

New color *c* pairs *R* to some set *U*; set $R' = R \cup U$.

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color *c* pairs *R* to some set *U*; set $R' = R \cup U$. Map *R'* to \mathbf{F}_2^j by appending 0 to the codes in *R* and appending 1 instead to their *c*-mates in *U*.

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color *c* pairs *R* to some set *U*; set $R' = R \cup U$. Map *R'* to \mathbf{F}_2^j by appending 0 to the codes in *R* and appending 1 instead to their *c*-mates in *U*. The 4-constraint copies the coloring from *R* to *U*, so f(uu') = f(vv') = v + v' = u + u'.

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color *c* pairs *R* to some set *U*; set $R' = R \cup U$. Map *R'* to \mathbf{F}_2^j by appending 0 to the codes in *R* and appending 1 instead to their *c*-mates in *U*.

The 4-constraint copies the coloring from R to U, so f(uu') = f(vv') = v + v' = u + u'.

Use *u* to name the color on $0^{j}u$, so $f(0^{j}u) = u = 0^{j} + u$. The rest: $v \in R \& w = u + v \in U \Rightarrow f(v0^{j}) = f(uw) = v$; 4-constraint $\Rightarrow f(uv) = f(0^{j}w) = w = u + v$.

・ロト・日本・日本・日本・日本・日本

Complete Bipartite Graph $K_{n,n}$

Prop. If $n = 2^k$, then $p(K_{n,n}) = \hat{p}(K_{n,n}) = \chi'(K_{n,n}) = n$.

Pf. Label each partite set with \mathbf{F}_{2}^{k} . Let f(uv) = u + v.

Complete Bipartite Graph $K_{n,n}$

Prop. If $n = 2^k$, then $p(K_{n,n}) = \hat{p}(K_{n,n}) = \chi'(K_{n,n}) = n$.

Pf. Label each partite set with \mathbf{F}_{2}^{k} . Let f(uv) = u + v.

A parity walk (even usage each color) has even length. Even usage \Rightarrow bits flipped evenly often by each color.

... a parity walk ends at same label on the same side. That is, every parity walk is a closed walk.

Complete Bipartite Graph $K_{n,n}$

Prop. If $n = 2^k$, then $p(K_{n,n}) = \hat{p}(K_{n,n}) = \chi'(K_{n,n}) = n$.

Pf. Label each partite set with \mathbf{F}_{2}^{k} . Let f(uv) = u + v.

A parity walk (even usage each color) has even length. Even usage \Rightarrow bits flipped evenly often by each color.

... a parity walk ends at same label on the same side. That is, every parity walk is a closed walk.

Conj. $p(K_{n,n}) = \hat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil}$ for all *n*.

Thm. $m = 2^k$ and $m \mid n \Rightarrow \hat{p}(K_{m,n}) = \Delta(K_{m,n}) = n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Thm. $m = 2^k$ and $m \mid n \Rightarrow \hat{p}(K_{m,n}) = \Delta(K_{m,n}) = n$. **Pf.** Let r = n/m, with $X = \mathbf{F}_2^k$ and $Y = \mathbf{F}_2^k \times [r]$. Color f(uv) = (u + v', j), where v = (v', j)(r edge-disjoint copies of canonical coloring).

Thm. $m = 2^k$ and $m \mid n \Rightarrow \hat{p}(K_{m,n}) = \Delta(K_{m,n}) = n$. **Pf.** Let r = n/m, with $X = \mathbf{F}_2^k$ and $Y = \mathbf{F}_2^k \times [r]$. Color f(uv) = (u + v', j), where v = (v', j)(r edge-disjoint copies of canonical coloring).

Claim: *f* is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W' in $K_{m,m}$.

Thm. $m = 2^k$ and $m \mid n \Rightarrow \hat{p}(K_{m,n}) = \Delta(K_{m,n}) = n$. **Pf.** Let r = n/m, with $X = \mathbf{F}_2^k$ and $Y = \mathbf{F}_2^k \times [r]$. Color f(uv) = (u + v', j), where v = (v', j)(r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W' in $K_{m,m}$.

W' is a parity walk, so W' is closed. If W is open, then W ends in different $K_{m,m}$ s; they have odd usage.

Thm. $m = 2^k$ and $m \mid n \Rightarrow \hat{p}(K_{m,n}) = \Delta(K_{m,n}) = n$. **Pf.** Let r = n/m, with $X = \mathbf{F}_2^k$ and $Y = \mathbf{F}_2^k \times [r]$. Color f(uv) = (u + v', j), where v = (v', j)(r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W' in $K_{m,m}$.

W' is a parity walk, so W' is closed. If W is open, then W ends in different $K_{m,m}$ s; they have odd usage.

Cor. $m \le n$ and $m' = 2^{\lceil \lg m \rceil} \Rightarrow \hat{p}(K_{m,n}) \le m' \lceil n/m' \rceil$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Thm. $m = 2^k$ and $m \mid n \Rightarrow \hat{p}(K_{m,n}) = \Delta(K_{m,n}) = n$. **Pf.** Let r = n/m, with $X = \mathbf{F}_2^k$ and $Y = \mathbf{F}_2^k \times [r]$. Color f(uv) = (u + v', j), where v = (v', j)(r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W' in $K_{m,m}$.

W' is a parity walk, so W' is closed. If W is open, then W ends in different $K_{m,m}$ s; they have odd usage.

Cor. $m \le n$ and $m' = 2^{\lceil \lg m \rceil} \Rightarrow \hat{p}(K_{m,n}) \le m' \lceil n/m' \rceil$.

Cor. $p(K_{2,2r+1}) = \hat{p}(K_{2,2r+1}) = 2r + 2.$

Pf. $p(K_{2,n}) = n \implies$ every color is at both vertices of X

 \Rightarrow 4-constraint holds \Rightarrow Y in pairs \Rightarrow n is even.

JAC.

Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f, the parity vector $\pi(W)$ sets bit i to the parity of the usage of color i on W. Parity space L_f = set of parity vectors of closed walks.

Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f, the parity vector $\pi(W)$ sets bit i to the parity of the usage of color i on W. Parity space L_f = set of parity vectors of closed walks.

Lem. If f is an edge-coloring of a connected graph G, then L_f is a binary vector space.

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f, the parity vector $\pi(W)$ sets bit i to the parity of the usage of color i on W. Parity space L_f = set of parity vectors of closed walks.

Lem. If f is an edge-coloring of a connected graph G, then L_f is a binary vector space.

Pf. When *W* is a *u*, *u*-walk and *W'* is a *v*, *v*-walk, let *P* be a *u*, *v*-path, with *P'* its reverse. Now W_1 , *P*, W_2 , *P'* is a *u*, *u*-walk with parity vector $\pi(W) + \pi(W')$.

Def. Let w(L) denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_n is a spec $\Leftrightarrow w(L_f) \ge 2$.

Def. Let w(L) denote the minimum weight of the nonzero vectors in L.

- **Prop.** Edge-coloring f of K_n is a spec $\Leftrightarrow w(L_f) \ge 2$.
- **Pf.** $\exists \pi(W)$ with weight 1 for closed walk W
 - \Leftrightarrow one color has odd usage in W (used on e)

- \Leftrightarrow \exists open parity walk W e
- \Leftrightarrow f is not a spec

Def. Let w(L) denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_n is a spec $\Leftrightarrow w(L_f) \ge 2$.

Pf. $\exists \pi(W)$ with weight 1 for closed walk W

- ⇔ one color has odd usage in W (used on e)
- \Leftrightarrow \exists open parity walk W e
- \Leftrightarrow f is not a spec

Lem. Given colors a and b in optimal spec f of K_n , some closed W has odd usage for a, b, and one other.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Def. Let w(L) denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_n is a spec $\Leftrightarrow w(L_f) \ge 2$.

Pf. $\exists \pi(W)$ with weight 1 for closed walk W

- ⇔ one color has odd usage in W (used on e)
- \Leftrightarrow \exists open parity walk W e
- \Leftrightarrow f is not a spec

Lem. Given colors a and b in optimal spec f of K_n , some closed W has odd usage for a, b, and one other.

Pf. Merging *a* and *b* into one color *a'* yields non-spec *f'*. ∴ some closed *W* has odd usage only on *c* under *f'*. Since $c = a' \Rightarrow wt(\pi_f(W)) = 1$, we have $c \neq a'$. $wt(\pi_f(W)) \ge 2 \Rightarrow a$ and *b* have odd usage in *W*.

Lem. If *G* (colored by *f*) has a dominating vertex v, then $L_f = \text{span} \{ \pi(T) : T \text{ is a triangle containing } v \}.$

Pf. The span is in L_f . Conversely, suppose $\pi(W) \in L_f$.

Lem. If *G* (colored by *f*) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f . Conversely, suppose $\pi(W) \in L_f$.

Let $S = \{ edges with odd usage in W \}$. Let H = spanning subgraph of G with edge set S.

Since total usage at each vertex of W is even, H is an even subgraph of G. Also, $\pi(H) = \pi(W)$.

Lem. If *G* (colored by *f*) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f . Conversely, suppose $\pi(W) \in L_f$.

Let $S = \{ edges with odd usage in W \}$. Let H = spanning subgraph of G with edge set S.

Since total usage at each vertex of W is even, H is an even subgraph of G. Also, $\pi(H) = \pi(W)$.

:. it suffices to show that S is the sum (mod 2) of the set of triangles formed by adding v to edges of H - v.

Each edge of H - v is in one such triangle.

Lem. If *G* (colored by *f*) has a dominating vertex v, then $L_f = \text{span}\{\pi(T): T \text{ is a triangle containing } v\}$.

Pf. The span is in L_f . Conversely, suppose $\pi(W) \in L_f$.

Let $S = \{$ edges with odd usage in $W \}$. Let H = spanning subgraph of G with edge set S.

Since total usage at each vertex of W is even, H is an even subgraph of G. Also, $\pi(H) = \pi(W)$.

:. it suffices to show that S is the sum (mod 2) of the set of triangles formed by adding v to edges of H - v.

Each edge of H - v is in one such triangle.

Edge vw is in odd number $\Leftrightarrow d_{H-v}(w)$ is odd $\Leftrightarrow w \in N_H(v)$ (since $d_H(w)$ is even) $\Leftrightarrow vw \in S$. **Lem.** If optimal spec f of K_n uses some color a not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f' on the larger complete graph.

Lem. If optimal spec f of K_n uses some color a not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f' on the larger complete graph.

Let f'(uv) = a. For $w \notin \{u, v\}$, let b = f(vw). $\exists W$ with odd usage of a, b, and some c. Let f'(uw) = c.

Lem. If optimal spec f of K_n uses some color a not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f' on the larger complete graph.

Let f'(uv) = a. For $w \notin \{u, v\}$, let b = f(vw). $\exists W$ with odd usage of a, b, and some c. Let f'(uw) = c.

We show that $L_{f'} \subseteq L_f$ to get $w(L_{f'}) \ge 2$. It suffices that $\pi(T) \in L_f$ when T is a triangle in K_{n+1} containing ν , since these vectors span $L_{f'}$ (by lemma).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Lem. If optimal spec f of K_n uses some color a not on a perfect matching, then $\hat{\rho}(K_{n+1}) = \hat{\rho}(K_n)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f' on the larger complete graph.

Let f'(uv) = a. For $w \notin \{u, v\}$, let b = f(vw). $\exists W$ with odd usage of a, b, and some c. Let f'(uw) = c.

We show that $L_{f'} \subseteq L_f$ to get $w(L_{f'}) \ge 2$. It suffices that $\pi(T) \in L_f$ when T is a triangle in K_{n+1} containing v, since these vectors span $L_{f'}$ (by lemma).

If $u \notin T$, then $\pi(T) \in L_f$ by definition of L_f . If T = [u, v, w], then $\pi(T) = \pi(W) \in L_f$, where W was the walk in K_n used to specify f'(uw).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Pf. Let $k = \hat{p}(K_n)$. Canonical coloring $\Rightarrow k \le 2^{\lceil \lg n \rceil} - 1$.

Pf. Let $k = \hat{p}(K_n)$. Canonical coloring $\Rightarrow k \le 2^{\lceil \lg n \rceil} - 1$.

Accumulate additional vertices without increasing \hat{p} until every color class is a perfect matching.

This can't pass $2^{\lceil \lg n \rceil}$ vertices, since vertex degree then reaches $2^{\lceil \lg n \rceil} - 1$.

Pf. Let $k = \hat{p}(K_n)$. Canonical coloring $\Rightarrow k \le 2^{\lceil \lg n \rceil} - 1$.

Accumulate additional vertices without increasing \hat{p} until every color class is a perfect matching.

This can't pass $2^{\lceil \lg n \rceil}$ vertices, since vertex degree then reaches $2^{\lceil \lg n \rceil} - 1$.

:. It stops with every color class a perfect matching. We showed this occurs only in the canonical coloring.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Hence $\hat{p}(K_n) = \hat{p}(K_{2^{\lceil \lg n \rceil}}) = 2^{\lceil \lg n \rceil} - 1.$

Pf. Let $k = \hat{p}(K_n)$. Canonical coloring $\Rightarrow k \le 2^{\lceil \lg n \rceil} - 1$.

Accumulate additional vertices without increasing \hat{p} until every color class is a perfect matching.

This can't pass $2^{\lceil \lg n \rceil}$ vertices, since vertex degree then reaches $2^{\lceil \lg n \rceil} - 1$.

:. It stops with every color class a perfect matching. We showed this occurs only in the canonical coloring.

Hence $\hat{p}(K_n) = \hat{p}(K_{2^{\lceil \lg n \rceil}}) = 2^{\lceil \lg n \rceil} - 1.$

Cor. Every optimal spec of a complete graph is obtained by deleting vertices from a canonical coloring.

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; c(G) = least #colors. edge-ranking = edge-coloring s.t. each path has the highest color used once; $\chi'_r(G)$ = least #colors. Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; c(G) = least #colors. edge-ranking = edge-coloring s.t. each path has the highest color used once; $\chi'_r(G)$ = least #colors. Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

• $\chi'_r(G) \ge c(G) \ge p(G)$, and the difference can be large. Indeed, $\chi'_r(K_n) \in \Theta(n^2)$ [BDJKKMT], but $p(K_n) \in \Theta(n)$.

• $c(C_8) = 4 > 3 = p(C_8)$ (by short case analysis). Kinnersley constructed a tree where they differ.

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; c(G) = least #colors. edge-ranking = edge-coloring s.t. each path has the highest color used once; $\chi'_r(G)$ = least #colors. Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

• $\chi'_r(G) \ge c(G) \ge p(G)$, and the difference can be large. Indeed, $\chi'_r(K_n) \in \Theta(n^2)$ [BDJKKMT], but $p(K_n) \in \Theta(n)$.

• $c(C_8) = 4 > 3 = p(C_8)$ (by short case analysis). Kinnersley constructed a tree where they differ.

Def. nonrepetitive edge-coloring = edge-coloring with no immed. repetition $c_1, \ldots, c_k, c_1, \ldots, c_k$ on any path; $\pi(G)$ =least #colors.

• $p(G) \ge \pi(G) \ge \chi'(G)$.

Ex. $p(C_8) = \lceil \lg 8 \rceil = 3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.

 \therefore usage (4, 2, 2) or (3, 3, 2); kill edge of largest class.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Ex. $p(C_8) = \lceil \lg 8 \rceil = 3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.

 \therefore usage (4, 2, 2) or (3, 3, 2); kill edge of largest class.

Ex. Let T_k = broom formed by identifying an end of P_{2^k-2k+2} with a leaf of a *k*-edge star. (T_5 below.)

 P_{24}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Ex. $p(C_8) = \lceil \lg 8 \rceil = 3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.

 \therefore usage (4, 2, 2) or (3, 3, 2); kill edge of largest class.

Ex. Let T_k = broom formed by identifying an end of P_{2^k-2k+2} with a leaf of a *k*-edge star. (T_5 below.)

 T_k embeds in Q_k , so $p(T_k) = k$. (Induct on k, using lemma that for $x, y \in V(Q_k)$ with equal parity, \exists path of length $2^k - 3$ starting at x and avoiding y.)

Ex. $p(C_8) = \lceil \lg 8 \rceil = 3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.

 \therefore usage (4, 2, 2) or (3, 3, 2); kill edge of largest class.

Ex. Let T_k = broom formed by identifying an end of P_{2^k-2k+2} with a leaf of a k-edge star. (T_5 below.)

 T_k embeds in Q_k , so $p(T_k) = k$. (Induct on k, using lemma that for $x, y \in V(Q_k)$ with equal parity, \exists path of length $2^k - 3$ starting at x and avoiding y.)

For $k \ge 5$, $c(T_k) = k + 1$. If conflict-free w. k colors, $P_{2^{k-1}+1}$ takes k colors, and $P_{2^{k-2}+1}$ takes k - 1. All k colors appear at x, so the color missing on $P_{2^{k-2}+1}$ extends the path to one having all colors \ge twice.

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ⊙

Open Problems

Conj. 1 $p(K_n) = 2^{\lceil \lg n \rceil} - 1$ for all n. Known for $n \le 16$; proved $\hat{p}(K_n) = 2^{\lceil \lg n \rceil} - 1$ for all n.

Conj. 2 $p(K_{n,n}) = \hat{p}(K_{n,n}) = 2^{\lceil \lg n \rceil}$ for all *n*.

Conj. 3 $\hat{p}(G) = p(G)$ for every bipartite graph *G*.

Ques. 4 What is the max $\hat{p}(G)$ when p(G) = k?

Ques. 5 How do $\hat{p}(K_{k,n})$ and $p(K_{k,n})$ grow with k?

Ques. 6 What is $\max p(T)$ when T is an n-vertex tree with maximum degree k? (That is, what cube contains all n-vertex trees with maximum degree k?)

Ques. 7 When does p(G) equal $\lceil \lg n(G) \rceil$?

Ques. 8 Is p(T) NP-hard on trees w. bounded degree?

ロト・日本・モト・モー・ショー・シック

Ques. 9 Stability . . . $\hat{\rho}(G \square H)$. . . Digraphs . . .