Parity Edge-Coloring of Graphs

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

(Joint with David Bunde, Kevin Milans, Hehui Wu)

Motivation

Ques. What graphs embed in a k-dimensional cube?

Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
(1) On every cycle, every color appears even \# times.
(2) On every path, some color appears odd \# times.

Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
(1) On every cycle, every color appears even \# times.
(2) On every path, some color appears odd \# times.
- Some graphs ($C_{2 m+1}, K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
(1) On every cycle, every color appears even \# times.
(2) On every path, some color appears odd \# times.
- Some graphs ($C_{2 m+1}, K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Def. Parity edge-coloring = edge-coloring having (2). Parity edge-chrom. num. $p(G)=$ min \# colors needed.

Motivation

Ques. What graphs embed in a k-dimensional cube?

- k-coloring the edges by the k coordinates yields natural necessary conditions. In this coloring:
(1) On every cycle, every color appears even \# times.
(2) On every path, some color appears odd \# times.
- Some graphs ($C_{2 m+1}, K_{2,3}$, etc.) occur in no cube, but every graph has a coloring satisfying (2).

Def. Parity edge-coloring = edge-coloring having (2). Parity edge-chrom. num. $p(G)=$ min \# colors needed.

Obs. $p(G) \geq \chi^{\prime}(G)$, and $H \subseteq G \Rightarrow p(H) \leq p(G)$.
Pf. Every parity edge-coloring is a proper edge-coloring. Every parity edge-col. of G is a parity edge-col. of H.

A Related Parameter

Def. Parity walk = walk using each color even \#times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)=$ least \#colors in a spec.

A Related Parameter

Def. Parity walk = walk using each color even \#times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)=$ least \#colors in a spec.

Obs. $\hat{p}(G) \geq p(G)$.

A Related Parameter

Def. Parity walk = walk using each color even \#times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)=$ least \#colors in a spec.

Obs. $\hat{p}(G) \geq p(G)$.
Thm. $\hat{p}\left(K_{n}\right)=p\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=n-1$ when $n=2^{k}$, with a unique coloring.

A Related Parameter

Def. Parity walk = walk using each color even \#times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)=$ least \#colors in a spec.

Obs. $\hat{p}(G) \geq p(G)$.
Thm. $\hat{p}\left(K_{n}\right)=p\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=n-1$ when $n=2^{k}$, with a unique coloring.

Thm. [Main Result] $\hat{p}\left(K_{n}\right)=2^{\lceil\mid g n\rceil}-1$ for all n.

A Related Parameter

Def. Parity walk = walk using each color even \#times. Strong parity edge-coloring (spec) = edge-coloring such that every parity walk is closed. spec number $\hat{p}(G)=$ least \#colors in a spec.

Obs. $\hat{p}(G) \geq p(G)$.
Thm. $\hat{p}\left(K_{n}\right)=p\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=n-1$ when $n=2^{k}$, with a unique coloring.

Thm. [Main Result] $\hat{p}\left(K_{n}\right)=2^{\lceil\mid g n\rceil}-1$ for all n.
Conj. $\quad p\left(K_{n}\right)=2^{\lceil\mid g n\rceil}-1$ for all n. (Known for $n \leq 16$.)

Motivating Application

Thm. (Daykin-Lovász [1975]) If S is a family of n finite sets, and B is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \geq n$.

- Marica-Schönheim [1969] proved it for $B=$ set diff.

Motivating Application

Thm. (Daykin-Lovász [1975]) If S is a family of n finite sets, and B is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \geq n$.

- Marica-Schönheim [1969] proved it for $B=$ set diff.

Thm. If S is a family of n finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v: u, v \in S\} \geq 2^{\lceil\lg n\rceil}$.

Motivating Application

Thm. (Daykin-Lovász [1975]) If S is a family of n finite sets, and B is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \geq n$.

- Marica-Schönheim [1969] proved it for $B=$ set diff.

Thm. If S is a family of n finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v: u, v \in S\} \geq 2^{\lceil\lg n\rceil}$.

Pf. View S as $V\left(K_{n}\right)$. For $u v \in E\left(K_{n}\right)$, let $f(u v)=u \oplus v$.

Motivating Application

Thm. (Daykin-Lovász [1975]) If S is a family of n finite sets, and B is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \geq n$.

- Marica-Schönheim [1969] proved it for $B=$ set diff.

Thm. If S is a family of n finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v: u, v \in S\} \geq 2^{\lceil\lg n\rceil}$.

Pf. View S as $V\left(K_{n}\right)$. For $u v \in E\left(K_{n}\right)$, let $f(u v)=u \oplus v$. In traversing an edge, the color is the set of elements added or deleted to get the name of the next vertex.

Motivating Application

Thm. (Daykin-Lovász [1975]) If S is a family of n finite sets, and B is a nontrivial Boolean function, then $\#\{B(u, v): u, v \in S\} \geq n$.

- Marica-Schönheim [1969] proved it for $B=$ set diff.

Thm. If S is a family of n finite sets, and \oplus is symmetric diff., then $\#\{u \oplus v: u, v \in S\} \geq 2^{\lceil\lg n\rceil}$.

Pf. View S as $V\left(K_{n}\right)$. For $u v \in E\left(K_{n}\right)$, let $f(u v)=u \oplus v$. In traversing an edge, the color is the set of elements added or deleted to get the name of the next vertex. \therefore a parity walk must end where it starts.
$\therefore f$ is a spec, and the number of colors (symmetric differences) is at least $2^{\lceil\mid g n\rceil}-1$. Add \varnothing for $u \oplus u$.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$. Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$. Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}. Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$. Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.
Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.
The image of each edge in T is an edge in Q_{k}.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$. Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.
Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.
The image of each edge in T is an edge in Q_{k}.
\exists color with odd usage on the u, v-path, so $f(u) \neq f(v)$.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$. Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.
Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.
The image of each edge in T is an edge in Q_{k}.
\exists color with odd usage on the u, v-path, so $f(u) \neq f(v)$.■

- Embeddability in hypercubes is NP-complete for trees (Wagner-Corneil [1990]), so computing $p(G)$ is also.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$.
Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.
Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.
The image of each edge in T is an edge in Q_{k}.
\exists color with odd usage on the u, v-path, so $f(u) \neq f(v)$.■
Cor. (Havel-Movárek [1972]) A graph G embeds in Q_{k}
$\Leftrightarrow G$ has a k-pec where every cycle is a parity walk.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$.
Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.
Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.
The image of each edge in T is an edge in Q_{k}.
\exists color with odd usage on the u, v-path, so $f(u) \neq f(v) . ■$
Cor. (Havel-Movárek [1972]) A graph G embeds in Q_{k} $\Leftrightarrow \quad G$ has a k-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Q_{k} as done above.

Embedding Trees in k-cubes

Prop. A tree T is a subgraph of $Q_{k} \Leftrightarrow p(T) \leq k$.
Pf. It suffices to show $p(T)=k \Rightarrow T$ embeds in Q_{k}.
Fix $r \in V(T)$. Define $f(v) \in V\left(Q_{k}\right)$ by letting bit i be the parity of color i usage on the r, v-path in T.
The image of each edge in T is an edge in Q_{k}.
\exists color with odd usage on the u, v-path, so $f(u) \neq f(v) . ■$
Cor. (Havel-Movárek [1972]) A graph G embeds in Q_{k} $\Leftrightarrow \quad G$ has a k-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Q_{k} as done above.
Each remaining edge e completes a cycle. When $e=u v$, the color on e is the only color with odd usage on the u, v-path in T. Hence $f(u) \leftrightarrow f(v)$ in Q_{k}.

All Graphs, Paths, Cycles

Cor. If G is connected, then $p(G) \geq\lceil\lg n(G)\rceil$, with equality for paths and even cycles.

All Graphs, Paths, Cycles

Cor. If G is connected, then $p(G) \geq\lceil\lg n(G)\rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G)=n(T) \leq n\left(Q_{p(T)}\right)=2^{p(T)}$.

All Graphs, Paths, Cycles

Cor. If G is connected, then $p(G) \geq\lceil\lg n(G)\rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$.
Since $T \subseteq Q_{p(T)}$, we have $n(G)=n(T) \leq n\left(Q_{p(T)}\right)=2^{p(T)}$.
Equality: P_{n} and C_{n} embed in $Q_{\lceil\mid g n\rceil}$.

All Graphs, Paths, Cycles

Cor. If G is connected, then $p(G) \geq\lceil\lg n(G)\rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G)=n(T) \leq n\left(Q_{p(T)}\right)=2^{p(T)}$. Equality: P_{n} and C_{n} embed in $Q_{\lceil\mid g n\rceil}$.

- Odd cycles will need one more!

All Graphs, Paths, Cycles

Cor. If G is connected, then $p(G) \geq\lceil\lg n(G)\rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G)=n(T) \leq n\left(Q_{p(T)}\right)=2^{p(T)}$. Equality: P_{n} and C_{n} embed in $Q_{\lceil\mid g n\rceil}$.

- Odd cycles will need one more!

Obs. Always $p(G) \leq p(G-e)+1$.
Pf. Put optimal pec on $G-e$; add new color on e. Each path is okay in G whether it uses e or not.

All Graphs, Paths, Cycles

Cor. If G is connected, then $p(G) \geq\lceil\lg n(G)\rceil$, with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then $p(G) \geq p(T)$. Since $T \subseteq Q_{p(T)}$, we have $n(G)=n(T) \leq n\left(Q_{p(T)}\right)=2^{p(T)}$. Equality: P_{n} and C_{n} embed in $Q_{\lceil\mid g n\rceil}$.

- Odd cycles will need one more!

Obs. Always $p(G) \leq p(G-e)+1$.
Pf. Put optimal pec on $G-e$; add new color on e. Each path is okay in G whether it uses e or not.

Cor. If n is odd, then $\lceil\lg n\rceil \leq p\left(C_{n}\right) \leq\lceil\lg n\rceil+1$.

Lower Bound for Odd Cycles

Lem. Every pec of C_{n} is a spec, so $p\left(C_{n}\right)=\hat{p}\left(C_{n}\right)$.
Pf. The edges with odd usage in an open walk W form a path P joining the ends of W.
P has some odd-used color; $\therefore W$ is not a parity walk.

Lower Bound for Odd Cycles

Lem. Every pec of C_{n} is a spec, so $p\left(C_{n}\right)=\hat{p}\left(C_{n}\right)$.
Pf. The edges with odd usage in an open walk W form a path P joining the ends of W.
P has some odd-used color; $\therefore W$ is not a parity walk.
Lem. If n is odd, then $\hat{p}\left(C_{n}\right) \geq p\left(P_{2 n}\right)$.
Pf. Spec of C_{n} yields pec of $P_{2 n}$.

Each path in $P_{2 n}$ arises from an open walk in C_{n} or one trip around the cycle (which is odd length).

Lower Bound for Odd Cycles

Lem. Every pec of C_{n} is a spec, so $p\left(C_{n}\right)=\hat{p}\left(C_{n}\right)$.
Pf. The edges with odd usage in an open walk W form a path P joining the ends of W.
P has some odd-used color; $\therefore W$ is not a parity walk.
Lem. If n is odd, then $\hat{p}\left(C_{n}\right) \geq p\left(P_{2 n}\right)$.
Pf. Spec of C_{n} yields pec of $P_{2 n}$.

Each path in $P_{2 n}$ arises from an open walk in C_{n} or one trip around the cycle (which is odd length).

Thm. If n is odd, then $p\left(C_{n}\right)=\lceil\lg n\rceil+1$.

Example Showing $p \neq \hat{p}$

- Unrolling technique (like lower bound for odd cycle)

G

Example Showing $p \neq \hat{p}$

- Unrolling technique (like lower bound for odd cycle)

Obs. $\hat{p}(G) \geq p\left(P_{18}\right)=5$.
Pf. Copy a spec of G onto P_{18} (path edges doubled). An x, y^{\prime}-subpath of P_{18} comes from an open walk in G. An x, x^{\prime}-subpath of P_{18} comes from an odd walk in G.

Complete Graphs, $n=2^{k}$

Def. canonical coloring of $K_{2^{k}}=$ edge-coloring f defined by $f(u v)=u+v$, where $V\left(K_{2^{k}}\right)=F_{2}^{k}$.

Complete Graphs, $n=2^{k}$

Def. canonical coloring of $K_{2^{k}}=$ edge-coloring f defined by $f(u v)=u+v$, where $V\left(K_{2^{k}}\right)=F_{2}^{k}$.

Prop. If $n=2^{k}$, then $p\left(K_{n}\right)=\hat{p}\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=n-1$.
Pf. Canonical coloring uses $n-1$ colors (0^{k} not used).
It is a spec: When the ends of a walk W differ in bit i, the total usage of colors flipping bit i is odd, so \exists odd-usage color on W.

Complete Graphs, $n=2^{k}$

Def. canonical coloring of $K_{2^{k}}=$ edge-coloring f defined by $f(u v)=u+v$, where $V\left(K_{2^{k}}\right)=F_{2}^{k}$.

Prop. If $n=2^{k}$, then $p\left(K_{n}\right)=\hat{p}\left(K_{n}\right)=\chi^{\prime}\left(K_{n}\right)=n-1$.
Pf. Canonical coloring uses $n-1$ colors (0^{k} not used). It is a spec: When the ends of a walk W differ in bit i, the total usage of colors flipping bit i is odd, so \exists odd-usage color on W.

Cor. $\hat{p}\left(K_{n}\right) \leq 2^{\lceil\mid g n\rceil}-1 \leq 2 n-3$.
Conj. $\quad p\left(K_{n}\right)=2^{\lceil\lceil g n\rceil}-1 . \quad\left(\right.$ Thm. $\left.\hat{p}\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1.\right)$

Just Above the Threshold: K_{2}, K_{3}, K_{5}

- It suffices to prove $p\left(K_{2^{k}+1}\right)=2^{k+1}-1$. $k=0: p\left(K_{2}\right)=1 ; \quad k=1: p\left(K_{3}\right)=3 ; \quad k=2$?

Prop. $p\left(K_{5}\right)=7$.

Just Above the Threshold: K_{2}, K_{3}, K_{5}

- It suffices to prove $p\left(K_{2^{k}+1}\right)=2^{k+1}-1$.
$k=0: p\left(K_{2}\right)=1 ; \quad k=1: p\left(K_{3}\right)=3 ; \quad k=2$?
Prop. $p\left(K_{5}\right)=7$.
Pf. Each color forms a matching \Rightarrow used at most twice. 10 edges, ≤ 6 colors \Rightarrow at least four colors used twice. Two colors used twice must not form parity path P_{5}.
\therefore colors of size two are used at the same four vertices, but then only three can be used twice.

Just Above the Threshold: K_{2}, K_{3}, K_{5}

- It suffices to prove $p\left(K_{2^{k}+1}\right)=2^{k+1}-1$.
$k=0: p\left(K_{2}\right)=1 ; \quad k=1: p\left(K_{3}\right)=3 ; \quad k=2$?
Prop. $p\left(K_{5}\right)=7$.
Pf. Each color forms a matching \Rightarrow used at most twice. 10 edges, ≤ 6 colors \Rightarrow at least four colors used twice. Two colors used twice must not form parity path P_{5}.
\therefore colors of size two are used at the same four vertices, but then only three can be used twice.

Prop. $p\left(K_{9}\right)=15$. (Longer ad hoc argument.)

Structure of colorings

Thm. If f is a spec of K_{n} with every color class a perfect matching, then f is canonical \& n is a 2-power.

Pf. 4-constraint: If $f(u v)=f(x y)$, then $f(u y)=f(v x)$ (since every color is at every vertex).

Structure of colorings

Thm. If f is a spec of K_{n} with every color class a perfect matching, then f is canonical \& n is a 2-power.

Pf. 4-constraint: If $f(u v)=f(x y)$, then $f(u y)=f(v x)$ (since every color is at every vertex).

Aim: Map $V\left(K_{n}\right)$ to F_{2}^{k} so f is the canonical coloring.
Every edge is a canonically colored K_{2}. Let R be a largest vertex set on which f restricts to a canonical coloring. If $R \neq V\left(K_{n}\right)$, we obtain a larger such set.

Structure of colorings

Thm. If f is a spec of K_{n} with every color class a perfect matching, then f is canonical \& n is a 2-power.

Pf. 4-constraint: If $f(u v)=f(x y)$, then $f(u y)=f(v x)$ (since every color is at every vertex).

Aim: Map $V\left(K_{n}\right)$ to F_{2}^{k} so f is the canonical coloring.
Every edge is a canonically colored K_{2}. Let R be a largest vertex set on which f restricts to a canonical coloring. If $R \neq V\left(K_{n}\right)$, we obtain a larger such set.
With $|R|=2^{j-1}$, we are given a bijection from R to F_{2}^{j-1} under which f is the canonical coloring.

Expanding the Canonical Portion

f canonical on $R \Rightarrow$ any color used within R pairs up R.

Expanding the Canonical Portion

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color c pairs R to some set U; set $R^{\prime}=R \cup U$.

Expanding the Canonical Portion

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color c pairs R to some set U; set $R^{\prime}=R \cup U$.
Map R^{\prime} to F_{2}^{j} by appending 0 to the codes in R and appending 1 instead to their c-mates in U.

Expanding the Canonical Portion

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color c pairs R to some set U; set $R^{\prime}=R \cup U$.
Map R^{\prime} to \mathbf{F}_{2}^{j} by appending 0 to the codes in R and appending 1 instead to their c-mates in U.
The 4-constraint copies the coloring from R to U, so $f\left(u u^{\prime}\right)=f\left(v v^{\prime}\right)=v+v^{\prime}=u+u^{\prime}$.

Expanding the Canonical Portion

f canonical on $R \Rightarrow$ any color used within R pairs up R.

New color c pairs R to some set U; set $R^{\prime}=R \cup U$.
Map R^{\prime} to F_{2}^{j} by appending 0 to the codes in R and appending 1 instead to their c-mates in U.
The 4-constraint copies the coloring from R to U,

$$
\text { so } f\left(u u^{\prime}\right)=f\left(v v^{\prime}\right)=v+v^{\prime}=u+u^{\prime} \text {. }
$$

Use u to name the color on $0^{j} u$, so $f\left(0^{j} u\right)=u=0^{j}+u$.
The rest: $v \in R \& w=u+v \in U \Rightarrow f\left(v^{j}\right)=f(u w)=v$; 4-constraint $\Rightarrow f(u v)=f\left(0^{j} w\right)=w=u+v$.

Complete Bipartite Graph $K_{n, n}$

Prop. If $n=2^{k}$, then $p\left(K_{n, n}\right)=\hat{p}\left(K_{n, n}\right)=\chi^{\prime}\left(K_{n, n}\right)=n$.
Pf. Label each partite set with \mathbf{F}_{2}^{k}. Let $f(u v)=u+v$.

Complete Bipartite Graph $K_{n, n}$

Prop. If $n=2^{k}$, then $p\left(K_{n, n}\right)=\hat{p}\left(K_{n, n}\right)=\chi^{\prime}\left(K_{n, n}\right)=n$.
Pf. Label each partite set with \mathbf{F}_{2}^{k}. Let $f(u v)=u+v$.

A parity walk (even usage each color) has even length. Even usage \Rightarrow bits flipped evenly often by each color.
\therefore a parity walk ends at same label on the same side.
That is, every parity walk is a closed walk.

Complete Bipartite Graph $K_{n, n}$

Prop. If $n=2^{k}$, then $p\left(K_{n, n}\right)=\hat{p}\left(K_{n, n}\right)=\chi^{\prime}\left(K_{n, n}\right)=n$.
Pf. Label each partite set with \mathbf{F}_{2}^{k}. Let $f(u v)=u+v$.

A parity walk (even usage each color) has even length. Even usage \Rightarrow bits flipped evenly often by each color.
\therefore a parity walk ends at same label on the same side. That is, every parity walk is a closed walk.

Conj. $p\left(K_{n, n}\right)=\hat{p}\left(K_{n, n}\right)=2^{\lceil\lg n\rceil}$ for all n.

Other Complete Bipartite Graphs

Thm. $m=2^{k}$ and $m \mid n \Rightarrow \hat{p}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)=n$.

Other Complete Bipartite Graphs

Thm. $m=2^{k}$ and $m \mid n \Rightarrow \hat{p}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)=n$.
Pf. Let $r=n / m$, with $X=\mathbf{F}_{2}^{k}$ and $Y=\mathbf{F}_{2}^{k} \times[r]$.
Color $f(u v)=\left(u+v^{\prime}, j\right)$, where $v=\left(v^{\prime}, j\right)$
(r edge-disjoint copies of canonical coloring).

Other Complete Bipartite Graphs

Thm. $\quad m=2^{k}$ and $m \mid n \Rightarrow \hat{p}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)=n$. Pf. Let $r=n / m$, with $X=\mathbf{F}_{2}^{k}$ and $Y=\mathbf{F}_{2}^{k} \times[r]$. Color $f(u v)=\left(u+v^{\prime}, j\right)$, where $v=\left(v^{\prime}, j\right)$ (r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W^{\prime} in $K_{m, m}$.

Other Complete Bipartite Graphs

Thm. $\quad m=2^{k}$ and $m \mid n \Rightarrow \hat{p}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)=n$.
Pf. Let $r=n / m$, with $X=\mathbf{F}_{2}^{k}$ and $Y=\mathbf{F}_{2}^{k} \times[r]$.
Color $f(u v)=\left(u+v^{\prime}, j\right)$, where $v=\left(v^{\prime}, j\right)$ (r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W^{\prime} in $K_{m, m}$. W^{\prime} is a parity walk, so W^{\prime} is closed. If W is open, then W ends in different $K_{m, m} s$; they have odd usage.

Other Complete Bipartite Graphs

Thm. $\quad m=2^{k}$ and $m \mid n \Rightarrow \hat{p}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)=n$.
Pf. Let $r=n / m$, with $X=\mathbf{F}_{2}^{k}$ and $Y=\mathbf{F}_{2}^{k} \times[r]$.
Color $f(u v)=\left(u+v^{\prime}, j\right)$, where $v=\left(v^{\prime}, j\right)$
(r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W^{\prime} in $K_{m, m}$. W^{\prime} is a parity walk, so W^{\prime} is closed. If W is open, then W ends in different $K_{m, m} \mathrm{~s}$; they have odd usage.
Cor. $m \leq n$ and $m^{\prime}=2^{\lceil\mid g m\rceil} \Rightarrow \hat{p}\left(K_{m, n}\right) \leq m^{\prime}\left\lceil n / m^{\prime}\right\rceil$.

Other Complete Bipartite Graphs

Thm. $\quad m=2^{k}$ and $m \mid n \Rightarrow \hat{p}\left(K_{m, n}\right)=\Delta\left(K_{m, n}\right)=n$.
Pf. Let $r=n / m$, with $X=\mathbf{F}_{2}^{k}$ and $Y=\mathbf{F}_{2}^{k} \times[r]$.
Color $f(u v)=\left(u+v^{\prime}, j\right)$, where $v=\left(v^{\prime}, j\right)$
(r edge-disjoint copies of canonical coloring).

Claim: f is a spec. For a parity walk W, erasing second color coordinate maps W to a walk W^{\prime} in $K_{m, m}$. W^{\prime} is a parity walk, so W^{\prime} is closed. If W is open, then W ends in different $K_{m, m} \mathrm{~s}$; they have odd usage.
Cor. $m \leq n$ and $m^{\prime}=2^{\lceil\mid g m\rceil} \Rightarrow \hat{p}\left(K_{m, n}\right) \leq m^{\prime}\left\lceil n / m^{\prime}\right\rceil$.
Cor. $p\left(K_{2,2 r+1}\right)=\hat{p}\left(K_{2,2 r+1}\right)=2 r+2$.
Pf. $p\left(K_{2, n}\right)=n \Rightarrow$ every color is at both vertices of X
\Rightarrow 4-constraint holds $\Rightarrow Y$ in pairs $\Rightarrow n$ is even.

Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f, the parity vector $\pi(W)$ sets bit i to the parity of the usage of color i on W. Parity space $L_{f}=$ set of parity vectors of closed walks.

Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f, the parity vector $\pi(W)$ sets bit i to the parity of the usage of color i on W. Parity space $L_{f}=$ set of parity vectors of closed walks.

Lem. If f is an edge-coloring of a connected graph G, then L_{f} is a binary vector space.

Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f, the parity vector $\pi(W)$ sets bit i to the parity of the usage of color i on W. Parity space $L_{f}=$ set of parity vectors of closed walks.

Lem. If f is an edge-coloring of a connected graph G, then L_{f} is a binary vector space.

Pf. When W is a u, u-walk and W^{\prime} is a v, v-walk, let P be a u, v-path, with P^{\prime} its reverse. Now $W_{1}, P, W_{2}, P^{\prime}$ is a u, u-walk with parity vector $\pi(W)+\pi\left(W^{\prime}\right)$.

Parity Space for Spec of K_{n}

Def. Let $w(L)$ denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_{n} is a spec $\Leftrightarrow w\left(L_{f}\right) \geq 2$.

Parity Space for Spec of K_{n}

Def. Let $w(L)$ denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_{n} is a spec $\Leftrightarrow w\left(L_{f}\right) \geq 2$.
Pf. $\exists \pi(W)$ with weight 1 for closed walk W \Leftrightarrow one color has odd usage in W (used on e) $\Leftrightarrow \quad \exists$ open parity walk $W-e$ $\Leftrightarrow f$ is not a spec

Parity Space for Spec of K_{n}

Def. Let $w(L)$ denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_{n} is a spec $\Leftrightarrow w\left(L_{f}\right) \geq 2$.
Pf. $\exists \pi(W)$ with weight 1 for closed walk W \Leftrightarrow one color has odd usage in W (used on e) $\Leftrightarrow \quad \exists$ open parity walk W-e $\Leftrightarrow f$ is not a spec

Lem. Given colors a and b in optimal spec f of K_{n}, some closed W has odd usage for a, b, and one other.

Parity Space for Spec of K_{n}

Def. Let $w(L)$ denote the minimum weight of the nonzero vectors in L.

Prop. Edge-coloring f of K_{n} is a spec $\Leftrightarrow w\left(L_{f}\right) \geq 2$.
Pf. $\exists \pi(W)$ with weight 1 for closed walk W \Leftrightarrow one color has odd usage in W (used on e) $\Leftrightarrow \quad \exists$ open parity walk W-e $\Leftrightarrow f$ is not a spec

Lem. Given colors a and b in optimal spec f of K_{n}, some closed W has odd usage for a, b, and one other.

Pf. Merging a and b into one color a^{\prime} yields non-spec f^{\prime}. \therefore some closed W has odd usage only on c under f^{\prime}. Since $c=a^{\prime} \Rightarrow \operatorname{wt}\left(\pi_{f}(W)\right)=1$, we have $c \neq a^{\prime}$. $\mathrm{wt}\left(\pi_{f}(W)\right) \geq 2 \Rightarrow a$ and b have odd usage in W.

More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_{f}=\operatorname{span}\{\pi(T): T$ is a triangle containing $v\}$.

Pf. The span is in L_{f}. Conversely, suppose $\pi(W) \in L_{f}$.

More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_{f}=\operatorname{span}\{\pi(T): T$ is a triangle containing $v\}$.

Pf. The span is in L_{f}. Conversely, suppose $\pi(W) \in L_{f}$.
Let $S=\{$ edges with odd usage in $W\}$.
Let $H=$ spanning subgraph of G with edge set S.
Since total usage at each vertex of W is even, H is an even subgraph of G. Also, $\pi(H)=\pi(W)$.

More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_{f}=\operatorname{span}\{\pi(T): T$ is a triangle containing $v\}$.

Pf. The span is in L_{f}. Conversely, suppose $\pi(W) \in L_{f}$.
Let $S=\{$ edges with odd usage in $W\}$.
Let $H=$ spanning subgraph of G with edge set S.
Since total usage at each vertex of W is even, H is an even subgraph of G. Also, $\pi(H)=\pi(W)$.
\therefore it suffices to show that S is the sum $(\bmod 2)$ of the set of triangles formed by adding v to edges of $H-v$.

Each edge of $\mathrm{H}-\mathrm{v}$ is in one such triangle.

More on Parity Spaces

Lem. If G (colored by f) has a dominating vertex v, then $L_{f}=\operatorname{span}\{\pi(T): T$ is a triangle containing $v\}$.

Pf. The span is in L_{f}. Conversely, suppose $\pi(W) \in L_{f}$.
Let $S=\{$ edges with odd usage in $W\}$.
Let $H=$ spanning subgraph of G with edge set S.
Since total usage at each vertex of W is even, H is an even subgraph of G. Also, $\pi(H)=\pi(W)$.
\therefore it suffices to show that S is the sum $(\bmod 2)$ of the set of triangles formed by adding v to edges of $H-v$.

Each edge of $\mathrm{H}-\mathrm{V}$ is in one such triangle.
Edge $v w$ is in odd number $\Leftrightarrow d_{H-v}(w)$ is odd
$\Leftrightarrow w \in N_{H}(v)$ (since $d_{H}(w)$ is even) $\Leftrightarrow v w \in S$.

Lem. If optimal spec f of K_{n} uses some color a not on a perfect matching, then $\hat{p}\left(K_{n+1}\right)=\hat{p}\left(K_{n}\right)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f^{\prime} on the larger complete graph.

Lem. If optimal spec f of K_{n} uses some color a not on a perfect matching, then $\hat{p}\left(K_{n+1}\right)=\hat{p}\left(K_{n}\right)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f^{\prime} on the larger complete graph.

Let $f^{\prime}(u v)=a . \quad$ For $w \notin\{u, v\}$, let $b=f(v w)$. $\exists W$ with odd usage of a, b, and some c. Let $f^{\prime}(u w)=c$.

Lem. If optimal spec f of K_{n} uses some color a not on a perfect matching, then $\hat{p}\left(K_{n+1}\right)=\hat{p}\left(K_{n}\right)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f^{\prime} on the larger complete graph.

Let $f^{\prime}(u v)=a$. For $w \notin\{u, v\}$, let $b=f(v w)$. $\exists W$ with odd usage of a, b, and some c. Let $f^{\prime}(u w)=c$.

We show that $L_{f^{\prime}} \subseteq L_{f}$ to get $w\left(L_{f^{\prime}}\right) \geq 2$.
It suffices that $\pi(T) \in L_{f}$ when T is a triangle in K_{n+1} containing v, since these vectors span $L_{f^{\prime}}$ (by lemma).

Lem. If optimal spec f of K_{n} uses some color a not on a perfect matching, then $\hat{p}\left(K_{n+1}\right)=\hat{p}\left(K_{n}\right)$.

Pf. Let v be a vertex missed by a; let u be a new vertex. We use f to define f^{\prime} on the larger complete graph.

Let $f^{\prime}(u v)=a$. For $w \notin\{u, v\}$, let $b=f(v w)$. $\exists W$ with odd usage of a, b, and some c. Let $f^{\prime}(u w)=c$.

We show that $L_{f^{\prime}} \subseteq L_{f}$ to get $w\left(L_{f^{\prime}}\right) \geq 2$. It suffices that $\pi(T) \in L_{f}$ when T is a triangle in K_{n+1} containing v, since these vectors span $L_{f^{\prime}}$ (by lemma).

If $u \notin T$, then $\pi(T) \in L_{f}$ by definition of L_{f}.
If $T=[u, v, w]$, then $\pi(T)=\pi(W) \in L_{f}$, where W was the walk in K_{n} used to specify $f^{\prime}(u w)$.

Thm. $\hat{p}\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1$

Pf. Let $k=\hat{p}\left(K_{n}\right)$. Canonical coloring $\Rightarrow k \leq 2^{\lceil\lg n\rceil}-1$.

Thm. $\hat{p}\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1$

Pf. Let $k=\hat{p}\left(K_{n}\right)$. Canonical coloring $\Rightarrow k \leq 2^{\lceil\mid g n\rceil}-1$.
Accumulate additional vertices without increasing \hat{p} until every color class is a perfect matching.

This can't pass $2^{[1 g n\rceil}$ vertices, since vertex degree then reaches $2^{\lceil\mid g n\rceil}-1$.

Thm. $\hat{p}\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1$

Pf. Let $k=\hat{p}\left(K_{n}\right)$. Canonical coloring $\Rightarrow k \leq 2^{\lceil\lg n\rceil}-1$.
Accumulate additional vertices without increasing \hat{p} until every color class is a perfect matching.

This can't pass $2^{\lceil\lg n\rceil}$ vertices, since vertex degree then reaches $2^{\lceil\mid g n\rceil}-1$.
\therefore It stops with every color class a perfect matching. We showed this occurs only in the canonical coloring.

Hence $\hat{p}\left(K_{n}\right)=\hat{p}\left(K_{2\lceil\mid g n\rceil}\right)=2^{\lceil\lg n\rceil}-1$.

Thm. $\hat{p}\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1$

Pf. Let $k=\hat{p}\left(K_{n}\right)$. Canonical coloring $\Rightarrow k \leq 2^{\lceil\lg n\rceil}-1$.
Accumulate additional vertices without increasing \hat{p} until every color class is a perfect matching.

This can't pass $2^{[1 g n\rceil}$ vertices, since vertex degree then reaches $2^{\lceil\mid g n\rceil}-1$.
\therefore It stops with every color class a perfect matching. We showed this occurs only in the canonical coloring.

Hence $\hat{p}\left(K_{n}\right)=\hat{p}\left(K_{2}[\lg n\rceil\right)=2^{[\lg n\rceil}-1$.

Cor. Every optimal spec of a complete graph is obtained by deleting vertices from a canonical coloring.

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; $c(G)=$ least \#colors. edge-ranking $=$ edge-coloring s.t. each path has the highest color used once; $\chi_{r}^{\prime}(G)=$ least \#colors.
Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; $c(G)=$ least \#colors. edge-ranking $=$ edge-coloring s.t. each path has the highest color used once; $\chi_{r}^{\prime}(G)=$ least \#colors.
Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

- $\chi_{r}^{\prime}(G) \geq c(G) \geq p(G)$, and the difference can be large. Indeed, $\chi_{r}^{\prime}\left(K_{n}\right) \in \Theta\left(n^{2}\right)$ [BDJKKMT], but $p\left(K_{n}\right) \in \Theta(n)$.
- $c\left(C_{8}\right)=4>3=p\left(C_{8}\right)$ (by short case analysis). Kinnersley constructed a tree where they differ.

Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each path has some color used once; $c(G)=$ least \#colors. edge-ranking $=$ edge-coloring s.t. each path has the highest color used once; $\chi_{r}^{\prime}(G)=$ least \#colors.
Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

- $\chi_{r}^{\prime}(G) \geq c(G) \geq p(G)$, and the difference can be large. Indeed, $\chi_{r}^{\prime}\left(K_{n}\right) \in \Theta\left(n^{2}\right)$ [BDJKKMT], but $p\left(K_{n}\right) \in \Theta(n)$.
- $c\left(C_{8}\right)=4>3=p\left(C_{8}\right)$ (by short case analysis). Kinnersley constructed a tree where they differ.

Def. nonrepetitive edge-coloring = edge-coloring with no immed. repetition $c_{1}, \ldots, c_{k}, c_{1}, \ldots, c_{k}$ on any path; $\pi(G)=$ least \#colors.

- $p(G) \geq \pi(G) \geq \chi^{\prime}(G)$.

Examples Showing $c \neq \hat{p}$

Ex. $p\left(C_{8}\right)=\lceil\lg 8\rceil=3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.
\therefore usage $(4,2,2)$ or $(3,3,2)$; kill edge of largest class.

Examples Showing $c \neq \hat{p}$

Ex. $p\left(C_{8}\right)=\lceil\lg 8\rceil=3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.
\therefore usage $(4,2,2)$ or $(3,3,2)$; kill edge of largest class.
Ex. Let $T_{k}=$ broom formed by identifying an end of $P_{2^{k}-2 k+2}$ with a leaf of a k-edge star. (T_{5} below.)

Examples Showing $c \neq \hat{p}$

Ex. $p\left(C_{8}\right)=\lceil\lg 8\rceil=3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.
\therefore usage $(4,2,2)$ or $(3,3,2)$; kill edge of largest class.
Ex. Let $T_{k}=$ broom formed by identifying an end of $P_{2^{k}-2 k+2}$ with a leaf of a k-edge star. (T_{5} below.)
T_{k} embeds in Q_{k}, so $p\left(T_{k}\right)=k$. (Induct on k, using lemma that for $x, y \in V\left(Q_{k}\right)$ with equal parity, \exists path of length $2^{k}-3$ starting at x and avoiding $\left.y.\right)$

Examples Showing $c \neq \hat{p}$

Ex. $p\left(C_{8}\right)=\lceil\lg 8\rceil=3$. If conflict-free w. 3 colors, color used once \Rightarrow parity 4-path.
\therefore usage $(4,2,2)$ or $(3,3,2)$; kill edge of largest class.
Ex. Let $T_{k}=$ broom formed by identifying an end of $P_{2^{k}-2 k+2}$ with a leaf of a k-edge star. (T_{5} below.)

T_{k} embeds in Q_{k}, so $p\left(T_{k}\right)=k$. (Induct on k, using lemma that for $x, y \in V\left(Q_{k}\right)$ with equal parity, \exists path of length $2^{k}-3$ starting at x and avoiding y.)
For $k \geq 5, c\left(T_{k}\right)=k+1$. If conflict-free w. k colors, $P_{2^{k-1}+1}$ takes k colors, and $P_{2^{k-2}+1}$ takes $k-1$.
All k colors appear at x, so the color missing on $P_{2^{k-2}+1}$ extends the path to one having all colors \geq twice.

Open Problems

Conj. $1 p\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1$ for all n. Known for $n \leq 16$; proved $\hat{p}\left(K_{n}\right)=2^{\lceil\lg n\rceil}-1$ for all n.
Conj. $2 p\left(K_{n, n}\right)=\hat{p}\left(K_{n, n}\right)=2^{\lceil\lg n\rceil}$ for all n.
Conj. $3 \hat{p}(G)=p(G)$ for every bipartite graph G.
Ques. 4 What is the $\max \hat{p}(G)$ when $p(G)=k$?
Ques. 5 How do $\hat{p}\left(K_{k, n}\right)$ and $p\left(K_{k, n}\right)$ grow with k ?
Ques. 6 What is $\operatorname{maxp}(T)$ when T is an n-vertex tree with maximum degree k ? (That is, what cube contains all n-vertex trees with maximum degree k ?)

Ques. 7 When does $p(G)$ equal $\lceil\lg n(G)\rceil$?
Ques. 8 Is $p(T)$ NP-hard on trees w. bounded degree?
Ques. 9 Stability . . . $\hat{p}(G \square H)$. . . Digraphs . . .

