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Obs. p(G) ≥ χ′(G), and H ⊆ G ⇒ p(H) ≤ p(G).

Pf. Every parity edge-coloring is a proper edge-coloring.
Every parity edge-col. of G is a parity edge-col. of H.
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Def. Parity walk = walk using each color even #times.
Strong parity edge-coloring (spec) = edge-coloring such
that every parity walk is closed.
spec number p̂(G) = least #colors in a spec.

Obs. p̂(G) ≥ p(G).

Thm. p̂(Kn) = p(Kn) = χ
′(Kn) = n− 1 when n = 2k, with

a unique coloring.

Thm. [Main Result] p̂(Kn) = 2
dlgne − 1 for all n.

Conj. p(Kn) = 2
dlgne−1 for all n. (Known for n ≤ 16.)
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Motivating Application

Thm. (Daykin-Lovász [1975]) If S is a family of n finite
sets, and B is a nontrivial Boolean function, then
#{B(,) : , ∈ S} ≥ n.

• Marica-Schönheim [1969] proved it for B = set diff.

Thm. If S is a family of n finite sets, and ⊕ is
symmetric diff., then #{⊕  : , ∈ S} ≥ 2dlgne.

Pf. View S as V(Kn). For  ∈ E(Kn), let f () = ⊕ .

In traversing an edge, the color is the set of elements
added or deleted to get the name of the next vertex.

∴ a parity walk must end where it starts.
∴ f is a spec, and the number of colors (symmetric
differences) is at least 2dlgne − 1. Add ∅ for ⊕ .
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Prop. A tree T is a subgraph of Qk ⇔ p(T) ≤ k.

Pf. It suffices to show p(T) = k ⇒ T embeds in Qk.

Fix r ∈ V(T). Define f () ∈ V(Qk) by letting bit  be the
parity of color  usage on the r, -path in T.

The image of each edge in T is an edge in Qk.

∃ color with odd usage on the ,-path, so f () 6= f ().

Cor. (Havel-Movárek [1972]) A graph G embeds in Qk

⇔ G has a k-pec where every cycle is a parity walk.

Pf. Embed a spanning tree T of G in Qk as done above.

Each remaining edge e completes a cycle. When
e = , the color on e is the only color with odd usage
on the ,-path in T. Hence f ()↔ f () in Qk.
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All Graphs, Paths, Cycles

Cor. If G is connected, then p(G) ≥ dlgn(G)e,
with equality for paths and even cycles.

Pf. If T is a spanning tree of G, then p(G) ≥ p(T).

Since T ⊆ Qp(T), we have n(G) = n(T) ≤ n(Qp(T)) = 2
p(T).

Equality: Pn and Cn embed in Qdlgne.

• Odd cycles will need one more!

Obs. Always p(G) ≤ p(G− e) + 1.

Pf. Put optimal pec on G− e; add new color on e.
Each path is okay in G whether it uses e or not.

Cor. If n is odd, then dlgne ≤ p(Cn) ≤ dlgne+ 1.
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Lem. Every pec of Cn is a spec, so p(Cn) = p̂(Cn).

Pf. The edges with odd usage in an open walk W form a
path P joining the ends of W.
P has some odd-used color; ∴ W is not a parity walk.

Lem. If n is odd, then p̂(Cn) ≥ p(P2n).

Pf. Spec of Cn yields pec of P2n.

• • • • • • • • • •

• • • • •
→

• • • • • • • • • •

• • • • •

Each path in P2n arises from an open walk in Cn
or one trip around the cycle (which is odd length).

Thm. If n is odd, then p(Cn) = dlgne+ 1.
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Example Showing p 6= p̂

• Unrolling technique (like lower bound for odd cycle)

P18

G
p(G) = 4

↓ ↓

y

 y

not spec•

•
• • • • • • • •

• • • • • • • • •
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′ y′

•
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Obs. p̂(G) ≥ p(P18) = 5.

Pf. Copy a spec of G onto P18 (path edges doubled).

An , y′-subpath of P18 comes from an open walk in G.

An , ′-subpath of P18 comes from an odd walk in G.
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Prop. If n = 2k, then p(Kn) = p̂(Kn) = χ
′(Kn) = n− 1.

Pf. Canonical coloring uses n− 1 colors (0k not used).

It is a spec: When the ends of a walk W differ in
bit , the total usage of colors flipping bit  is odd,
so ∃ odd-usage color on W.

Cor. p̂(Kn) ≤ 2
dlgne − 1 ≤ 2n− 3.

Conj. p(Kn) = 2
dlgne − 1. (Thm. p̂(Kn) = 2

dlgne − 1.)



Just Above the Threshold: K2, K3, K5

• It suffices to prove p(K2k+1) = 2
k+1 − 1.

k = 0: p(K2) = 1; k = 1: p(K3) = 3; k = 2?

Prop. p(K5) = 7.



Just Above the Threshold: K2, K3, K5

• It suffices to prove p(K2k+1) = 2
k+1 − 1.

k = 0: p(K2) = 1; k = 1: p(K3) = 3; k = 2?

Prop. p(K5) = 7.

Pf. Each color forms a matching ⇒ used at most twice.

10 edges, ≤6 colors ⇒ at least four colors used twice.

Two colors used twice must not form parity path P5.

∴ colors of size two are used at the same four vertices,
but then only three can be used twice.

•

•

••

•

•

•

••

•



Just Above the Threshold: K2, K3, K5

• It suffices to prove p(K2k+1) = 2
k+1 − 1.
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Prop. p(K9) = 15. (Longer ad hoc argument.)
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Aim: Map V(Kn) to F
k
2
so f is the canonical coloring.

Every edge is a canonically colored K2. Let R be a
largest vertex set on which f restricts to a canonical
coloring. If R 6= V(Kn), we obtain a larger such set.

With |R| = 2j−1, we are given a bijection from R to F
j−1
2

under which f is the canonical coloring.
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New color c pairs R to some set U; set R′ = R ∪ U.

Map R′ to F
j

2 by appending 0 to the codes in R and
appending 1 instead to their c-mates in U.

The 4-constraint copies the coloring from R to U,
so f (′) = f (′) =  + ′ = + ′.

Use  to name the color on 0j, so f (0j) =  = 0j + .
The rest:  ∈ R &  = +  ∈ U ⇒ f (0j) = f () = ;
4-constraint ⇒ f () = f (0j) = = + .



Complete Bipartite Graph Kn,n

Prop. If n = 2k, then p(Kn,n) = p̂(Kn,n) = χ
′(Kn,n) = n.

Pf. Label each partite set with Fk
2
. Let f () = + .

•

•

•

•

•

•

•

•

00 00 00

01 01 01

10 10 10

11 11 11

•

•

•

•

•

•

•

•



Complete Bipartite Graph Kn,n

Prop. If n = 2k, then p(Kn,n) = p̂(Kn,n) = χ
′(Kn,n) = n.

Pf. Label each partite set with Fk
2
. Let f () = + .

•

•

•

•

•

•

•

•

00 00 00

01 01 01

10 10 10

11 11 11

•

•

•

•

•

•

•

•

A parity walk (even usage each color) has even length.
Even usage ⇒ bits flipped evenly often by each color.

∴ a parity walk ends at same label on the same side.
That is, every parity walk is a closed walk.



Complete Bipartite Graph Kn,n

Prop. If n = 2k, then p(Kn,n) = p̂(Kn,n) = χ
′(Kn,n) = n.

Pf. Label each partite set with Fk
2
. Let f () = + .

•

•

•

•

•

•

•

•

00 00 00

01 01 01

10 10 10

11 11 11

•

•

•

•

•

•

•

•

A parity walk (even usage each color) has even length.
Even usage ⇒ bits flipped evenly often by each color.

∴ a parity walk ends at same label on the same side.
That is, every parity walk is a closed walk.

Conj. p(Kn,n) = p̂(Kn,n) = 2
dlgne for all n.
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Color f () = (+ ′, j), where  = (′, j)
(r edge-disjoint copies of canonical coloring).

• • • • •

• •

•

X
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Claim: f is a spec. For a parity walk W, erasing
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Claim: f is a spec. For a parity walk W, erasing
second color coordinate maps W to a walk W ′ in Km,m.

W′ is a parity walk, so W′ is closed. If W is open, then
W ends in different Km,ms; they have odd usage.

Cor. m ≤ n and m′ = 2dlgme ⇒ p̂(Km,n) ≤m
′ dn/m′e.

Cor. p(K2,2r+1) = p̂(K2,2r+1) = 2r + 2.

Pf. p(K2,n) = n ⇒ every color is at both vertices of X
⇒ 4-constraint holds ⇒ Y in pairs ⇒ n is even.

Start with 2 colors at y when n is odd.



Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f , the parity vector π(W)
sets bit  to the parity of the usage of color  on W.
Parity space Lf = set of parity vectors of closed walks.



Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f , the parity vector π(W)
sets bit  to the parity of the usage of color  on W.
Parity space Lf = set of parity vectors of closed walks.

Lem. If f is an edge-coloring of a connected graph G,
then Lf is a binary vector space.



Algebraic Aspects of S.p.e.c.

Def. Given an edge-coloring f , the parity vector π(W)
sets bit  to the parity of the usage of color  on W.
Parity space Lf = set of parity vectors of closed walks.

Lem. If f is an edge-coloring of a connected graph G,
then Lf is a binary vector space.

Pf. When W is a ,-walk and W′ is a ,-walk, let P be
a ,-path, with P′ its reverse. Now W1, P,W2, P

′ is a
,-walk with parity vector π(W) + π(W ′).

 P 

W1 W2
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Parity Space for Spec of Kn

Def. Let (L) denote the minimum weight of the
nonzero vectors in L.

Prop. Edge-coloring f of Kn is a spec⇔ (Lf ) ≥ 2.

Pf. ∃ π(W) with weight 1 for closed walk W
⇔ one color has odd usage in W (used on e)
⇔ ∃ open parity walk W − e
⇔ f is not a spec

Lem. Given colors  and b in optimal spec f of Kn,
some closed W has odd usage for , b, and one other.

Pf. Merging  and b into one color ′ yields non-spec f ′.
∴ some closed W has odd usage only on c under f ′.
Since c = ′ ⇒ wt(πf (W)) = 1, we have c 6= ′.
wt(πf (W)) ≥ 2 ⇒  and b have odd usage in W.
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More on Parity Spaces

Lem. If G (colored by f ) has a dominating vertex ,
then Lf = spn{π(T) : T is a triangle containing }.

Pf. The span is in Lf . Conversely, suppose π(W) ∈ Lf .

Let S = {edges with odd usage in W}.
Let H = spanning subgraph of G with edge set S.

Since total usage at each vertex of W is even,
H is an even subgraph of G. Also, π(H) = π(W).

∴ it suffices to show that S is the sum (mod 2) of the
set of triangles formed by adding  to edges of H− .

Each edge of H−  is in one such triangle.

Edge  is in odd number ⇔ dH−() is odd
⇔  ∈ NH() (since dH() is even) ⇔  ∈ S.
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We show that Lf ′ ⊆ Lf to get (Lf ′) ≥ 2.
It suffices that π(T) ∈ Lf when T is a triangle in Kn+1
containing , since these vectors span Lf ′ (by lemma).

If  /∈ T, then π(T) ∈ Lf by definition of Lf .
If T = [,,], then π(T) = π(W) ∈ Lf , where W was the
walk in Kn used to specify f ′().
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Thm. p̂(Kn) = 2
dlgne − 1

Pf. Let k = p̂(Kn). Canonical coloring ⇒ k ≤ 2dlgne − 1.

Accumulate additional vertices without increasing p̂

until every color class is a perfect matching.

This can’t pass 2dlgne vertices, since vertex degree then
reaches 2dlgne − 1.

∴ It stops with every color class a perfect matching.
We showed this occurs only in the canonical coloring.

Hence p̂(Kn) = p̂(K2dlgne) = 2
dlgne − 1.

Cor. Every optimal spec of a complete graph is
obtained by deleting vertices from a canonical coloring.
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Other Related Parameters

Def. conflict-free coloring = edge-coloring s.t. each
path has some color used once; c(G) = least #colors.

edge-ranking = edge-coloring s.t. each path has the
highest color used once; χ′

r
(G) = least #colors.

Bodlaender-Deogun-Jansen-Kloks-Kratsch-Müller-Tuza 1998

• χ′
r
(G) ≥ c(G) ≥ p(G), and the difference can be large.

Indeed, χ′
r
(Kn) ∈ Θ(n

2) [BDJKKMT], but p(Kn) ∈ Θ(n).

• c(C8) = 4 > 3 = p(C8) (by short case analysis).
Kinnersley constructed a tree where they differ.

Def. nonrepetitive edge-coloring = edge-coloring with
no immed. repetition c1, . . . , ck , c1, . . . , ck on any path;
π(G)=least #colors.

• p(G) ≥ π(G) ≥ χ′(G).
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∴ usage (4,2,2) or (3,3,2); kill edge of largest class.
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Examples Showing c 6= p̂

Ex. p(C8) = dlg 8e = 3. If conflict-free w. 3 colors,
color used once ⇒ parity 4-path.
∴ usage (4,2,2) or (3,3,2); kill edge of largest class.

Ex. Let Tk = broom formed by identifying an end of
P2k−2k+2 with a leaf of a k-edge star. (T5 below.)

•
•
•
•

• • • • •S • • • • •
P9 P17•

•
•
•

• • • • • • • • • •

Tk embeds in Qk, so p(Tk) = k. (Induct on k,
using lemma that for , y ∈ V(Qk) with equal parity,
∃ path of length 2k − 3 starting at  and avoiding y.)

For k ≥ 5, c(Tk) = k + 1. If conflict-free w. k colors,
P2k−1+1 takes k colors, and P2k−2+1 takes k − 1.
All k colors appear at , so the color missing on P2k−2+1
extends the path to one having all colors ≥ twice.



Open Problems

Conj. 1 p(Kn) = 2
dlgne − 1 for all n.

Known for n ≤ 16; proved p̂(Kn) = 2
dlgne − 1 for all n.

Conj. 2 p(Kn,n) = p̂(Kn,n) = 2
dlgne for all n.

Conj. 3 p̂(G) = p(G) for every bipartite graph G.

Ques. 4 What is the mx p̂(G) when p(G) = k?

Ques. 5 How do p̂(Kk,n) and p(Kk,n) grow with k?

Ques. 6 What is mxp(T) when T is an n-vertex tree
with maximum degree k? (That is, what cube contains
all n-vertex trees with maximum degree k?)

Ques. 7 When does p(G) equal dlgn(G)e?

Ques. 8 Is p(T) NP-hard on trees w. bounded degree?

Ques. 9 Stability . . . p̂(G H) . . . Digraphs . . .
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