DIMACS, April 2006

UGLY PROOFS

and
 BOOK PROOFS

Joel Spencer

Tournament T on n players
Ranking σ
fit $=$ NonUpsets - Upsets
Erdős-Moon (1965): There exists T for all σ

$$
\operatorname{fit}(T, \sigma) \leq n^{3 / 2} \sqrt{\ln n}
$$

Proof: Random Tournament
JS (1972, thesis!): For all T there exists σ

$$
\operatorname{fit}(T, \sigma) \geq c n^{2 / 3}
$$

Proof: Random Sequential Rank on Top or Bottom

JS (1980): For random T for all σ

$$
\operatorname{fit}(T, \sigma) \leq c n^{3 / 2}
$$

Proof: Ugly
de la Vega (1983): Gem
Level 1: Top half against bottom half.
$\binom{n}{n / 2}$ "different" $\sigma ; n^{2} / 4$ games
All 1-fit $\leq c_{1} n^{3 / 2}$
Level 2: 1-2 or 3-4 quartile games.
$<4^{n}$ "different" $\sigma ; n^{2} / 8$ games
All 2-fit $\leq c_{2} n^{3 / 2}$
Level 3: 1-2, 3-4,5-6,7-8 octile games.
All 3-fit $\leq c_{3} n^{3 / 2}$
$\ldots \sum c_{i}$ converges

Six Standard Deviations Suffice

$A_{1}, \ldots, A_{n} \subseteq\{1, \ldots, n\}$
$\chi:\{1, \ldots, n\} \rightarrow\{-1,+1\}, \chi(A):=\sum_{a \in A} \chi(a)$
JS (1985): There exists χ

$$
\left|\chi\left(A_{i}\right)\right| \leq 6 \sqrt{n}, \text { all } 1 \leq i \leq n
$$

$b_{i}:=$ roundoff of $\chi\left(A_{i}\right)$ to nearest $20 \sqrt{n}$
$\vec{b}(\chi)=\left(b_{1}, \ldots, b_{n}\right)$
(Boppana) b_{i} has low entropy
Subadditivity: \vec{b} has low ($n \epsilon$) entropy
\Rightarrow Some \vec{b} appears 1.99^{n} times
$\vec{b}\left(\chi_{1}\right)=\vec{b}\left(\chi_{2}\right)$ and differ in $\Omega(n)$ places
On the shoulders of Hungarians:

$$
\text { Set } \chi=\left(\chi_{1}-\chi_{2}\right) / 2
$$

$\Omega(n)$ colored, $\left|\chi\left(A_{i}\right)\right| \leq 10 \sqrt{n}$
Iterate ...

ASYMPTOTIC PACKING

$k+1$-uniform hypergraph (e.g. $k=2$)
N vertices
$\operatorname{deg}(v)=D$
Any two v, w have $o(D)$ common hyperedges.
$N, D \rightarrow \infty, k$ fixed
Conjecture (Erdős-Hanani) There exists a packing P with $|P| \sim N /(k+1)$

Rödl (1985): Yes!
JS (1995): Random Greedy Works

Continuous Time

Birthtime $b(e) \in[0, D]$
Packing P_{t}, Surviving S_{t}

$$
\operatorname{Pr}\left[v \in S_{t}\right] \rightarrow f(t)=(1+k t)^{-1 / k}
$$

History $H=H(v, t)$:

- $v \in e, b(e) \leq t \Rightarrow e \in H$
- $e \in H, e \cap f \neq \emptyset, b(f)<b(e) \Rightarrow f \in H$

History determines if $v \in S_{t}$
History is whp treelike and bounded

History ~ Birth Process

Time backward t to 0
Start with root "Eve" (v)
Birth to k-tuplets Poisson intensity one
Children born fertile
Survival determined bottom up
Menendez Rule: If all k of birth survive, mother is killed
$f(t):=\operatorname{Pr}[$ EveSurvives]
$f(t+d t)-f(t) \sim-f(t) \cdot d t \cdot f^{k}(t)$
$f^{\prime}(t)=-f^{k+1}(t)$
$f(t)=(1+k t)^{-1 / k}$

