Choosability of Graphs With Infinite Sets of Forbidden Differences

Pavel Nejedlý

Georgia Institute of Technology, Atlanta

and

Charles University, Prague

• $T = \{0, 1, 4\}$

• Example:

• $T = \{0, 1, 4\}$

- Input:
 - A graph G.
 - A set $T \subseteq \mathbb{Z}_0^+$ of forbidden differences.

- Input:
 - A graph G.
 - A set $T \subseteq \mathbb{Z}_0^+$ of forbidden differences.
- A *T*-coloring of *G* is a function $c: V(G) \to \mathbb{Z}$ such that $|c(u) c(v)| \notin T$ whenever *u* and *v* are adjacent.

- Input:
 - A graph G.
 - A set $T \subseteq \mathbb{Z}_0^+$ of forbidden differences.
- A *T*-coloring of *G* is a function $c: V(G) \to \mathbb{Z}$ such that $|c(u) c(v)| \notin T$ whenever *u* and *v* are adjacent.
- Let *L* be a list assignment. A *T*-coloring *c* is called list-T-coloring with respect to *L* if $\forall v : c(v) \in L(v)$.

- Input:
 - A graph G.
 - A set $T \subseteq \mathbb{Z}_0^+$ of forbidden differences.
- A *T*-coloring of *G* is a function $c: V(G) \to \mathbb{Z}$ such that $|c(u) c(v)| \notin T$ whenever *u* and *v* are adjacent.
- Let *L* be a list assignment. A *T*-coloring *c* is called list-T-coloring with respect to *L* if $\forall v : c(v) \in L(v)$.
- *G* is *T*-*k*-choosable if it is list-T-colorable for every *L* such that $|L(v)| \ge k$ for every vertex *v*.

- Input:
 - A graph G.
 - A set $T \subseteq \mathbb{Z}_0^+$ of forbidden differences.
- A *T*-coloring of *G* is a function $c: V(G) \to \mathbb{Z}$ such that $|c(u) c(v)| \notin T$ whenever *u* and *v* are adjacent.
- Let *L* be a list assignment. A *T*-coloring *c* is called list-T-coloring with respect to *L* if $\forall v : c(v) \in L(v)$.
- *G* is *T*-*k*-choosable if it is list-T-colorable for every *L* such that $|L(v)| \ge k$ for every vertex *v*.
- The *T*-choice number of $G(ch_T(G))$ is the smallest k such that G is T-k-choosable.

• Why?

- Why?
- For which infinite sets T is $ch_T(G)$ finite?

- Why?
- For which infinite sets T is $ch_T(G)$ finite?
- The main result:
 - For every nonempty graph G, $ch_T(G)$ is finite iff $ch_T(K_2)$ is finite.

• Let $\operatorname{ch}_T(K_2) = k$.

- Let $\operatorname{ch}_T(K_2) = k$.
- Basic idea: choose c(v) from L(v) at random.

- Let $\operatorname{ch}_T(K_2) = k$.
- Basic idea: choose c(v) from L(v) at random.
- Conflict graph of edge uv:
 - $T = \{0, 1, 4\}$
 - Edge uv:

- Let $\operatorname{ch}_T(K_2) = k$.
- Basic idea: choose c(v) from L(v) at random.
- Conflict graph of edge uv:
 - $T = \{0, 1, 4\}$
 - Edge uv:

- Let $\operatorname{ch}_T(K_2) = k$.
- Basic idea: choose c(v) from L(v) at random.
- Conflict graph of edge uv:
 - $T = \{0, 1, 4\}$
 - Edge uv:

• How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k,k}$?

- How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k,k}$?
 - Known as problem of Zarankiewicz

- How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k,k}$?
 - Known as problem of Zarankiewicz
 - Open question, but one of known upper bounds is

$$|E| \le (k-1)^{1/k} (n-k+1)n^{1-1/k} + (k-1)n$$

- How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k,k}$?
 - Known as problem of Zarankiewicz
 - Open question, but one of known upper bounds is

$$|E| \le (k-1)^{1/k} (n-k+1)n^{1-1/k} + (k-1)n$$

• The estimate above gives that if $|L(u)|, |L(v)| \ge (k-1)(4e\Delta)^k$, then $p[uv \text{ is not properly colored}] \le \frac{1}{2e\Delta}$.

- How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k,k}$?
 - Known as problem of Zarankiewicz
 - Open question, but one of known upper bounds is

$$|E| \le (k-1)^{1/k} (n-k+1)n^{1-1/k} + (k-1)n$$

- The estimate above gives that if $|L(u)|, |L(v)| \ge (k-1)(4e\Delta)^k$, then $p[uv \text{ is not properly colored}] \le \frac{1}{2e\Delta}$.
- Using Lovász's Local Lemma, we have p[G is not properly colored] < 1.

• Why?

- Why?
- ... because the bound $(k-1)(4e\Delta)^k$ is not very nice.

• Why?

- ... because the bound $(k-1)(4e\Delta)^k$ is not very nice.
- Can we find a bound which is not exponential in $ch_T(K_2)$?

Idea of the second proof

- Key lemma:
 - Let T, S_1 , and S_2 be sets of integers, $|S_1| = k$, $|S_2| \ge k$, $\operatorname{ch}_T(K_2) \le k$.
 - Then there exists $c \in S_1$ such that

 $|S_2 \cap (c + (T \cup -T))| \le |S_2| - (|S_2| - k)/k$

Idea of the second proof

- Key lemma:
 - Let T, S_1 , and S_2 be sets of integers, $|S_1| = k$, $|S_2| \ge k$, $\operatorname{ch}_T(K_2) \le k$.
 - Then there exists $c \in S_1$ such that $|S_2 \cap (c + (T \cup -T))| \le |S_2| - (|S_2| - k)/k$
- Using this lemma, we conclude that if $L(v) \ge deg(v)(k-1) + 1$ and $|L(w)| \ge k$, then we can color v by $c \in L(v)$ such that

 $|L(w) (c + (T \cup -T))| > (|L(w)| - k)/k \ \forall w : vw \in E$

Idea of the second proof

- Key lemma:
 - Let T, S_1 , and S_2 be sets of integers, $|S_1| = k$, $|S_2| \ge k$, $\operatorname{ch}_T(K_2) \le k$.
 - Then there exists $c \in S_1$ such that $|S_2 \cap (c + (T \cup -T))| \le |S_2| - (|S_2| - k)/k$
- Using this lemma, we conclude that if $L(v) \ge deg(v)(k-1) + 1$ and $|L(w)| \ge k$, then we can color v by $c \in L(v)$ such that $|L(w) (c + (T \cup -T))| > (|L(w)| - k)/k \quad \forall w : vw \in E$

• Gives estimate $ch_T(G) \leq (\Delta(k-1)+3)k^{\Delta}$.

• It is easy to see that if $ch_T(K_2) > k$, then there exist k distinct integers a_1, a_2, \ldots, a_k such that

$$\left|\bigcap_{i=1}^{k} a_i + (T \cup -T)\right| \ge k,$$

so complete disorder is not possible if $ch_T(K_2)$ is infinite.

• It is easy to see that if $ch_T(K_2) > k$, then there exist k distinct integers a_1, a_2, \ldots, a_k such that

$$\left|\bigcap_{i=1}^{k} a_i + (T \cup -T)\right| \ge k,$$

so complete disorder is not possible if $ch_T(K_2)$ is infinite.

• It is also easy to see that if T contains an infinite arithmetic progression, $ch_T(K_2)$ is not finite.

• It is easy to see that if $ch_T(K_2) > k$, then there exist k distinct integers a_1, a_2, \ldots, a_k such that

$$\left|\bigcap_{i=1}^{k} a_i + (T \cup -T)\right| \ge k,$$

so complete disorder is not possible if $ch_T(K_2)$ is infinite.

- It is also easy to see that if T contains an infinite arithmetic progression, $ch_T(K_2)$ is not finite.
- Is it true that if $ch_T(K_2)$ is infinite, then T contains an infinite arithmetic progression?

• It is easy to see that if $ch_T(K_2) > k$, then there exist k distinct integers a_1, a_2, \ldots, a_k such that

$$\left|\bigcap_{i=1}^{k} a_i + (T \cup -T)\right| \ge k,$$

so complete disorder is not possible if $ch_T(K_2)$ is infinite.

- It is also easy to see that if T contains an infinite arithmetic progression, $ch_T(K_2)$ is not finite.
- Is it true that if $ch_T(K_2)$ is infinite, then T contains an infinite arithmetic progression?
- Unfortunately, there are sets T such that $ch_T(K_2)$ is infinite, but they do not contain any arithmetic progression of length greater than two.

- We have seen two bounds on $ch_T(G)$ (if it is finite)
 - One is polynomial in Δ (for fixed $ch_T(K_2)$).
 - The other is polynomial in $ch_T(K_2)$ (for fixed Δ).

- We have seen two bounds on $ch_T(G)$ (if it is finite)
 - One is polynomial in Δ (for fixed $ch_T(K_2)$).
 - The other is polynomial in $ch_T(K_2)$ (for fixed Δ).
- Does there exist a bound polynomial in both Δ and $ch_T(K_2)$?

- We have seen two bounds on $ch_T(G)$ (if it is finite)
 - One is polynomial in Δ (for fixed $ch_T(K_2)$).
 - The other is polynomial in $ch_T(K_2)$ (for fixed Δ).
- Does there exist a bound polynomial in both Δ and $ch_T(K_2)$?
- Is it $c \cdot \Delta \cdot \operatorname{ch}_T(K_2)$ for some constant *c*?

- We have seen two bounds on $ch_T(G)$ (if it is finite)
 - One is polynomial in Δ (for fixed $ch_T(K_2)$).
 - The other is polynomial in $ch_T(K_2)$ (for fixed Δ).
- Does there exist a bound polynomial in both Δ and $ch_T(K_2)$?
- Is it $c \cdot \Delta \cdot \operatorname{ch}_T(K_2)$ for some constant *c*?
 - If not, can we find a good lower bound?

Thank you for your attention!