Choosability of Graphs With Infinite Sets of Forbidden Differences

Pavel Nejedlý

Georgia Institute of Technology, Atlanta and

Charles University, Prague

Frequency Assignment Problem

Frequency Assignment Problem

e Example:

Frequency Assignment Problem

e Example:

Frequency Assignment Problem

e Example:

Frequency Assignment Problem

e Example:

e $T=\{0,1,4\}$

Frequency Assignment Problem

e Example:

e $T=\{0,1,4\}$

T-coloring and T-choosability

e Input:
e A graph G.
e A set $T \subseteq \mathbb{Z}_{0}^{+}$of forbidden differences.

T-coloring and T-choosability

e Input:
e A graph G.
e A set $T \subseteq \mathbb{Z}_{0}^{+}$of forbidden differences.
e A T-coloring of G is a function $c: V(G) \rightarrow \mathbb{Z}$ such that $|c(u)-c(v)| \notin T$ whenever u and v are adjacent.

T-coloring and T-choosability

e Input:
e A graph G.
e A set $T \subseteq \mathbb{Z}_{0}^{+}$of forbidden differences.
e A T-coloring of G is a function $c: V(G) \rightarrow \mathbb{Z}$ such that $|c(u)-c(v)| \notin T$ whenever u and v are adjacent.
e Let L be a list assignment. A T-coloring c is called list-T-coloring with respect to L if $\forall v: c(v) \in L(v)$.

T-coloring and T-choosability

e Input:
e A graph G.
e A set $T \subseteq \mathbb{Z}_{0}^{+}$of forbidden differences.
e A T-coloring of G is a function $c: V(G) \rightarrow \mathbb{Z}$ such that $|c(u)-c(v)| \notin T$ whenever u and v are adjacent.
e Let L be a list assignment. A T-coloring c is called list-T-coloring with respect to L if $\forall v: c(v) \in L(v)$.
e G is T - k-choosable if it is list-T-colorable for every L such that $|L(v)| \geq k$ for every vertex v.

T-coloring and T-choosability

e Input:
e A graph G.
e A set $T \subseteq \mathbb{Z}_{0}^{+}$of forbidden differences.
e A T-coloring of G is a function $c: V(G) \rightarrow \mathbb{Z}$ such that $|c(u)-c(v)| \notin T$ whenever u and v are adjacent.
e Let L be a list assignment. A T-coloring c is called list-T-coloring with respect to L if $\forall v: c(v) \in L(v)$.
e G is T - k-choosable if it is list-T-colorable for every L such that $|L(v)| \geq k$ for every vertex v.
e The T-choice number of $G\left(\operatorname{ch}_{T}(G)\right)$ is the smallest k such that G is T-k-choosable.

T-choosability with $|T|$ infinite

T-choosability with $|T|$ infinite

e Why?

T-choosability with $|T|$ infinite

e Why?
e For which infinite sets T is $\operatorname{ch}_{T}(G)$ finite?

T-choosability with $|T|$ infinite

e Why?
e For which infinite sets T is $\operatorname{ch}_{T}(G)$ finite?
e The main result:
a For every nonempty graph $G, \operatorname{ch}_{T}(G)$ is finite iff $\mathrm{ch}_{T}\left(K_{2}\right)$ is finite.

Proof - I.
e Let $\operatorname{ch}_{T}\left(K_{2}\right)=k$.

Proof - I.

e Let $\operatorname{ch}_{T}\left(K_{2}\right)=k$.
e Basic idea: choose $c(v)$ from $L(v)$ at random.

Proof - I.

e Let $\operatorname{ch}_{T}\left(K_{2}\right)=k$.
e Basic idea: choose $c(v)$ from $L(v)$ at random.
e Conflict graph of edge uv:
e $T=\{0,1,4\}$
e Edge uv:

Proof - I.

e Let $\operatorname{ch}_{T}\left(K_{2}\right)=k$.
e Basic idea: choose $c(v)$ from $L(v)$ at random.
e Conflict graph of edge uv:
e $T=\{0,1,4\}$
e Edge uv:

- 2

2 -

- 3

3 -

- 5

Proof - I.

e Let $\operatorname{ch}_{T}\left(K_{2}\right)=k$.
e Basic idea: choose $c(v)$ from $L(v)$ at random.
e Conflict graph of edge uv:
e $T=\{0,1,4\}$
e Edge uv:

Proof - II.

e How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k, k}$?

Proof - II.

e How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k, k}$?
e Known as problem of Zarankiewicz

Proof - II.

e How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k, k}$?
e Known as problem of Zarankiewicz
e Open question, but one of known upper bounds is

$$
|E| \leq(k-1)^{1 / k}(n-k+1) n^{1-1 / k}+(k-1) n
$$

Proof - II.

e How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k, k}$?
e Known as problem of Zarankiewicz
e Open question, but one of known upper bounds is

$$
|E| \leq(k-1)^{1 / k}(n-k+1) n^{1-1 / k}+(k-1) n
$$

e The estimate above gives that if
$|L(u)|,|L(v)| \geq(k-1)(4 e \Delta)^{k}$, then
$p[u v$ is not properly colored $] \leq \frac{1}{2 e \Delta}$.

Proof - II.

e How can we estimate number of edges in $n \times n$ bipartite graph not containing a copy of $K_{k, k}$?
e Known as problem of Zarankiewicz
e Open question, but one of known upper bounds is

$$
|E| \leq(k-1)^{1 / k}(n-k+1) n^{1-1 / k}+(k-1) n
$$

e The estimate above gives that if
$|L(u)|,|L(v)| \geq(k-1)(4 e \Delta)^{k}$, then $p[u v$ is not properly colored $] \leq \frac{1}{2 e \Delta}$.
e Using Lovász's Local Lemma, we have $p[G$ is not properly colored $]<1$.

Another proof

Another proof

e Why?

Another proof

e Why?
e ... because the bound $(k-1)(4 e \Delta)^{k}$ is not very nice.

Another proof

e Why?
a ... because the bound $(k-1)(4 e \Delta)^{k}$ is not very nice.
e Can we find a bound which is not exponential in $\mathrm{ch}_{T}\left(K_{2}\right)$?

Idea of the second proof

e Key lemma:
a Let T, S_{1}, and S_{2} be sets of integers, $\left|S_{1}\right|=k$, $\left|S_{2}\right| \geq k, \operatorname{ch}_{T}\left(K_{2}\right) \leq k$.
e Then there exists $c \in S_{1}$ such that

$$
\left|S_{2} \cap(c+(T \cup-T))\right| \leq\left|S_{2}\right|-\left(\left|S_{2}\right|-k\right) / k
$$

Idea of the second proof

e Key lemma:
a Let T, S_{1}, and S_{2} be sets of integers, $\left|S_{1}\right|=k$,

$$
\left|S_{2}\right| \geq k, \operatorname{ch}_{T}\left(K_{2}\right) \leq k
$$

a Then there exists $c \in S_{1}$ such that

$$
\left|S_{2} \cap(c+(T \cup-T))\right| \leq\left|S_{2}\right|-\left(\left|S_{2}\right|-k\right) / k
$$

e Using this lemma, we conclude that if $L(v) \geq \operatorname{deg}(v)(k-1)+1$ and $|L(w)| \geq k$, then we can color v by $c \in L(v)$ such that

$$
|L(w)(c+(T \cup-T))|>(|L(w)|-k) / k \quad \forall w: v w \in E
$$

Idea of the second proof

e Key lemma:
a Let T, S_{1}, and S_{2} be sets of integers, $\left|S_{1}\right|=k$, $\left|S_{2}\right| \geq k, \operatorname{ch}_{T}\left(K_{2}\right) \leq k$.
a Then there exists $c \in S_{1}$ such that

$$
\left|S_{2} \cap(c+(T \cup-T))\right| \leq\left|S_{2}\right|-\left(\left|S_{2}\right|-k\right) / k
$$

e Using this lemma, we conclude that if $L(v) \geq \operatorname{deg}(v)(k-1)+1$ and $|L(w)| \geq k$, then we can color v by $c \in L(v)$ such that

$$
|L(w)(c+(T \cup-T))|>(|L(w)|-k) / k \quad \forall w: v w \in E
$$

e Gives estimate $\operatorname{ch}_{T}(G) \leq(\Delta(k-1)+3) k^{\Delta}$.

Is the structure of bad sets simple?

Is the structure of bad sets simple?

e It is easy to see that if $\operatorname{ch}_{T}\left(K_{2}\right)>k$, then there exist k distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\left|\bigcap_{i=1}^{k} a_{i}+(T \cup-T)\right| \geq k
$$

so complete disorder is not possible if $\operatorname{ch}_{T}\left(K_{2}\right)$ is infinite.

Is the structure of bad sets simple?

e It is easy to see that if $\operatorname{ch}_{T}\left(K_{2}\right)>k$, then there exist k distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\left|\bigcap_{i=1}^{k} a_{i}+(T \cup-T)\right| \geq k
$$

so complete disorder is not possible if $\operatorname{ch}_{T}\left(K_{2}\right)$ is infinite.
e It is also easy to see that if T contains an infinite arithmetic progression, $\operatorname{ch}_{T}\left(K_{2}\right)$ is not finite.

Is the structure of bad sets simple?

e It is easy to see that if $\operatorname{ch}_{T}\left(K_{2}\right)>k$, then there exist k distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\left|\bigcap_{i=1}^{k} a_{i}+(T \cup-T)\right| \geq k
$$

so complete disorder is not possible if $\operatorname{ch}_{T}\left(K_{2}\right)$ is infinite.
e It is also easy to see that if T contains an infinite arithmetic progression, $\operatorname{ch}_{T}\left(K_{2}\right)$ is not finite.
e Is it true that if $\operatorname{ch}_{T}\left(K_{2}\right)$ is infinite, then T contains an infinite arithmetic progression?

Is the structure of bad sets simple?

e It is easy to see that if $\operatorname{ch}_{T}\left(K_{2}\right)>k$, then there exist k distinct integers $a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
\left|\bigcap_{i=1}^{k} a_{i}+(T \cup-T)\right| \geq k
$$

so complete disorder is not possible if $\operatorname{ch}_{T}\left(K_{2}\right)$ is infinite.
e It is also easy to see that if T contains an infinite arithmetic progression, $\operatorname{ch}_{T}\left(K_{2}\right)$ is not finite.
e Is it true that if $\operatorname{ch}_{T}\left(K_{2}\right)$ is infinite, then T contains an infinite arithmetic progression?
e Unfortunately, there are sets T such that $\mathrm{ch}_{T}\left(K_{2}\right)$ is infinite, but they do not contain any arithmetic progression of length greater than two.

Future work

Future work

e We have seen two bounds on $\operatorname{ch}_{T}(G)$ (if it is finite)
a One is polynomial in Δ (for fixed $\operatorname{ch}_{T}\left(K_{2}\right)$).
e The other is polynomial in $\operatorname{ch}_{T}\left(K_{2}\right)($ for fixed $\Delta)$.

Future work

e We have seen two bounds on $\operatorname{ch}_{T}(G)$ (if it is finite)
e One is polynomial in Δ (for fixed $\mathrm{ch}_{T}\left(K_{2}\right)$).
a The other is polynomial in $\operatorname{ch}_{T}\left(K_{2}\right)$ (for fixed Δ).
e Does there exist a bound polynomial in both Δ and $\mathrm{ch}_{T}\left(K_{2}\right)$?

Future work

e We have seen two bounds on $\operatorname{ch}_{T}(G)$ (if it is finite)
a One is polynomial in Δ (for fixed $\operatorname{ch}_{T}\left(K_{2}\right)$).
e The other is polynomial in $\operatorname{ch}_{T}\left(K_{2}\right)$ (for fixed Δ).
e Does there exist a bound polynomial in both Δ and $\mathrm{ch}_{T}\left(K_{2}\right)$?
e Is it $c \cdot \Delta \cdot \operatorname{ch}_{T}\left(K_{2}\right)$ for some constant c ?

Future work

e We have seen two bounds on $\operatorname{ch}_{T}(G)$ (if it is finite)
a One is polynomial in Δ (for fixed $\operatorname{ch}_{T}\left(K_{2}\right)$).
e The other is polynomial in $\operatorname{ch}_{T}\left(K_{2}\right)$ (for fixed Δ).
e Does there exist a bound polynomial in both Δ and $\mathrm{ch}_{T}\left(K_{2}\right)$?
e Is it $c \cdot \Delta \cdot \operatorname{ch}_{T}\left(K_{2}\right)$ for some constant c ?
e If not, can we find a good lower bound?

Thank you for your attention!

