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T -coloring and T -choosability

Input:
A graph G.

A set T ⊆ Z
+
0 of forbidden differences.

A T -coloring of G is a function c : V (G) → Z such that
|c(u) − c(v)| /∈ T whenever u and v are adjacent.

Let L be a list assignment. A T -coloring c is called
list-T-coloring with respect to L if ∀v : c(v) ∈ L(v).

G is T -k-choosable if it is list-T-colorable for every L
such that |L(v)| ≥ k for every vertex v.

The T -choice number of G (chT (G)) is the smallest k
such that G is T -k-choosable.
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T -choosability with |T | infinite

Why?

For which infinite sets T is chT (G) finite?

The main result:
For every nonempty graph G, chT (G) is finite iff
chT (K2) is finite.
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Proof - II.

How can we estimate number of edges in n × n
bipartite graph not containing a copy of Kk,k?

Known as problem of Zarankiewicz
Open question, but one of known upper bounds is

|E| ≤ (k − 1)1/k(n − k + 1)n1−1/k + (k − 1)n

The estimate above gives that if
|L(u)|, |L(v)| ≥ (k − 1)(4e∆)k, then
p[uv is not properly colored] ≤ 1

2e∆ .

Using Lovász’s Local Lemma, we have
p[G is not properly colored] < 1.



Another proof



Another proof

Why?



Another proof

Why?

... because the bound (k − 1)(4e∆)k is not very nice.



Another proof

Why?

... because the bound (k − 1)(4e∆)k is not very nice.

Can we find a bound which is not exponential in
chT (K2)?
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Idea of the second proof

Key lemma:
Let T , S1, and S2 be sets of integers, |S1| = k,
|S2| ≥ k, chT (K2) ≤ k.
Then there exists c ∈ S1 such that

|S2 ∩ (c + (T ∪ −T ))| ≤ |S2| − (|S2| − k)/k

Using this lemma, we conclude that if
L(v) ≥ deg(v)(k − 1) + 1 and |L(w)| ≥ k, then we can
color v by c ∈ L(v) such that

|L(w) (c + (T ∪ −T ))| > (|L(w)| − k)/k ∀w : vw ∈ E

Gives estimate chT (G) ≤ (∆(k − 1) + 3)k∆.
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It is easy to see that if chT (K2) > k, then there exist k
distinct integers a1, a2, . . . , ak such that
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≥ k,

so complete disorder is not possible if chT (K2) is
infinite.

It is also easy to see that if T contains an infinite
arithmetic progression, chT (K2) is not finite.

Is it true that if chT (K2) is infinite, then T contains an
infinite arithmetic progression?

Unfortunately, there are sets T such that chT (K2) is
infinite, but they do not contain any arithmetic
progression of length greater than two.
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Future work

We have seen two bounds on chT (G) (if it is finite)
One is polynomial in ∆ (for fixed chT (K2)).
The other is polynomial in chT (K2) (for fixed ∆).

Does there exist a bound polynomial in both ∆ and
chT (K2)?

Is it c · ∆ · chT (K2) for some constant c?
If not, can we find a good lower bound?



Thank you for your attention!


	Frequency Assignment Problem
	$T$-coloring and $T$-choosability
	$T$-choosability with $|T|$ infinite
	Proof - I.
	Proof - II.
	Another proof
	Idea of the second proof
	Is the structure of bad sets simple?
	Future work
	

