Forbidden submatrices in 0-1 matrices

Balázs Keszegh, Gábor Tardos

Combinatorial Challenges, 2006

Introduction

Definition

A 0-1 matrix (or pattern) is a matrix with just 1's and 0 's (blanks) at its entries.

The pattern P is contained in the $0-1$ matrix A if it can be obtained from a submatrix of it by deleting (changing to 0) extra 1 entries.
Note that permuting rows or columns is not allowed!

Introduction

Example

The 0-1 matrix A contains the pattern P :
(dot for 1 entry, blank space for 0)

Introduction

Definition

The extremal function of $P \mathbf{e x}(\mathbf{n}, \mathbf{P})$ is the maximum number of 1 entries in an n by n matrix not containing P.

Our aim is to determine this function for some patterns P.
This question is a variant of the Turán-type extremal graph theory.

Main papers

Z. Füredi (1990)
D. Bienstock, E. Győri (1991)

Mainly determining the extremal function of pattern Q :

$$
Q=\left(\begin{array}{lll}
& \bullet & \bullet \\
\bullet & & \bullet
\end{array}\right)
$$

Z. Füredi, P. Hajnal (1992)

Examining the extremal function of all patterns with four 1 entries and determine it for many cases.
A. Marcus, G. Tardos (2004)

Determining the extremal function of permutation patterns.
G. Tardos (2005)

Simple Bounds

Proposition

The extremal function of the 1 by 1 pattern with a single 1 entry is 0 , for any other pattern ex $(n, P) \geq n$.

Simple Bounds

Proposition

The extremal function of the 1 by 1 pattern with a single 1 entry is
0 , for any other pattern ex $(n, P) \geq n$.
Proposition
If a pattern P contains a pattern Q, then ex $(n, Q) \leq e x(n, P)$.
Proof.
If a matrix avoids Q, then avoids P too.

Adding a column with one 1 entry on the boundary

Theorem
(Füredi, Hajnal) If P^{\prime} can be obtained from P by attaching an extra column to the boundary of P and placing a single 1 entry in the new column next to an existing one in P, then $e x(n, P) \leq e x\left(n, P^{\prime}\right) \leq e x(n, P)+n$.

Example

$$
P=\left(\begin{array}{lll}
\bullet & \bullet \\
\bullet & & \\
& \bullet &
\end{array}\right) \quad P^{\prime}=\left(\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \\
& & \bullet
\end{array}\right)
$$

Adding a column with one 1 entry inside the pattern

Theorem
(Tardos) If P^{\prime} is obtained from the pattern P by adding an extra column between two columns of P, containing a single 1 entry and the newly introduced 1 entry has 1 next to them on both sides, then ex $(n, P) \leq e x\left(n, P^{\prime}\right) \leq 2 e x(n, P)$.

Example

$$
P=\left(\begin{array}{lll}
\bullet & & \bullet \\
& \bullet & \bullet
\end{array}\right) \quad P^{\prime}=\left(\begin{array}{llll}
\bullet & & \bullet \\
& \bullet & \bullet
\end{array}\right)
$$

Permutation Matrices

Theorem
(Marcus, Tardos) For all permutation matrices P we have ex $(n, P)=O(n)$ (A permutation matrix is a matrix with exactly one 1 entry in each column and row).

Davenport-Schinzel sequences

Example

The sequence deedecadedabbe contains the sequence abab.

Definition

Davenport-Schinzel sequences are the ones not containing ababa type sequences.

Davenport-Schinzel sequences

Example

The sequence deedecadedabbe contains the sequence abab.

Definition

Davenport-Schinzel sequences are the ones not containing ababa type sequences.

Definition

Similarly to 0-1 matrices, ex (n, u) is the maximum length of a string on n symbols not containing the string u.

Davenport-Schinzel sequences

Theorem
(Hart, Sharir) For DS-sequences we have ex $(n, a b a b a)=\Theta(n \alpha(n))$, where $\alpha(n)$ is the inverse Ackermann function.

Davenport-Schinzel sequences

Theorem
(Hart, Sharir) For DS-sequences we have
ex $(n, a b a b a)=\Theta(n \alpha(n))$, where $\alpha(n)$ is the inverse Ackermann function.

Theorem
(Füredi, Hajnal) For the extremal function of the pattern S_{1} we have ex $\left(n, S_{1}\right)=\Theta(n \alpha(n))$.

$$
S_{1}=\left(\begin{array}{lll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

Davenport-Schinzel sequences

Theorem
(Klazar, Valtr) The string $a_{1} a_{2} \ldots a_{k-1} a_{k} a_{k-1} \ldots a_{2} a_{1} a_{2} \ldots a_{k-1} a_{k}$ has linear extremal function for all $k \geq 1$.

Davenport-Schinzel sequences

Theorem
(Klazar, Valtr) The string $a_{1} a_{2} \ldots a_{k-1} a_{k} a_{k-1} \ldots a_{2} a_{1} a_{2} \ldots a_{k-1} a_{k}$ has linear extremal function for all $k \geq 1$.

Corollary

For every $k \geq 1$ the pattern P_{k} has extremal function ex $\left(n, P_{k}\right)=O(n)$, where ex.

Adding two 1's between and left to other two

Theorem
(Keszegh, Tardos) Let A be a pattern which has two 1 entries in its first column in row i and $i+1$ for a given i. Let A^{\prime} be the pattern obtained from A by adding two new rows between the ith and the $(i+1)$ th row and a new column before the first column with exactly two 1 entries in the intersection of the new column and rows. Then ex $\left(n, A^{\prime}\right)=O(e x(n, A))$.

Example

$$
A=\left(\begin{array}{lll}
\bullet & & \bullet \\
\bullet & & \\
& \bullet &
\end{array}\right)
$$

Adding two 1's between and left to other two

Theorem
(Tardos) $\operatorname{ex}\left(n, L_{1}\right)=O(n)$.

$$
\iota_{1}=(!\cdot)
$$

Adding two 1's between and left to other two

Theorem
(Tardos) $\operatorname{ex}\left(n, L_{1}\right)=O(n)$.

$$
L_{1}=\left(\begin{array}{lll}
\bullet & & \bullet \\
\bullet & & \\
& \bullet &
\end{array}\right)
$$

Corollary
(Keszegh, Tardos) ex $\left(n, L_{2}\right)=O(n)$.

Minimal non-linear patterns

Theorem
(Keszegh, Tardos) We have ex $\left(n, H_{0}\right)=\Theta(n \log n)$, where

Definition

It is easy to see that by deleting any 1 entry from it we obtain a pattern with four 1 entries and with linear extremal function.
We call these type of patterns minimal non-linear patterns. So far, this is the only pattern with more than four 1 entries, known to be the member of this class of patterns.

Minimal non-linear patterns

Definition
Similarly, we call a pattern minimal non-quasilinear if by deleting any 1 entry we get an almost linear pattern (linear except for $\alpha(n)$ terms).

Minimal non-linear patterns

Definition

Similarly, we call a pattern minimal non-quasilinear if by deleting any 1 entry we get an almost linear pattern (linear except for $\alpha(n)$ terms).

Theorem
(Keszegh, Tardos) There exist infinitely many pairwise different minimal non-quasilinear patterns.

Minimal non-linear patterns

Definition

Similarly, we call a pattern minimal non-quasilinear if by deleting any 1 entry we get an almost linear pattern (linear except for $\alpha(n)$ terms).

Theorem
(Keszegh, Tardos) There exist infinitely many pairwise different minimal non-quasilinear patterns.

Conjecture

There are infinitely many minimal non-linear patterns.

Remark

There are some patterns H_{k} which are prime candidates for being such.

Linear patterns so far

- Everything is at least linear

Linear patterns so far

- Everything is at least linear
- We can sometimes add a column with one 1 entry to the boundary or between existing two 1 entries

Linear patterns so far

- Everything is at least linear
- We can sometimes add a column with one 1 entry to the boundary or between existing two 1 entries
- We can sometimes add two new rows and a new column with two 1 entries in the intersection

Linear patterns so far

- Everything is at least linear
- We can sometimes add a column with one 1 entry to the boundary or between existing two 1 entries
- We can sometimes add two new rows and a new column with two 1 entries in the intersection
- Permutation patterns

Linear patterns so far

- Everything is at least linear
- We can sometimes add a column with one 1 entry to the boundary or between existing two 1 entries
- We can sometimes add two new rows and a new column with two 1 entries in the intersection
- Permutation patterns
- L_{1}, and as corollaries of the rules above: P_{k}, L_{2}, etc.

Linear patterns so far

- Everything is at least linear
- We can sometimes add a column with one 1 entry to the boundary or between existing two 1 entries
- We can sometimes add two new rows and a new column with two 1 entries in the intersection
- Permutation patterns
- L_{1}, and as corollaries of the rules above: P_{k}, L_{2}, etc.
- Other linear patterns? Other rules to build new linear patterns?

Other linear patterns?

Conjecture

$e x(n, G)=O(n)$.

$$
G=\left(\begin{array}{llll}
\bullet & \bullet & & \\
& & \bullet & \bullet \\
& & &
\end{array}\right)
$$

Remark

Solving this would help to decide whether the patterns H_{k} are really minimal non-linear patterns.

Other linear patterns?

Conjecture

1. For any permutation pattern by doubling the column containing the 1 entry in its first row we obtain a pattern with linear extremal function.
(Note that this would prove that ex $(n, G)=O(n)$.)

Other linear patterns?

Conjecture

1. For any permutation pattern by doubling the column containing the 1 entry in its first row we obtain a pattern with linear extremal function.
(Note that this would prove that ex $(n, G)=O(n)$.)
2. By doubling one column of a permutation pattern we obtain a pattern with linear extremal function.

Other linear patterns?

Conjecture

1. For any permutation pattern by doubling the column containing the 1 entry in its first row we obtain a pattern with linear extremal function.
(Note that this would prove that ex $(n, G)=O(n)$.)
2. By doubling one column of a permutation pattern we obtain a pattern with linear extremal function.
3. By doubling every column of a permutation pattern we obtain a pattern with linear extremal function.
