Distinguishing Chromatic Number of Cartesian Products of Graphs

Hemanshu Kaul
hkaul@math.uiuc.edu
www.math.uiuc.edu/~hkaul/ .
University of Illinois at Urbana-Champaign

Cartesian Product of Graphs

Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be two graphs.
$G \square H$ denotes the Cartesian product of G and H.
$V(G \square H)=\{(u, v) \mid u \in V(G), v \in V(H)\}$.
vertex (u, v) is adjacent to vertex (w, z) if either $u=w$ and $v z \in E(H)$ or $v=z$ and $u w \in E(G)$.

Extend this definition to $G_{1} \square G_{2} \square \ldots \square G_{d}$.
Denote $G^{d}=\square_{i=1}^{d} G$.

Cartesian Product of Graphs

H

Cartesian Product of Graphs

A graph G is said to be a prime graph if whenever $G=G_{1} \square G_{2}$, then either G_{1} or G_{2} is a singleton vertex.

Prime Decomposition Theorem [Sabidussi(1960) and Vizing(1963)] Let G be a connected graph, then $G \cong G_{1}^{p_{1}} \square G_{2}^{p_{2}} \square \ldots \square G_{d}^{p_{d}}$, where G_{i} and G_{j} are distinct prime graphs for $i \neq j$, and p_{i} are constants.

Theorem [Imrich(1969) and Miller(1970)]
All automorphisms of a cartesian product of graphs are induced by the automorphisms of the factors and by transpositions of isomorphic factors.

Chromatic Number

Let $G=(V(G), E(G))$ be a graph.
Denote $n(G)=|V(G)|$, number of vertices in G.

A proper k-coloring of G is a labeling of $V(G)$ with k labels such that adjacent vertices get distinct labels.

Chromatic Number, $\chi(G)$, is the least k such that G has a proper k-coloring.

Chromatic Number

Fact: Let $G=\square_{i=1}^{d} G_{i}$. Then $\chi(G)=\max _{i=1, \ldots, d}\left\{\chi\left(G_{i}\right)\right\}$

Let f_{i} be an optimal proper coloring of $G_{i}, i=1, \ldots, d$.
Canonical Coloring $f^{d}: V(G) \rightarrow\{0,1, \ldots, t-1\}$ as

$$
f^{d}\left(v_{1}, v_{2}, \ldots, v_{d}\right)=\sum_{i=1}^{d} f_{i}\left(v_{i}\right) \bmod t, \quad t=\max _{i}\left\{\chi\left(G_{i}\right)\right\}
$$

Distinguishing Number

A distinguishing k-labeling of G is a labeling of $V(G)$ with k labels such that the only color-preserving automorphism of G is the identity.

Distinguishing Number, $D(G)$, is the least k such that G has a distinguishing k-labeling.

Introduced by Albertson and Collins in 1996.
Since then, especially in the last five years, a whole class of research literature combining graphs and group actions has arisen around this topic.

Distinguishing Number

Some motivating results :

Theorem [Bogstad + Cowen, 2004]
$D\left(Q_{d}\right)=2$, for $d \geq 4$,
where Q_{d} is the d-dimensional hypercube.
Theorem [Albertson, 2004]
$D\left(G^{4}\right)=2$, if G is a prime graph.
Theorem [Klavzar + Zhu , 2005+]
$D\left(G^{d}\right)=2$, for $d \geq 3$.
Follows from $D\left(K_{t}^{d}\right)=2$, for $d \geq 3$.

Distinguishing Chromatic Number

A distinguishing proper k-coloring of G is a proper k-coloring of G such that the only color-preserving automorphism of G is the identity.

Distinguishing Chromatic Number, $\chi_{D}(G)$, is the least k such that G has a distinguishing proper k-coloring.

Distinguishing Chromatic Number

A distinguishing proper k-coloring of G is a proper k-coloring of G such that the only color-preserving automorphism of G is the identity.

Distinguishing Chromatic Number, $\chi_{D}(G)$, is the least k such that G has a distinguishing proper k-coloring.

- A proper coloring of G that breaks all its symmetries.
- A proper coloring of G that uniquely determines the vertices.

Examples

Not Distinguishing

Examples

Not Distinguishing

Examples

Distinguishing

$$
\chi_{D}\left(P_{2 n+1}\right)=3 \text { and } \chi_{D}\left(P_{2 n}\right)=2
$$

Examples

Distinguishing
$\chi_{D}\left(P_{2 n+1}\right)=3$ and $\chi_{D}\left(P_{2 n}\right)=2$

Not Distinguishing

Examples

Distinguishing
$\chi_{D}\left(P_{2 n+1}\right)=3$ and $\chi_{D}\left(P_{2 n}\right)=2$

Distinguishing

$$
\chi_{D}\left(C_{n}\right)=3 \text { except } \chi_{D}\left(C_{4}\right)=\chi_{D}\left(C_{6}\right)=4
$$

Motivation

Distinguishing Chromatic Number, $\chi_{D}(G)$, is the least k such that G has a distinguishing proper k-coloring.

The chromatic number, $\chi(G)$, is an immediate lower bound for $\chi_{D}(G)$.

How many more colors than $\chi(G)$ does $\chi_{D}(G)$ need?
Theorem [Collins + Trenk, 2006]
$\chi_{D}(G)=n(G) \Leftrightarrow G$ is a complete multipartite graph.
$\chi_{D}\left(K_{n_{1}, n_{2}, \ldots, n_{t}}\right)=\sum_{i=1}^{t} n_{i} \quad$ while $\quad \chi\left(K_{n_{1}, n_{2}, \ldots, n_{t}}\right)=t$

Motivation

Distinguishing Chromatic Number, $\chi_{D}(G)$, is the least k such that G has a distinguishing proper k-coloring.

The chromatic number, $\chi(G)$, is an immediate lower bound for $\chi_{D}(G)$.

How many more colors than $\chi(G)$ does $\chi_{D}(G)$ need?
Theorem [Collins + Trenk, 2006]
$\chi_{D}(G)=n(G) \Leftrightarrow G$ is a complete multipartite graph.
$\chi_{D}\left(K_{n_{1}, n_{2}, \ldots, n_{t}}\right)=\sum_{i=1}^{t} n_{i} \quad$ while $\quad \chi\left(K_{n_{1}, n_{2}, \ldots, n_{t}}\right)=t$
Theorem [Collins + Trenk, 2006]
$\chi_{D}(G) \leq 2 \Delta(G)$, with equality iff $G=K_{\Delta, \Delta}$ or C_{6}.

Main Theorem

Theorem 1 [Choi + Hartke + K., 2005+]
Let G be a graph. Then there exists an integer d_{G} such that for all $d \geq d_{G}, \chi_{D}\left(G^{d}\right) \leq \chi(G)+1$.

By the Prime Decomposition Theorem for Graphs, $G=G_{1}^{p_{1}} \square G_{2}^{p_{2}} \square \ldots \square G_{k}^{p_{k}}$, where G_{i} are distinct prime graphs.
Then, $\quad d_{G}=\max _{i=1, \ldots, k}\left\{\frac{\lg n\left(G_{i}\right)}{p_{i}}\right\}+5$
Note, $n(G)=\left(n\left(G_{1}\right)\right)^{p_{1}} *\left(n\left(G_{2}\right)\right)^{p_{2}} * \cdots *\left(n\left(G_{k}\right)\right)^{p_{k}}$
At worst, $\quad d_{G}=\lg n(G)+5$

Main Theorem

Theorem 1 [Choi + Hartke + K., 2005+]
Let G be a graph. Then there exists an integer d_{G} such that for all $d \geq d_{G}, \chi_{D}\left(G^{d}\right) \leq \chi(G)+1$.

$$
d_{G}=\max _{i=1, \ldots, k}\left\{\frac{\lg n\left(G_{i}\right)}{p_{i}}\right\}+5
$$

when, $n(G)=\left(n\left(G_{1}\right)\right)^{p_{1}} *\left(n\left(G_{2}\right)\right)^{p_{2}} * \cdots *\left(n\left(G_{k}\right)\right)^{p_{k}}$
d_{G} is unlikely to be a constant, as the example of Complete Multipartite Graphs indicates -
pushing $\chi_{D}\left(K_{n_{1}, n_{2}, \ldots, n_{t}}\right)$ down from $n(G)$ to $t+1$!

Proof Idea for Theorem 1

Fix an optimal proper coloring of G.
Embed G in a complete multipartite graph H.
Form H by adding all the missing edges between the color classes of G.

Now work with H.
BUT $\quad G \subseteq H \nRightarrow \chi_{D}(G) \leq \chi_{D}(H)$!

Proof Idea for Theorem 1

Fix an optimal proper coloring of G.
Embed G in a complete multipartite graph H.
Form H by adding all the missing edges between the color classes of G.

Then construct a distinguishing proper coloring of H^{d} that is also a distinguishing proper coloring of G^{d}.

Study Distinguishing Chromatic Number of
Cartesian Products of Complete Multipartite Graphs.

Hamming Graphs and Hypercubes

Theorem 2 [Choi + Hartke + K., 2005+]
Given $t_{i} \geq 2, \quad \chi_{D}\left(\square_{i=1}^{d} K_{t_{i}}\right) \leq \max _{i}\left\{t_{i}\right\}+1$, for $d \geq 5$.

Hamming Graphs and Hypercubes

Theorem 2 [Choi + Hartke + K., 2005+]
Given $t_{i} \geq 2, \quad \chi_{D}\left(\square_{i=1}^{d} K_{t_{i}}\right) \leq \max _{i}\left\{t_{i}\right\}+1$, for $d \geq 5$.

Corollary : Given $t \geq 2, \quad \chi_{D}\left(K_{t}^{d}\right) \leq t+1$, for $d \geq 5$.
Both these upper bounds are 1 more than their respective lower bounds.

Hamming Graphs and Hypercubes

Theorem 2 [Choi + Hartke + K., 2005+]
Given $t_{i} \geq 2, \quad \chi_{D}\left(\square_{i=1}^{d} K_{t_{i}}\right) \leq \max _{i}\left\{t_{i}\right\}+1$, for $d \geq 5$.

Corollary : Given $t \geq 2, \quad \chi_{D}\left(K_{t}^{d}\right) \leq t+1$, for $d \geq 5$.
Both these upper bounds are 1 more than their respective lower bounds.

Corollary: $\chi_{D}\left(Q_{d}\right)=3$, for $d \geq 5$.

Complete Multipartite Graphs

Theorem 3 [Choi + Hartke + K., 2005+]
Let H be a complete multipartite graph. Then
$\chi_{D}\left(H^{d}\right) \leq \chi(H)+1, \quad$ for $d \geq \lg n(H)+5$.
This is already enough to prove Theorem 1 for prime graphs.

Complete Multipartite Graphs

Theorem 3 [Choi + Hartke + K., 2005+]
Let H be a complete multipartite graph. Then
$\chi_{D}\left(H^{d}\right) \leq \chi(H)+1, \quad$ for $d \geq \lg n(H)+5$.
This is already enough to prove Theorem 1 for prime graphs.

Theorem 4 [Choi + Hartke + K., 2005+]
Let $H=\square_{i=1}^{k} H_{i}^{p_{i}}$, where H_{i} are distinct complete multipartite graphs. Then

$$
\chi_{D}\left(H^{d}\right) \leq \chi(H)+1,
$$

for $d \geq \max _{i=1, \ldots, k}\left\{\frac{\lg n_{i}}{p_{i}}\right\}+5$, where $n_{i}=n\left(H_{i}\right)$.

Main Theorem

Theorem 1 [Choi + Hartke + K., 2005+]
Let G be a graph. Then there exists an integer d_{G} such that for all $d \geq d_{G}, \chi_{D}\left(G^{d}\right) \leq \chi(G)+1$.

By the Prime Decomposition Theorem for Graphs, $G=G_{1}^{p_{1}} \square G_{2}^{p_{2}} \square \ldots \square G_{k}^{p_{k}}$, where G_{i} are distinct prime graphs.
Then,

$$
d_{G}=\max _{i=1, \ldots, k}\left\{\frac{\lg n\left(G_{i}\right)}{p_{i}}\right\}+6
$$

Outline of the Proof for Hamming Graphs

Start with the canonical proper coloring f^{d} of cartesian products of graphs, $f^{d}: V\left(K_{t}^{d}\right) \rightarrow\{0,1, \ldots, t-1\}$ with $f^{d}(v)=\sum_{i=1}^{d} f\left(v_{i}\right) \bmod t$,
where $f\left(v_{i}\right)=i$ is an optimal proper coloring of K_{t}.

Outline of the Proof for Hamming Graphs

Derive f^{*} from f^{d} by changing the color of the following vertices from $f^{d}(v)$ to $*$:

Origin: $0000 \ldots 000$.

$$
\left\lfloor\frac{d}{2}\right\rfloor
$$

Group 1: $A=\bigcup_{i=1} A_{i}$, where $A_{i}=\left\{e_{i, j}^{1} \mid 1+i \leq j \leq d+1-i\right\}$
v^{*} : the vertex with all coordinates equal to 1 except for the i th coordinate which equals 0 .
$e_{i, j}^{1}$ is the vertex with all coordinates equal to 0 except for the i th and j th coordinates which equal 1 .

Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of K_{t}^{d} by reconstructing its original vector representation by using only the colors of the vertices and the structure of the graph.

Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of K_{t}^{d} by reconstructing its original vector representation by using only the colors of the vertices and the structure of the graph.

Step 1. Distinguish v^{*} from the Origin and the Group 1 by counting their distance two neighbors in the color class $*$.

Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of K_{t}^{d} by reconstructing its original vector representation by using only the colors of the vertices and the structure of the graph.

Step 2. Distinguish the Origin by counting the distance two neighbors in color class *.

Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of K_{t}^{d} by reconstructing its original vector representation by using only the colors of the vertices and the structure of the graph.

Step 3. Assign the vector representations of weight one, with 1 as the non-zero coordinate, to the correct vertices.

Assign the vector $e_{1}^{1}=100 \ldots 000$ to the vertex, neighboring the Origin, with most neighbors in Group 1.
Assign the vector e_{i}^{1} to the vertex, neighboring the Origin, with most neighbors in Group 1 other than the vertices assigned the labels $e_{j}^{1}, 1 \leq j \leq i-1$. Distance to v^{*} breaks ties.

Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of K_{t}^{d} by reconstructing its original vector representation by using only the colors of the vertices and the structure of the graph.

Step 4. Assign the vector representations of weight one, with $k>1$ as the non-zero coordinate, to the correct vertices, by recovering the original canonical colors of all the vertices.

Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of K_{t}^{d} by reconstructing its original vector representation by using only the colors of the vertices and the structure of the graph.

Step 5. Assign the vector representations of weight greater than one to the correct vertices.
Let x be a vertex with weight $\omega \geq 2$. Then x is the unique neighbor of the vertices, $y_{1}, y_{2}, \ldots, y_{\omega}$, formed by changing exactly one non-zero coordinate of x to zero that is not the Origin.

