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Cartesian Product of Graphs

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two
graphs.

G2H denotes the Cartesian product of G and H.

V (G2H) = {(u, v)|u ∈ V (G), v ∈ V (H)}.

vertex (u, v) is adjacent to vertex (w, z) if
either u = w and vz ∈ E(H) or v = z and uw ∈ E(G).

Extend this definition to G12G22 . . . 2Gd.

Denote Gd = 2
d
i=1G.
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Cartesian Product of Graphs

G H G H

Graph Packing – p.2/14



Cartesian Product of Graphs

A graph G is said to be a prime graph if whenever
G = G12G2, then either G1 or G2 is a singleton vertex.

Prime Decomposition Theorem [Sabidussi(1960) and
Vizing(1963)] Let G be a connected graph, then
G ∼= G

p1

1 2G
p2

2 2 . . . 2G
pd

d , where Gi and Gj are distinct
prime graphs for i 6= j, and pi are constants.

Theorem [Imrich(1969) and Miller(1970)]
All automorphisms of a cartesian product of graphs are
induced by the automorphisms of the factors and by
transpositions of isomorphic factors.
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Chromatic Number

Let G = (V (G), E(G)) be a graph.

Denote n(G) = |V (G)|, number of vertices in G.

A proper k-coloring of G is a labeling of V (G) with k

labels such that adjacent vertices get distinct labels.

Chromatic Number, χ(G) , is the least k such that G

has a proper k-coloring.
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Chromatic Number

Fact: Let G = 2
d
i=1Gi. Then χ(G) = max

i=1,...,d
{χ(Gi)}

Let fi be an optimal proper coloring of Gi, i = 1, . . . , d.

Canonical Coloring fd : V (G) → {0, 1, . . . , t − 1} as

fd(v1, v2, . . . , vd) =

d∑

i=1

fi(vi) mod t , t = max
i

{χ(Gi)}
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Distinguishing Number

A distinguishing k-labeling of G is a labeling of V (G)
with k labels such that the only color-preserving
automorphism of G is the identity.

Distinguishing Number, D(G) , is the least k such that
G has a distinguishing k-labeling.

Introduced by Albertson and Collins in 1996.

Since then, especially in the last five years, a whole
class of research literature combining graphs and
group actions has arisen around this topic.
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Distinguishing Number

Some motivating results :

Theorem [Bogstad + Cowen, 2004]
D(Qd) = 2, for d ≥ 4,
where Qd is the d-dimensional hypercube.

Theorem [Albertson, 2004]
D(G4) = 2, if G is a prime graph.

Theorem [Klavzar + Zhu , 2005+]
D(Gd) = 2, for d ≥ 3.

Follows from D(Kd
t ) = 2, for d ≥ 3.
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Distinguishing Chromatic Number

A distinguishing proper k-coloring of G is a proper
k-coloring of G such that the only color-preserving
automorphism of G is the identity.

Distinguishing Chromatic Number, χ
D
(G) , is the least k

such that G has a distinguishing proper k-coloring.

Graph Packing – p.5/14



Distinguishing Chromatic Number

A distinguishing proper k-coloring of G is a proper
k-coloring of G such that the only color-preserving
automorphism of G is the identity.

Distinguishing Chromatic Number, χ
D
(G) , is the least k

such that G has a distinguishing proper k-coloring.

A proper coloring of G that breaks all its
symmetries.

A proper coloring of G that uniquely determines the
vertices.
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Examples
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Distinguishing

χ
D
(P2n+1) = 3 and χ

D
(P2n) = 2
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D
(P2n+1) = 3 and χ
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Examples
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Distinguishing

χ
D
(P2n+1) = 3 and χ

D
(P2n) = 2

Distinguishing

χ
D
(Cn) = 3 except χ

D
(C4) = χ

D
(C6) = 4
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Motivation

Distinguishing Chromatic Number, χ
D
(G) , is the least k

such that G has a distinguishing proper k-coloring.

The chromatic number, χ(G), is an immediate lower
bound for χ

D
(G).

How many more colors than χ(G) does χ
D
(G) need?

Theorem [Collins + Trenk, 2006]
χ

D
(G) = n(G) ⇔ G is a complete multipartite graph.

χ
D
(Kn1,n2,...,nt

) =
∑t

i=1 ni while χ(Kn1,n2,...,nt
) = t
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Motivation

Distinguishing Chromatic Number, χ
D
(G) , is the least k

such that G has a distinguishing proper k-coloring.

The chromatic number, χ(G), is an immediate lower
bound for χ

D
(G).

How many more colors than χ(G) does χ
D
(G) need?

Theorem [Collins + Trenk, 2006]
χ

D
(G) = n(G) ⇔ G is a complete multipartite graph.

χ
D
(Kn1,n2,...,nt

) =
∑t

i=1 ni while χ(Kn1,n2,...,nt
) = t

Theorem [Collins + Trenk, 2006]

χ
D
(G) ≤ 2∆(G), with equality iff G = K∆,∆ or C6.
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Main Theorem

Theorem 1 [Choi + Hartke + K., 2005+]
Let G be a graph. Then there exists an integer dG

such that for all d ≥ dG , χ
D
(Gd) ≤ χ(G) + 1.

By the Prime Decomposition Theorem for Graphs,
G = G

p1

1 2G
p2

2 2 . . . 2G
pk

k , where Gi are distinct prime
graphs.

Then, dG = max
i=1,...,k

{ lg n(Gi)
pi

} + 5

Note, n(G) = (n(G1))
p1 ∗ (n(G2))

p2 ∗ · · · ∗ (n(Gk))
pk

At worst, dG = lg n(G) + 5
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Main Theorem

Theorem 1 [Choi + Hartke + K., 2005+]
Let G be a graph. Then there exists an integer dG

such that for all d ≥ dG , χ
D
(Gd) ≤ χ(G) + 1.

dG = max
i=1,...,k

{ lg n(Gi)
pi

} + 5

when, n(G) = (n(G1))
p1 ∗ (n(G2))

p2 ∗ · · · ∗ (n(Gk))
pk

dG is unlikely to be a constant, as the example of
Complete Multipartite Graphs indicates −

pushing χ
D
(Kn1,n2,...,nt

) down from n(G) to t + 1 !
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Proof Idea for Theorem 1

Fix an optimal proper coloring of G.

Embed G in a complete multipartite graph H.

Form H by adding all the missing edges between the
color classes of G.

Now work with H.

BUT G ⊆ H ; χ
D
(G) ≤ χ

D
(H) !
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Proof Idea for Theorem 1

Fix an optimal proper coloring of G.

Embed G in a complete multipartite graph H.

Form H by adding all the missing edges between the
color classes of G.

Then construct a distinguishing proper coloring of Hd

that is also a distinguishing proper coloring of Gd.

Study Distinguishing Chromatic Number of
Cartesian Products of Complete Multipartite Graphs.
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Hamming Graphs and Hypercubes

Theorem 2 [Choi + Hartke + K., 2005+]
Given ti ≥ 2, χ

D
(2d

i=1Kti
) ≤ maxi{ti} + 1 ,

for d ≥ 5.
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Hamming Graphs and Hypercubes

Theorem 2 [Choi + Hartke + K., 2005+]
Given ti ≥ 2, χ

D
(2d

i=1Kti
) ≤ maxi{ti} + 1 ,

for d ≥ 5.

Corollary : Given t ≥ 2, χ
D
(Kd

t ) ≤ t + 1 , for d ≥ 5.

Both these upper bounds are 1 more than their respective lower
bounds.
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Hamming Graphs and Hypercubes

Theorem 2 [Choi + Hartke + K., 2005+]
Given ti ≥ 2, χ

D
(2d

i=1Kti
) ≤ maxi{ti} + 1 ,

for d ≥ 5.

Corollary : Given t ≥ 2, χ
D
(Kd

t ) ≤ t + 1 , for d ≥ 5.

Both these upper bounds are 1 more than their respective lower
bounds.

Corollary : χ
D
(Qd) = 3 , for d ≥ 5.
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Complete Multipartite Graphs

Theorem 3 [Choi + Hartke + K., 2005+]
Let H be a complete multipartite graph. Then
χ

D
(Hd) ≤ χ(H) + 1 , for d ≥ lg n(H) + 5 .

This is already enough to prove Theorem 1 for prime
graphs.
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Complete Multipartite Graphs

Theorem 3 [Choi + Hartke + K., 2005+]
Let H be a complete multipartite graph. Then
χ

D
(Hd) ≤ χ(H) + 1 , for d ≥ lg n(H) + 5 .

This is already enough to prove Theorem 1 for prime
graphs.

Theorem 4 [Choi + Hartke + K., 2005+]
Let H = 2

k
i=1H

pi

i , where Hi are distinct complete
multipartite graphs. Then

χ
D
(Hd) ≤ χ(H) + 1,

for d ≥ max
i=1,...,k

{ lg ni

pi
} + 5, where ni = n(Hi).
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Main Theorem

Theorem 1 [Choi + Hartke + K., 2005+]
Let G be a graph. Then there exists an integer dG

such that for all d ≥ dG , χ
D
(Gd) ≤ χ(G) + 1.

By the Prime Decomposition Theorem for Graphs,
G = G

p1

1 2G
p2

2 2 . . . 2G
pk

k , where Gi are distinct prime
graphs.

Then, dG = max
i=1,...,k

{ lg n(Gi)
pi

} + 6
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Outline of the Proof for Hamming Graphs

Start with the canonical proper coloring fd of cartesian
products of graphs, fd : V (Kd

t ) → {0, 1, . . . , t − 1} with

fd(v) =
d∑

i=1
f(vi) mod t,

where f(vi) = i is an optimal proper coloring of Kt.
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Outline of the Proof for Hamming Graphs

Derive f ∗ from fd by changing the color of the following
vertices from fd(v) to ∗ :

Origin : 0000 . . . 000 .

Group 1 : A =

⌊ d

2
⌋⋃

i=1

Ai , where Ai = {e1
i,j | 1 + i ≤ j ≤ d + 1 − i}

v∗ : the vertex with all coordinates equal to 1

except for the ith coordinate which equals 0.

e1
i,j is the vertex with all coordinates equal to 0 except for

the ith and jth coordinates which equal 1.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 1. Distinguish v∗ from the Origin and the Group 1 by
counting their distance two neighbors in the color class ∗.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 2. Distinguish the Origin by counting the distance two
neighbors in color class ∗.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 3. Assign the vector representations of weight one,
with 1 as the non-zero coordinate, to the correct vertices.

Assign the vector e1
1 = 100 . . . 000 to the vertex, neighboring the

Origin, with most neighbors in Group 1.

Assign the vector e1
i to the vertex, neighboring the Origin, with

most neighbors in Group 1 other than the vertices assigned the

labels e1
j , 1 ≤ j ≤ i − 1.

Distance to v∗ breaks ties.
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Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 4. Assign the vector representations of weight one,
with k > 1 as the non-zero coordinate, to the correct
vertices, by recovering the original canonical colors of all
the vertices.

Graph Packing – p.14/14



Outline of the Proof for Hamming Graphs

Uniquely identify each vertex of Kd
t by reconstructing its

original vector representation by using only the colors of
the vertices and the structure of the graph.

Step 5. Assign the vector representations of weight
greater than one to the correct vertices.

Let x be a vertex with weight ω ≥ 2. Then x is the unique
neighbor of the vertices, y1, y2, . . . , yω, formed by changing
exactly one non-zero coordinate of x to zero that is not the
Origin.
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