Profile vectors in the poset of subspaces

Dániel Gerbner, Balázs Patkós
 Eötvös University, Central European University, Budapest

Motivation

For a family \mathcal{F} of subsets of $[n]=\{1,2, \ldots, n\}$ P.L. Erdós, P. Frankl, G.O.H. Katona (1985) defined

$$
p(\mathcal{F}) \in \mathbf{R}^{n+1}, p(\mathcal{F})_{i}=|\{F \in \mathcal{F}:|F|=i\}| .
$$

For a set A of families they started to investigate $\langle\mu(\mathbf{A})\rangle$, the convex hull of the profiles of the families in A.
In the same way for a family \mathcal{U} of subspaces of an n-dimensional vectorspace V over $G F(q)$ we define

$$
p(\mathcal{U}) \in \mathbf{R}^{n+1}, p(\mathcal{U})_{i}=|\{U \in \mathcal{U}: \operatorname{dim} U=i\}| .
$$

The reduction method

The method provides a superset of the profile polytope if we know the profile polytope of the families reduced to some simpler structure.
In the Boolean poset, reduction to

- maximal chain $\left(\left\{C_{0} \subseteq C_{1} \subseteq \ldots \subseteq C_{n}\right\}\right.$ with $\left.\left|C_{i}\right|=i\right)$,
- pair of complement chains (union of two maximal chains \mathcal{C}_{1} and \mathcal{C}_{2} such that $C \in \mathcal{C}_{1}$ iff $[n] \backslash C \in \mathcal{C}_{2}$),
- circle (the intervals (sets of consecutive elements) for a fixed cyclic permutation of $[n]$).

In the poset of subspaces, reduction to

- chain,
- pair of orthogonal chains.

Easy consequences I

Using the reduction method one can determine the profile polytope of the following sets of families (among others):

- k-Sperner families,
- orthogonal complement-free families,
- families without pairs of subspaces U_{1}, U_{2} with $U_{1} \cap U_{2}=\{\underline{0}\}$, $\left\langle U_{1} \cup U_{2}\right\rangle=V$ (property *).

Theorem. The extreme points of the profile polytope of k-Sperner families are the following:
for all $0 \leq z \leq k$ and $\beta=\left\{\beta_{1}, \ldots, \beta_{z}\right\}$ with $0 \leq \beta_{1}<\ldots<\beta_{z} \leq n$ the vectors v_{β}

$$
\left(v_{\beta}\right)_{i}=\left\{\begin{array}{cc}
{\left[\begin{array}{c}
n \\
i
\end{array}\right]} & \text { if } i \in \beta \tag{1}\\
0 & \text { otherwise. }
\end{array}\right.
$$

Easy consequences II

Theorem. The extreme points of the convex hull of the profile vectors of orthogonal complement-free families are the vectors corresponding to the families consisting of
a, a set I of levels with the property that the i th and the $n-i$ th levels cannot be both in I, if n is odd,
b, a set I of levels with the property that the i th and the $n-i$ th levels cannot be both in I and possibly half of the subspaces with dimension $n / 2$ one from each pair of orthogonal complementary subspaces, if n is even.

Theorem. The extreme points of the profile polytope of families with property * are the vectors corresponding to the families consisting of
a, a set I of levels with the property that the i th and the $n-i$ th levels cannot be both in I, if n is odd,
b, a set I of levels with the property that the i th and the $n-i$ th levels cannot be both in I and possibly a maximal star of subspaces (subspaces containig a fixed vector) with dimension $n / 2$, if n is even.

The method of inequalities

To do:

- finding (linear) inequalities valid for the profiles of all families in the set examined
- determining the extreme points of the polytope determined by the above inequalities
- finding a family for any extreme point that has this vector as profile

Intersecting families

Theorem. (Erdős - Ko - Rado for vectorspaces) If $\mathcal{U} \subseteq\left[\begin{array}{l}V \\ k\end{array}\right]$ is a t-intersecting family and $n \geq 2 k-t$, then

$$
|\mathcal{U}| \leq \max \left\{\left[\begin{array}{l}
n-t \\
k-t
\end{array}\right],\left[\begin{array}{c}
2 k-t \\
k
\end{array}\right]\right\}
$$

- Hsieh ‘ 77 for large enough $n \mathbf{s}$ (including $t=1, n \geq 2 k+1$)
- Greene - Kleitman ‘ 78 for $t=1, k \mid n$ (so for $n=2 k$ as well)
- Frankl - Wilson '86 for all cases

A generalization of Hsieh's theorem

Theorem. The following generalization of Hsieh's theorem holds:
a, if $2 k \leq n \leq 2 k+2$ and $d=0$ or $d=n-k$
or
b, if $n \geq 2 k+3$ and $k+d \leq n$
then for any intersecting family \mathcal{U} of k-dimensional subspaces of an n-dimensional vectorspace V with all members disjoint from a fixed d-dimensional subspace W of V we have

$$
|\mathcal{U}| \leq\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]^{*(d)},
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]^{*(d)}$ denotes the number of k-dimensional subspaces of an n-dimensional vectorspace V that are disjoint from a fixed d-dimensional subspace W of V.

'Sketch' of the proof

Proof.

- calculating the eigenvalues of the apropriate incidency matrix (as Frankl and Wilson did) is not straightforward
- if $k|d| n$ or $k \mid n, d=0$ (so in particular when $n=2 k, d=0$) the trick of Greene and Kleitman (partitioning $V \backslash W$ into isomorphic copies of $V_{k} \backslash\{\underline{0}\}$) works
- for the remaining cases the 'lengthy computations' of Hsieh go through, since he used 'mostly' the quick growth of the q-nomial coefficients, and the ratio of growth needed there is valid for the growth of

$$
\frac{\left[\begin{array}{l}
n \\
k
\end{array}\right]^{*(d)}}{\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]^{*(d)}}
$$

(for the $q=2$ case we needed some further computations)

The inequalities

Lemma. For the profile vector f of any family \mathcal{U} of intersecting subspaces of an n-dimensional vectorspace, and for any $k<n / 2$ and $n / 2<d \leq n-k$, the following holds

$$
c_{k, d} f_{k}+f_{d} \leq\left[\begin{array}{l}
n \\
d
\end{array}\right],
$$

where $c_{k, d}=q^{d} \frac{\left[\begin{array}{c}n-k \\ d\end{array}\right]}{\left[\begin{array}{c}n-d-1 \\ k-1\end{array}\right]}$, and eqaulity holds if $f_{k}=0, f_{d}=\left[\begin{array}{l}n \\ d\end{array}\right]$ or if
$f_{k}=\left[\begin{array}{c}n-1 \\ k-1\end{array}\right], f_{d}=\left[\begin{array}{c}n-1 \\ d-1\end{array}\right]$.
Proof. doublecount the disjoint pairs formed from \mathcal{U}_{k} and $\mathcal{U}^{\prime}{ }_{d}=\left[\begin{array}{c}V \\ d\end{array}\right] \backslash \mathcal{U}_{d}$ giving

$$
\left[\begin{array}{l}
n \\
d
\end{array}\right]^{*(k)} f_{k} \leq\left(\left[\begin{array}{l}
n \\
d
\end{array}\right]-f_{d}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]^{*(d)}
$$

The profile polytope

Theorem. The essential extreme points of the profile polytope of the set of intersecting families are the vectors $v_{i} 1 \leq i \leq n / 2$ for even n and there is an additional essential extreme point v^{+}for odd n, where

$$
\left(v_{i}\right)_{j}=\left\{\begin{array}{cc}
0 & \text { if } 0 \leq j<i \tag{2}\\
{\left[\begin{array}{c}
n-1 \\
j-1
\end{array}\right]} & \text { if } i \leq j \leq n-i \\
{\left[\begin{array}{l}
n \\
j
\end{array}\right]} & \text { if } j>n-i .
\end{array}\right.
$$

and

$$
\left(v^{+}\right)_{j}=\left\{\begin{array}{cc}
0 & \text { if } 0 \leq j<n / 2 \tag{3}\\
{\left[\begin{array}{l}
n \\
j
\end{array}\right]} & \text { if } j>n / 2 .
\end{array}\right.
$$

Remark. This is the 'same' as in the Boolean case, just using q-nomial coefficients instead of binomial coefficients.

t-intersecting families

In the Boolean case the complete intersection theorem of Ahlswede and Khatchatrian (1997) settled the problem of the largest t-intersecting families when n is small compared to k and t. The optimal families vary 'widely' when n ranges from $2 k-t$ to infinity.

By the theorem of Frankl and Wilson we know that in tha case of subspaces there are only three possibilities for the optimal family.
'Conjecture'. Determining the profile polytope of t-intersecting families is much easyer in the poset of subspaces than in the Boolean case.

