# Coverings and packings for radius 1 adaptive block coding 

Robert B. Ellis

Illinois Institute of Technology
DIMACS/DIMATIA/Rényi Inst. Combinatorial Challenges 2006

## Outline

(9) Background

- Non-adaptive and adaptive radius 1 codes
- Liar games
- Previous work
(2) New Contribution
- Constructive bottom-up algorithm
- Ingredients of the proof
- Exact sizes of optimal codes
(3) Open questions and concluding remarks


## 1-balls \& non-adaptive radius 1 block codes defined

- Hypercube $Q_{n, t}:=\left\{x_{1} \cdots x_{n} \in\{0, \ldots, t-1\}^{t}\right\}$
- Hamming distance $d(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$
- 1-ball $B_{1}(u):=\left\{u \in Q_{n, t}: d(u, v) \leq 1\right\}$
- 1-ball size $b_{1}(n, t):=1+n(t-1)$

1111<br>0111<br>1011<br>1101<br>1110<br>$B_{1}(1111)$



Packing code in $Q_{4,2}$


Covering code in $Q_{4,2}$

## Optimal radius 1 block codes defined

- $F_{t}(n, 1):=$ maximum size of packing of 1-balls in $Q_{n, t}$
- $K_{t}(n, 1):=$ minimum size of covering of 1-balls in $Q_{n, t}$
- Sphere bound. $F_{t}(n, 1) \leq \frac{t^{n}}{1+n(t-1)} \leq K_{t}(n, 1)$

For $t=2$ :

- Hamming codes. $(n+1) \mid 2^{n} \Rightarrow F_{2}(n, 1)=K_{2}(n, 1)$
- Asymptotics (Kabatyanskii and Panchenko). $\lim _{n \rightarrow \infty} \frac{F_{t}(n, 1)}{K_{t}(n, 1)}=1$


## 1-sets \& radius 1 adaptive block codes defined

- a 1-set consists of

$$
\begin{array}{rll}
\text { a stem } & x_{1} \cdots x_{i-1} x_{i} \cdots x_{n} & \in Q_{n, t} \\
n(t-1) \text { children } & x_{1} \cdots x_{i-1} y_{i} * \cdots * & \in x_{1} \cdots x_{i} y_{i} Q_{n-i, t}
\end{array}
$$ where $y_{i} \in[t] \backslash x_{i}$.

- Examples.

|  |  |  | 2021 |
| :---: | :---: | :---: | :---: |
|  |  |  | 0000 |
|  | 1100 |  | 1102 |
|  | 0010 |  | 2121 |
| $n=4, t=2:$ | 1001 | $n=4, t=3:$ | 2200 |
|  | 1111 |  | 2002 |
|  | 1101 |  | 2011 |
|  |  |  | 2020 |
|  |  |  | 2022 |

## Example radius 1 adaptive packing



Adaptive packing code in $Q_{4,2}$

| 0111 | 1100 |
| :--- | :--- |
| 1011 | $\underline{0000}$ |
| $0 \underline{010}$ | $\underline{0} \underline{11}$ |
| $01 \underline{01}$ | $11 \underline{1}$ |
| $011 \underline{0}$ | $110 \underline{1}$ |

## Example radius 1 adaptive covering



Adaptive covering code in $Q_{4,2}$

Previous packing, plus:
00111001

| 1110 | $\ldots$ |
| :---: | :---: |
| 0 | $\underline{100}$ |
| $00 \underline{0} 1$ | $\cdots$ |
| $\cdots$ | $100 \underline{0}$ |

$$
\text { signature }=5,5,4,2
$$

## Optimal radius 1 adaptive block codes defined

- $F_{t}^{\prime}(n, 1):=$ maximum size of packing of 1-sets in $Q_{n, t}$
- $K_{t}^{\prime}(n, 1):=$ minimum size of covering of 1-sets in $Q_{n, t}$
- Sphere bound ${ }^{+}$.
$F_{t}(n, 1) \leq F_{t}^{\prime}(n, 1) \leq \frac{t^{n}}{1+n(t-1)} \leq K_{t}^{\prime}(n, 1) \leq K_{t}(n, 1)$


## Optimal radius 1 adaptive block codes defined

- $F_{t}^{\prime}(n, 1):=$ maximum size of packing of 1-sets in $Q_{n, t}$
- $K_{t}^{\prime}(n, 1):=$ minimum size of covering of 1-sets in $Q_{n, t}$
- Sphere bound ${ }^{+}$.
$F_{t}(n, 1) \leq F_{t}^{\prime}(n, 1) \leq \frac{t^{n}}{1+n(t-1)} \leq K_{t}^{\prime}(n, 1) \leq K_{t}(n, 1)$
- Binary case (EIS, CHLL; P, EPY)

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{2}(n, 1)$ | 1 | 1 | 2 | 2 | 4 | 8 | 16 | 20 | 40 | 72 | 144 |
| $F_{2}^{\prime}(n, 1)$ | 1 | 1 | 2 | 2 | 4 | 8 | 16 | 28 | 50 | 92 | 170 |
| $K_{2}^{\prime}(n, 1)$ | 1 | 2 | 2 | 4 | 6 | 10 | 16 | 30 | 52 | 94 | 172 |
| $K_{2}(n, 1)$ | 1 | 2 | 2 | 4 | 7 | 12 | 16 | 32 | $\leq 57$ | $\leq 105$ | $\leq 180$ |

## Liar games defined

2-player perfect information game

- Players: Paul - partitioner/questioner

Carole - chooser/responder

- $q$ rounds of Game play:

Paul partitions $[n] \rightarrow A_{1} \dot{\cup} \cdots \dot{\cup} A_{t}$
Carole selects a part, other parts get 1 lie
Elements with $\leq k$ lies survive

Possible winning conditions for Paul

- Original. $\leq 1$ element survives (Rényi, Ulam)
- Pathological. $\geq 1$ element survives (Ellis+Yan)


## Equivalence of liar games and packings/coverings

- Offline partitions by Paul
- Winning strategy in original game $\leftrightarrow$ nonadaptive packing in hypercube
- Winning strategy in pathological game $\leftrightarrow$ nonadaptive covering in hypercube


## Equivalence of liar games and packings/coverings

- Offline partitions by Paul
- Winning strategy in original game $\leftrightarrow$ nonadaptive packing in hypercube
- Winning strategy in pathological game $\leftrightarrow$ nonadaptive covering in hypercube
- Online partitions by Paul
- Winning strategy in original game $\leftrightarrow$ adaptive packing in hypercube
- Winning strategy in pathological game $\leftrightarrow$ adaptive covering in hypercube


## Equivalence of liar games and packings/coverings

- Offline partitions by Paul
- Winning strategy in original game $\leftrightarrow$ nonadaptive packing in hypercube
- Winning strategy in pathological game $\leftrightarrow$ nonadaptive covering in hypercube
- Online partitions by Paul
- Winning strategy in original game $\leftrightarrow$ adaptive packing in hypercube
- Winning strategy in pathological game $\leftrightarrow$ adaptive covering in hypercube

Remarks. Parameters $n, t, k$ must match!
Many generalizations:
attributions $\subseteq 2\{$ Spencer, Yan, Dumitriu, Ellis, Ponomarenko,Nyman\}

## Sample of previous bounds on adaptive codes

Adaptive packing codes/liar games

- (Berlekamp ‘67) Fixed $k$, weight function
- (Spencer+Winkler ‘91) $k \sim q / 3, q / 4$ (balls off a cliff...)
- (Spencer '92) $F_{2}^{\prime}(n, k) \pm C_{k}$ for fixed $k$
- (Pelc, Guzicki, Deppe) exact $F_{2}^{\prime}(n, k)$ for $k=1,2,3$, resp.
- (Cicalese+Mundici, Spencer $\oplus\{D u m i t r i u, Y a n\})$ half-lie: $k=1$ and fixed $k$, resp.
- (Spencer+Dumitriu, Ellis+Nyman) fixed $k$; arbitrary channel, arbitrary channels, resp.

Adaptive covering codes/pathological liar games

- (Ellis+Yan, Ellis+Ponomarenko+Yan) half-lie for $k=1$, $K_{2}^{\prime}(n, k) \pm C_{k}$ for fixed $k$


## Example collaboration.



## Example collaboration.


S. "The $\left\{x_{2}, x_{1} x_{3}\right\}$ partitioning is clearly best."

## Example collaboration.


S. "The $\left\{x_{2}, x_{1} x_{3}\right\}$ partitioning is clearly best."

Ł. "Who are you playing for, Paul or Carole?"

## Example collaboration.


S. "The $\left\{x_{2}, x_{1} x_{3}\right\}$ partitioning is clearly best."

Ł. "Who are you playing for, Paul or Carole?"
S. "I don't remember, but the answer is $1 / 3$."

## Philosophy of approach

Previously, 4 proofs for any choice of $k, t$, channel

- Upper (sphere) bound for adaptive packing
- Exhibition of good adaptive packing
- Lower (sphere) bound for adaptive covering
- Exhibition of good adaptive covering

Goal: single unified proof (\& fast algorithm)

## Decomposition structure of 1-sets in $Q_{n, 2}$

Observation. $t=2$

arbitrary vertex in $1 Q_{3,2} \quad 1$-set in $0 Q_{3,2}$


## Packing within covering duplication algorithm



## Packing within covering duplication algorithm



## Packing within covering duplication algorithm



Signature encoding of $Q_{2,2} \rightarrow Q_{3,2}$


## Dominant signature of a collection of 1-sets defined

## Definition

A dominant signature of a collection $\mathcal{F}$ of $m 1$-sets is an ordering $F_{1}, \ldots, F_{m}$ and a sequence $\alpha_{1}, \ldots, \alpha_{m}$ such that for all $J$,

$$
\left|F_{1} \cup F_{2} \cup \cdots \cup F_{J}\right|=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{J}
$$

and for each $J$, no $J$-subset of $\mathcal{F}$ is larger than $\sum_{i=1}^{J} \alpha_{i}$.
Remark. Always monotonic decreasing, but doesn't always exist:


3, 4, 5, 6 (triangle first)
2, 4, 6, 6 (triangle last)
$\{a b c, a e, b d, c f\}$

## Dominant signature of a collection of 1 -sets defined

More counterexamples.
(Vera Asodi) Minimum ground set 3-uniform counterexample

(Penny Haxell, Gábor Tardos) Whiteboard

## Radius 1 adaptive codes with dominant signatures

## Lemma

If the set of all 1-sets $\mathcal{F}$ in $Q_{n, t}$ has a dominant signature $(\alpha(n, t, i))_{i \geq 1}$, then

- Packing: $\alpha(n, t, 1)=\cdots=\alpha\left(n, t, F_{t}^{\prime}(n, 1)\right)=1+t(n-1)$,
- Covering: $\alpha\left(n, t, K_{t}^{\prime}(n, 1)\right)>\alpha\left(n, t, K_{t}^{\prime}(n, 1)+1\right)=0$, and
- Partial covering: for all $J$, the most vertices which can be covered by J 1 -sets is exactly

$$
\alpha(n, t, 1)+\alpha(n, t, 2)+\cdots+\alpha(n, t, J)=\left|F_{1} \cup F_{2} \cup \cdots \cup F_{J}\right| .
$$

Remark. Dominant signature $\Rightarrow$ optimal packing within optimal covering.

## More iterations of the duplication algorithm

## Domination preserved by duplication algorithm

## Lemma (Domination lemma)

If the input signature for the duplication algorithm is dominant for $Q_{n, t}$, then the output signature is dominant for $Q_{n+1, t}$.

Remark. i.e., optimal packing within covering for $n \Rightarrow$ optimal packing within covering for $n+1$

## Lemma (Covering lemma)

Let $(\alpha(n, t, i))_{i=1}^{M}$ be a dominant signature for $Q_{n, t}$, and $\sum_{i=0}^{t-1} M_{i}=M$. Then the most vertices of $Q_{n+1, t}$ which can be covered by $M_{i} 1$-sets with stem in $i Q_{n, t}$ is $C\left(n+1, t, M_{0}, \ldots, M_{t-1}\right):=$

$$
\sum_{i=0}^{t-1}\left(\sum_{j=1}^{M_{i}} \alpha(n, t, j)+\min \left\{t^{n}-\sum_{j=1}^{M_{i}} \alpha(n, t, j), M-M_{i}\right\}\right) .
$$

## Proving the domination lemma

## Proof sketches of the covering and domination lemmas.

- The inner summation is concave; therefore $C\left(n+1, t, M_{0}, \ldots, M_{t-1}\right)$ is maximized when $\left|M_{i}-M_{j}\right| \leq 1$ for all $i, j$.

$$
\sum_{j=1}^{M_{i}} \alpha(n, t, j)+\min \left\{t^{n}-\sum_{j=1}^{M_{i}} \alpha(n, t, j), M-M_{i}\right\}
$$

- Output signature $\beta$ of duplication has $M_{0} \geq \cdots \geq M_{t-1} \geq M_{0}-1$.
- Output signature $\left(\beta(n+1, t, j)_{j \geq 1}\right.$ satisfies for all $K$ (w/abuse),

$$
\sum_{j=1}^{K} \beta(n+1, t, j)=C(n+1, t,\lceil K / t\rceil, \ldots,\lfloor K / t\rfloor)
$$

## Sample case computation for duplication output

Case: • last row which makes a full steal is $r$

- last nonzero $\beta$ at index $M>t \cdot r$
- give back all stealing done by indices $>t \cdot r$
- $\beta=t^{n}-\sum_{i=1}^{r}(\alpha(n, t, i)+t-1)+t-(M-t \cdot r)$ at indices $t \cdot r+1, \ldots, M$. Then

$$
\begin{aligned}
\sum_{j=1}^{M} \beta(n+1, t, j)= & \sum_{j=1}^{t r}(\alpha(n, t,\lceil j / t\rceil)+t-1) \\
& +(M-t r)\left(t^{n}-\sum_{j=1}^{r}(\alpha(n, t, j)+t-1)+t-M+t r\right) \\
= & \sum_{i=1}^{t}\left(\sum_{j=1}^{r} \alpha(n, t, j)+r t-r\right)+(M-t r)(t-(M-t r)) \\
& +(M-t r)\left(t^{n}-\sum_{j=1}^{r} \alpha(n, t, j)-r t+r\right) \\
= & \sum_{i=1}^{M-t r} t^{n}+\sum_{i=M-t r+1}^{t}\left(\sum_{j=1}^{r} \alpha(n, t, j)+M-r\right) \\
\geq & C(n+1, t,\lceil M / t\rceil, \ldots,\lceil M / t\rceil,\lfloor M / t\rfloor, \ldots,\lfloor M / t\rfloor)
\end{aligned}
$$

## Optimal adaptive packing and covering numbers

## Theorem

Let $t \geq 2$ and $n \geq t+1$. There exists an optimal radius 1 adaptive packing contained in an optimal radius 1 adaptive covering of $Q_{n, t}$ with respective sizes $F_{t}^{\prime}(n, 1), K_{t}^{\prime}(n, 1)$ given by

| $t^{n-1} \bmod b_{n, t}(1)$ | $F_{t}^{\prime}(n, 1)$ | $K_{t}^{\prime}(n, 1)$ |
| :---: | :---: | :---: |
| $i, 0 \leq i<t$ | $t S$ | $t S+i$ |
| $t, \ldots, b_{n-1, t}(1)-1$ | $t S$ | $t S+t$ |
| $b_{n-1, t}(1)-1+i, 1 \leq i<t$ | $t S+i$ | $t S+t$ |

where $b_{n, t}(1)=1+n(t-1)$ and $S=\left\lfloor t^{n-1} / b_{n, t}(1)\right\rfloor$.
Remarks. For $1 \leq n \leq t+1$ :

- $F_{t}^{\prime}(n, 1)=t^{n-2}$
- $K_{t}^{\prime}(n, 1)$ boundable but complicated


## Open questions

Related to this technique:

- For which other communication channels does the domination lemma hold for radius 1 ?
- Can we extend the duplication algorithm to other communication channels, radius $>1$ ?
General adaptive coding questions:
- Tight bounds when radius $=\omega(1)$ ?
- Can known methods improve coin-weighing, batch-testing, or liar games with restricted questions?
And of course, do fixed-radius nonadaptive codes approach the sphere bound?


## SIAM Victoria Minisymposium: "Liar games and error-correcting codes"

Organizers: Ioana Dumitriu, Joel Spencer, New York University

- Berlekamp. History of Block Coding with Noiseless Feedback
- Dumitriu+Spencer. Liar Games with a Fixed Number of Constrained Lies
- Ahlswede+Cicalese+Deppe. Searching with Lies under Error Cost Constraints
- Ahlswede+Deppe. Non-Binary Error-Correcting Codes with Noiseless Feedback
- Ellis+Nyman. Multichannel Liar Games with a Fixed Number of Lies

Survey: A. Pelc. Searching games with errors-fifty years of coping with liars, Theoret. Comput. Sci. '02.

