Edge Choosability of Planar Graphs with no Two Adjacent Triangles

> Daniel Cranston dcransto@uiuc.edu University of Illinois, Urbana-Champaign

> > April 29, 2006

edge-assignment L: function on E(G) that assigns each edge e a list L(e) of colors available to use on e

edge-assignment L: function on E(G) that assigns each edge e a list L(e) of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color from its assigned list

edge-assignment L: function on E(G) that assigns each edge e a list L(e) of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color from its assigned list

 $\chi_l'(G)$: minimum k such that G has an L-edge-coloring whenever $|L(e)| \geq k$ for all $e \in E(G)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

List Coloring Conjecture

 $\chi_l'(G) = \chi'(G)$

List Coloring Conjecture

$$\chi_I'(G) = \chi'(G)$$

Partial Results (List Coloring Conjecture)

▶ Planar, $\Delta(G) \ge 12$ [Borodin, Kostochka, Woodall 1997]

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

List Coloring Conjecture

$$\chi_I'(G) = \chi'(G)$$

Partial Results (List Coloring Conjecture)

▶ Planar, $\Delta(G) \ge 12$ [Borodin, Kostochka, Woodall 1997]

Theorem [Cranston 2006] If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \ge 9$, then $\chi'_{I}(G) = \chi'(G) = \Delta(G)$.

$\chi'(G) \leq \Delta(G) + 1$

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

 $\chi'_I(G) \leq \Delta(G) + 1$

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

 $\chi'_I(G) \leq \Delta(G) + 1$

Partial Results (Vizing's Conjecture)

• $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

 $\chi'_I(G) \leq \Delta(G) + 1$

Partial Results (Vizing's Conjecture)

- ► Δ(G) ≤ 4 [Juvan, Mohar, Skrekovski 1999]
- ▶ Planar, $\Delta(G) \ge 9$ [Borodin 1990]

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

 $\chi'_I(G) \leq \Delta(G) + 1$

Partial Results (Vizing's Conjecture)

- ► Δ(G) ≤ 4 [Juvan, Mohar, Skrekovski 1999]
- ▶ Planar, $\Delta(G) \ge 9$ [Borodin 1990]

▶ Planar, $\Delta(G) \ge 6$, no intersecting triangles [Wang, Lih 2002]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

 $\chi'_I(G) \leq \Delta(G) + 1$

Partial Results (Vizing's Conjecture)

- ► Δ(G) ≤ 4 [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \ge 9$ [Borodin 1990]
- ▶ Planar, $\Delta(G) \ge 6$, no intersecting triangles [Wang, Lih 2002]

▶ Planar, $\Delta(G) \ge 6$, no 4-cycles [Zhang, Wu 2004]

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

$$\chi'_I(G) \leq \Delta(G) + 1$$

Partial Results (Vizing's Conjecture)

- ► Δ(G) ≤ 4 [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \ge 9$ [Borodin 1990]
- ▶ Planar, $\Delta(G) \ge 6$, no intersecting triangles [Wang, Lih 2002]
- ▶ Planar, $\Delta(G) \ge 6$, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \ge 6$, then $\chi'_l(G) \le \Delta(G) + 1$.

$$\chi'(G) \leq \Delta(G) + 1$$

Vizing's Conjecture

$$\chi'_I(G) \leq \Delta(G) + 1$$

Partial Results (Vizing's Conjecture)

- ► Δ(G) ≤ 4 [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \ge 9$ [Borodin 1990]
- ▶ Planar, $\Delta(G) \ge 6$, no intersecting triangles [Wang, Lih 2002]
- ▶ Planar, $\Delta(G) \ge 6$, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \ge \emptyset$ 7, then $\chi'_{I}(G) \le \Delta(G) + 1$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \ge 7$, then G contains an edge uv with $d(u) + d(v) \le \Delta(G) + 2$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \ge 7$, then G contains an edge uv with $d(u) + d(v) \le \Delta(G) + 2$.

Observation:

If we can order the edges of G such that for each edge e at most k edges adjacent to edge e precede it in the ordering, then $\chi'_l(G) \leq k + 1$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \ge 7$, then G contains an edge uv with $d(u) + d(v) \le \Delta(G) + 2$.

Observation:

If we can order the edges of G such that for each edge e at most k edges adjacent to edge e precede it in the ordering, then $\chi'_{l}(G) \leq k + 1$.

Observation:

This lemma implies our theorem.

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$$

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$.

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$.

$$0 \leq \sum_{x \in V \cup F} \mu^*(x) = \sum_{x \in V \cup F} \mu(x) = -8$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$.

$$0 \leq \sum_{x \in V \cup F} \mu^*(x) = \sum_{x \in V \cup F} \mu(x) = -8$$

Contradiction! So no counterexample exists.

$$|F(G)| - |E(G)| + |V(G)| = 2$$

$$2|E(G)| - 4|V(G)| + 2|E(G)| - 4|F(G)| = -8$$

$$\sum_{v \in V(G)} (d(v) - 4) + \sum_{f \in F(G)} (d(f) - 4) = -8$$

Charge $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$

Redistribute charge, so that sum is unchanged but new charge $\mu^*(x) \ge 0$ for all $x \in V(G) \cup F(G)$.

$$0 \leq \sum_{x \in V \cup F} \mu^*(x) = \sum_{x \in V \cup F} \mu(x) = -8$$

Contradiction! So no counterexample exists. This is called the Discharging Method

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules R1) \geq 5-vertex gives 1/2 to each incident triangle

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

 $R1) \ge 5$ -vertex gives 1/2 to each incident triangle

R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Fix a face f. Show that $\mu^*(f) \ge 0$. d(f) = 3 $d(f) \ge 4$

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Fix a face
$$f$$
. Show that $\mu^*(f) \ge 0$.
 $d(f) = 3 \qquad \mu^*(f) \ge -1 + 2(1/2) = 0$
 $d(f) \ge 4$

Proof: Consider a counterexample G. For each edge $uv \in E(G)$, $d(u) + d(v) \ge \Delta(G) + 3 \ge 10$. Note that $\delta(G) \ge 3$.

Discharging with $\mu(x) = d(x) - 4$ for all $x \in V(G) \cup F(G)$.

Rules

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each adjacent 3-vertex

Fix a face f. Show that
$$\mu^*(f) \ge 0$$
.
 $d(f) = 3$ $\mu^*(f) \ge -1 + 2(1/2) = 0$
 $d(f) \ge 4$ $\mu^*(f) = \mu(f) \ge 0$

R1) \geq 5-vertex gives 1/2 to each incident triangle

R2) Δ -vertex gives 1/3 to each incident 3-vertex

・ロト・日本・モート モー うへぐ

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

・ロト・日本・モート モー うへぐ

Fix a vertex v. Show that $\mu^*(v) \ge 0$.

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$.

d(v) = 3d(v) = 4d(v) = 5

 $6 \leq d(v) \leq \Delta(G) - 1$

 $d(v) = \Delta(G)$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 d(v) = 5 $6 < d(v) < \Delta(G) - 1$

 $d(v)=\Delta(G)$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5

$$6 \leq d(v) \leq \Delta(G) - 1$$

 $d(v)=\Delta(G)$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5 $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 \leq d(v) \leq \Delta(G) - 1$

 $d(v) = \Delta(G)$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5 $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 \le d(v) \le \Delta(G) - 1$ v is incident to at most d(v)/2 triangles, so $\mu^*(v) \ge d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5 $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 \le d(v) \le \Delta(G) - 1$ v is incident to at most d(v)/2 triangles, so $\mu^*(v) \ge d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5 $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 \le d(v) \le \Delta(G) - 1$ v is incident to at most d(v)/2 triangles, so $\mu^*(v) \ge d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

$$\mu^*(v) \geq d(v) - 4 - t/2 - (d(v) - t)/3$$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5 $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 \le d(v) \le \Delta(G) - 1$ v is incident to at most d(v)/2 triangles, so $\mu^*(v) \ge d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

$$\begin{array}{rcl} \mu^*(v) & \geq & d(v) - 4 - t/2 - (d(v) - t)/3 \\ & \geq & 7d(v)/12 - 4 \end{array}$$

R1) \geq 5-vertex gives 1/2 to each incident triangle R2) Δ -vertex gives 1/3 to each incident 3-vertex

Fix a vertex v. Show that $\mu^*(v) \ge 0$. d(v) = 3 $\mu^*(v) = -1 + 3(1/3) = 0$ d(v) = 4 $\mu^*(v) = \mu(v) = 0$ d(v) = 5 $\mu^*(v) \ge 1 - 2(1/2) = 0$

 $6 \le d(v) \le \Delta(G) - 1$ v is incident to at most d(v)/2 triangles, so $\mu^*(v) \ge d(v) - 4 - d(v)/2(1/2) = 3d(v)/4 - 4 > 0$

 $d(v) = \Delta(G)$ Say v is incident to t triangles.

$$\begin{array}{rcl} \mu^*(v) & \geq & d(v) - 4 - t/2 - (d(v) - t)/3 \\ & \geq & 7d(v)/12 - 4 \\ & > & 0 & \text{when } d(v) \geq 7. \end{array}$$