Edge Choosability of Planar Graphs with no Two Adjacent Triangles

Daniel Cranston
dcransto@uiuc.edu
University of Illinois, Urbana-Champaign

April 29, 2006
edge-assignment L : function on $E(G)$ that assigns each edge e a list $L(e)$ of colors available to use on e
edge-assignment L : function on $E(G)$ that assigns each edge e a list $L(e)$ of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color from its assigned list
edge-assignment L : function on $E(G)$ that assigns each edge e a list $L(e)$ of colors available to use on e

L-edge-coloring: proper edge-coloring where each edge gets a color from its assigned list
$\chi_{l}^{\prime}(G)$: minimum k such that G has an L-edge-coloring whenever $|L(e)| \geq k$ for all $e \in E(G)$

List Coloring Conjecture

$$
\chi_{I}^{\prime}(G)=\chi^{\prime}(G)
$$

List Coloring Conjecture

$$
\chi_{I}^{\prime}(G)=\chi^{\prime}(G)
$$

Partial Results (List Coloring Conjecture)

- Planar, $\Delta(G) \geq 12$ [Borodin, Kostochka, Woodall 1997]

List Coloring Conjecture

$$
\chi_{I}^{\prime}(G)=\chi^{\prime}(G)
$$

Partial Results (List Coloring Conjecture)

- Planar, $\Delta(G) \geq 12$ [Borodin, Kostochka, Woodall 1997]

Theorem [Cranston 2006]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 9$, then $\chi_{l}^{\prime}(G)=\chi^{\prime}(G)=\Delta(G)$.

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \geq 9$ [Borodin 1990]

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \geq 9$ [Borodin 1990]
- Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \geq 9$ [Borodin 1990]
- Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]
- Planar, $\Delta(G) \geq 6$, no 4-cycles [Zhang, Wu 2004]

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \geq 9$ [Borodin 1990]
- Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]
- Planar, $\Delta(G) \geq 6$, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 6$, then $\chi_{l}^{\prime}(G) \leq \Delta(G)+1$.

Vizing's Theorem [1964]

$$
\chi^{\prime}(G) \leq \Delta(G)+1
$$

Vizing's Conjecture

$$
\chi_{l}^{\prime}(G) \leq \Delta(G)+1
$$

Partial Results (Vizing's Conjecture)

- $\Delta(G) \leq 4$ [Juvan, Mohar, Skrekovski 1999]
- Planar, $\Delta(G) \geq 9$ [Borodin 1990]
- Planar, $\Delta(G) \geq 6$, no intersecting triangles [Wang, Lih 2002]
- Planar, $\Delta(G) \geq 6$, no 4-cycles [Zhang, Wu 2004]

Theorem [Cranston 2005]

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 67$, then $\chi_{\prime}^{\prime}(G) \leq \Delta(G)+1$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$.

Observation:

If we can order the edges of G such that for each edge e at most k edges adjacent to edge e precede it in the ordering, then $\chi_{l}^{\prime}(G) \leq k+1$.

Lemma:

If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$.

Observation:

If we can order the edges of G such that for each edge e at most k edges adjacent to edge e precede it in the ordering, then $\chi_{l}^{\prime}(G) \leq k+1$.

Observation:

This lemma implies our theorem.

Assume a counterexample G :

Assume a counterexample G :

$$
|F(G)|-|E(G)|+|V(G)|=2
$$

Assume a counterexample G :

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8
\end{aligned}
$$

Assume a counterexample G :

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8 \\
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4) & =-8
\end{aligned}
$$

Assume a counterexample G :

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8 \\
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4) & =-8
\end{aligned}
$$

Charge $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$

Assume a counterexample G:

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8 \\
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4) & =-8
\end{aligned}
$$

Charge $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$
Redistribute charge, so that sum is unchanged but new charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

Assume a counterexample G:

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8 \\
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4) & =-8
\end{aligned}
$$

Charge $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$
Redistribute charge, so that sum is unchanged but new charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
0 \leq \sum_{x \in V \cup F} \mu^{*}(x)=\sum_{x \in V \cup F} \mu(x)=-8
$$

Assume a counterexample G :

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8 \\
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4) & =-8
\end{aligned}
$$

Charge $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$
Redistribute charge, so that sum is unchanged but new charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
0 \leq \sum_{x \in V \cup F} \mu^{*}(x)=\sum_{x \in V \cup F} \mu(x)=-8
$$

Contradiction! So no counterexample exists.

Assume a counterexample G:

$$
\begin{aligned}
|F(G)|-|E(G)|+|V(G)| & =2 \\
2|E(G)|-4|V(G)|+2|E(G)|-4|F(G)| & =-8 \\
\sum_{v \in V(G)}(d(v)-4)+\sum_{f \in F(G)}(d(f)-4) & =-8
\end{aligned}
$$

Charge $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$
Redistribute charge, so that sum is unchanged but new charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.

$$
0 \leq \sum_{x \in V \cup F} \mu^{*}(x)=\sum_{x \in V \cup F} \mu(x)=-8
$$

Contradiction! So no counterexample exists. This is called the Discharging Method

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Discharging with $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$.

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Discharging with $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$.
Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Discharging with $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$.
Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each adjacent 3-vertex

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Discharging with $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$.
Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each adjacent 3-vertex
Fix a face f. Show that $\mu^{*}(f) \geq 0$.
$d(f)=3$
$d(f) \geq 4$

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Discharging with $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$.
Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each adjacent 3-vertex
Fix a face f. Show that $\mu^{*}(f) \geq 0$.
$d(f)=3 \quad \mu^{*}(f) \geq-1+2(1 / 2)=0$
$d(f) \geq 4$

Lemma: If G is planar, G does not contain a kite as a subgraph, and $\Delta(G) \geq 7$, then G contains an edge $u v$ with $d(u)+d(v) \leq \Delta(G)+2$

Proof: Consider a counterexample G. For each edge $u v \in E(G)$, $d(u)+d(v) \geq \Delta(G)+3 \geq 10$. Note that $\delta(G) \geq 3$.

Discharging with $\mu(x)=d(x)-4$ for all $x \in V(G) \cup F(G)$.
Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each adjacent 3-vertex
Fix a face f. Show that $\mu^{*}(f) \geq 0$.
$d(f)=3 \quad \mu^{*}(f) \geq-1+2(1 / 2)=0$
$d(f) \geq 4 \quad \mu^{*}(f)=\mu(f) \geq 0$

Rules

R1) ≥ 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex

Rules

R1) ≥ 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.

Rules

R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3 -vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3$
$d(v)=4$
$d(v)=5$
$6 \leq d(v) \leq \Delta(G)-1$
$d(v)=\Delta(G)$

Rules

R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4$
$d(v)=5$
$6 \leq d(v) \leq \Delta(G)-1$
$d(v)=\Delta(G)$

Rules

R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5$
$6 \leq d(v) \leq \Delta(G)-1$
$d(v)=\Delta(G)$

Rules

R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5 \quad \mu^{*}(v) \geq 1-2(1 / 2)=0$
$6 \leq d(v) \leq \Delta(G)-1$
$d(v)=\Delta(G)$

Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3 -vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5 \quad \mu^{*}(v) \geq 1-2(1 / 2)=0$
$6 \leq d(v) \leq \Delta(G)-1 \quad v$ is incident to at most $d(v) / 2$ triangles, so $\mu^{*}(v) \geq d(v)-4-d(v) / 2(1 / 2)=3 d(v) / 4-4>0$
$d(v)=\Delta(G)$

Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5 \quad \mu^{*}(v) \geq 1-2(1 / 2)=0$
$6 \leq d(v) \leq \Delta(G)-1 \quad v$ is incident to at most $d(v) / 2$ triangles, so $\mu^{*}(v) \geq d(v)-4-d(v) / 2(1 / 2)=3 d(v) / 4-4>0$
$d(v)=\Delta(G) \quad$ Say v is incident to t triangles.

Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3-vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5 \quad \mu^{*}(v) \geq 1-2(1 / 2)=0$
$6 \leq d(v) \leq \Delta(G)-1 \quad v$ is incident to at most $d(v) / 2$ triangles, so $\mu^{*}(v) \geq d(v)-4-d(v) / 2(1 / 2)=3 d(v) / 4-4>0$
$d(v)=\Delta(G) \quad$ Say v is incident to t triangles.

$$
\mu^{*}(v) \geq d(v)-4-t / 2-(d(v)-t) / 3
$$

Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3 -vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5 \quad \mu^{*}(v) \geq 1-2(1 / 2)=0$
$6 \leq d(v) \leq \Delta(G)-1 \quad v$ is incident to at most $d(v) / 2$ triangles, so $\mu^{*}(v) \geq d(v)-4-d(v) / 2(1 / 2)=3 d(v) / 4-4>0$
$d(v)=\Delta(G) \quad$ Say v is incident to t triangles.

$$
\begin{aligned}
\mu^{*}(v) & \geq d(v)-4-t / 2-(d(v)-t) / 3 \\
& \geq 7 d(v) / 12-4
\end{aligned}
$$

Rules
R1) \geq 5-vertex gives $1 / 2$ to each incident triangle
R2) Δ-vertex gives $1 / 3$ to each incident 3 -vertex
Fix a vertex v. Show that $\mu^{*}(v) \geq 0$.
$d(v)=3 \quad \mu^{*}(v)=-1+3(1 / 3)=0$
$d(v)=4 \quad \mu^{*}(v)=\mu(v)=0$
$d(v)=5 \quad \mu^{*}(v) \geq 1-2(1 / 2)=0$
$6 \leq d(v) \leq \Delta(G)-1 \quad v$ is incident to at most $d(v) / 2$ triangles, so $\mu^{*}(v) \geq d(v)-4-d(v) / 2(1 / 2)=3 d(v) / 4-4>0$
$d(v)=\Delta(G) \quad$ Say v is incident to t triangles.

$$
\begin{aligned}
\mu^{*}(v) & \geq d(v)-4-t / 2-(d(v)-t) / 3 \\
& \geq 7 d(v) / 12-4 \\
& >0 \quad \text { when } d(v) \geq 7
\end{aligned}
$$

