## Circular chromatic number of hexagonal chains with orientations

## Drago Bokal

Simon Fraser University, Burnaby BC, Canada and
Institute of Mathematics, Physics and Mechanics,
Ljubljana, Slovenia
Joint work with
G. Fijavž, M. Juvan, M. Kayll, B. Mohar, A. Vodopivec

DIMACS/DIMATIA/Renyi Combinatorial Challenges Meeting,
DIMACS Center, April 2006

## What is a graph coloring?



Chromatic number of graphs vs. digraphs:

Chromatic number of graphs vs. digraphs:

- independent sets vs. acyclic sets.

Chromatic number of graphs vs. digraphs:

- independent sets vs. acyclic sets.

Only "half" of the constraint is present.

- Chromatic number of graphs vs. digraphs:
- independent sets vs. acyclic sets.

Only "half" of the constraint is present.
An example of computation.

# Definitions: chromatic number 

- $D=(V, A)$ - digraph.


# Definitions: chromatic number 

- $D=(V, A)$ - digraph. $p$-coloring of $D: c: V(D) \rightarrow\{1, \ldots, k\}$,


# Definitions: chromatic number 

- $D=(V, A)$ - digraph.
- $p$-coloring of $D: c: V(D) \rightarrow\{1, \ldots, k\}$,
- for every $i: c^{-1}(i)$ acyclic in $D$.


# Definitions: 

 circular chromatic number- $D=(V, A)$ - digraph.


# Definitions: 

 circular chromatic number- $D=(V, A)$ - digraph.

Circular $p$-coloring of $D: c: V(D) \rightarrow p S^{1}$,

## Definitions:

## circular chromatic number

- $D=(V, A)$ - digraph.
- Circular $p$-coloring of $D: c: V(D) \rightarrow p S^{1}$,
- $u v \in A \Rightarrow c(v)-c(u)>1$.



## circular chromatic number

- $D=(V, A)$ - digraph.
- Circular $p$-coloring of $D: c: V(D) \rightarrow p S^{1}$,
- $u v \in A \Rightarrow c(v)-c(u)>1$.
- Circular chromatic number of $D$ :


## Definitions:

## circular chromatic number

- $D=(V, A)$ - digraph.
- Circular $p$-coloring of $D: c: V(D) \rightarrow p S^{1}$,
- $u v \in A \Rightarrow c(v)-c(u)>1$.
- Circular chromatic number of $D$ :
- $\chi_{c}(D)=\inf \{p \mid$ exists circ. $p$-coloring of $D\}$.


# Comparison between coloring of graphs and digraphs 

- For a graph $G$ : $\chi(G)-1<\chi_{c}(G) \leq \chi(G)$.


## Comparison between coloring of graphs and digraphs

- For a graph $G$ : $\chi(G)-1<\chi_{c}(G) \leq \chi(G)$.
- For a digraph $D: \chi(D)-1<\chi_{c}(D) \leq \chi(D)$.


## Comparison between coloring of graphs and digraphs

- For a graph $G$ : $\chi(G)-1<\chi_{c}(G) \leq \chi(G)$.
- For a digraph $D: \chi(D)-1<\chi_{c}(D) \leq \chi(D)$.
- For every $k, l \in \mathbb{N}$ there exist a graph $G$ with $\chi(G) \geq k$ and girth $\mathrm{g}(G) \geq l$.


## Comparison between coloring of graphs and digraphs

- For a graph $G: \chi(G)-1<\chi_{c}(G) \leq \chi(G)$.
- For a digraph $D: \chi(D)-1<\chi_{c}(D) \leq \chi(D)$.
- For every $k, l \in \mathbb{N}$ there exist a graph $G$ with $\chi(G) \geq k$ and girth $\mathrm{g}(G) \geq l$.
- For every $k, l \in \mathbb{N}$ there exist a digraph $D$ with $\chi(D) \geq k$ and directed girth $\operatorname{dg}(D) \geq l$.


## Comparison between coloring of graphs and digraphs

- For a graph $G: \chi(G)-1<\chi_{c}(G) \leq \chi(G)$.
- For a digraph $D: \chi(D)-1<\chi_{c}(D) \leq \chi(D)$.
- For every $k, l \in \mathbb{N}$ there exist a graph $G$ with $\chi(G) \geq k$ and girth $\mathrm{g}(G) \geq l$.
- For every $k, l \in \mathbb{N}$ there exist a digraph $D$ with $\chi(D) \geq k$ and directed girth $\operatorname{dg}(D) \geq l$.
- If $G$ is $k$-degenerate, then $\chi(G) \leq k+1$.


## Comparison between coloring of graphs and digraphs

- For a graph $G: \chi(G)-1<\chi_{c}(G) \leq \chi(G)$.
- For a digraph $D: \chi(D)-1<\chi_{c}(D) \leq \chi(D)$.
- For every $k, l \in \mathbb{N}$ there exist a graph $G$ with $\chi(G) \geq k$ and girth $\mathrm{g}(G) \geq l$.
- For every $k, l \in \mathbb{N}$ there exist a digraph $D$ with $\chi(D) \geq k$ and directed girth $\operatorname{dg}(D) \geq l$.
- If $G$ is $k$-degenerate, then $\chi(G) \leq k+1$.
- If $D$ is $k$-degenerate, then $\chi(D) \leq k+1$.


## Only "half" of constraints are present

- $\chi(G) \leq k$ is polynomially solvable for $k=2$, but $N P$-complete for $k \geq 3$.


## Only "half" of constraints are present

- $\chi(G) \leq k$ is polynomially solvable for $k=2$, but $N P$-complete for $k \geq 3$.
- $\chi(D) \leq k$ is polynomially solvable for $k=1$, but $N P$-complete for $k \geq 2$.


## Only "half" of constraints are present

- $\chi(G) \leq k$ is polynomially solvable for $k=2$, but $N P$-complete for $k \geq 3$.
- $\chi(D) \leq k$ is polynomially solvable for $k=1$, but $N P$-complete for $k \geq 2$.
- $\chi_{c}\left(C_{2 n}\right)=2, \chi_{c}\left(C_{2 n+1}\right)=2+\frac{1}{n}$.


## Only "half" of constraints are present

- $\chi(G) \leq k$ is polynomially solvable for $k=2$, but $N P$-complete for $k \geq 3$.
- $\chi(D) \leq k$ is polynomially solvable for $k=1$, but $N P$-complete for $k \geq 2$.
- $\chi_{c}\left(C_{2 n}\right)=2, \chi_{c}\left(C_{2 n+1}\right)=2+\frac{1}{n}$.
- $\chi_{c}\left(\vec{C}_{n}\right)=1+\frac{1}{n-1}$.


## Only "half" of constraints are present

- $\chi(G) \leq k$ is polynomially solvable for $k=2$, but $N P$-complete for $k \geq 3$.
- $\chi(D) \leq k$ is polynomially solvable for $k=1$, but $N P$-complete for $k \geq 2$.
- $\chi_{c}\left(C_{2 n}\right)=2, \chi_{c}\left(C_{2 n+1}\right)=2+\frac{1}{n}$.
- $\chi_{c}\left(\vec{C}_{n}\right)=1+\frac{1}{n-1}$.
- $\chi(G) \leq 4$ for planar $G$.


## Only "half" of constraints are present

- $\chi(G) \leq k$ is polynomially solvable for $k=2$, but $N P$-complete for $k \geq 3$.
- $\chi(D) \leq k$ is polynomially solvable for $k=1$, but $N P$-complete for $k \geq 2$.
- $\chi_{c}\left(C_{2 n}\right)=2, \chi_{c}\left(C_{2 n+1}\right)=2+\frac{1}{n}$.
- $\chi_{c}\left(\vec{C}_{n}\right)=1+\frac{1}{n-1}$.
- $\chi(G) \leq 4$ for planar $G$.
- Conjecture (Škrekovski): $\chi(D) \leq 2$ for planar $D$.


## Discretization of

 the circular chromatic number
## Graphs $\vec{G}(k, d)$ :

# Discretization of 

## the circular chromatic number

Graphs $\vec{G}(k, d)$ :

- $V(\vec{G}(k, d))=\{0,1,2, \ldots, k-1\}$,


## Discretization of

## the circular chromatic number

## Graphs $\vec{G}(k, d)$ :

- $V(\vec{G}(k, d))=\{0,1,2, \ldots, k-1\}$,
- $E(\vec{G}(k, d))=$
$\{(i, i-t) \mid i \in V(\vec{G}(k, d)), 1 \leq t \leq k-d\}$.



## Discretization of

## the circular chromatic number

## Graphs $\vec{G}(k, d)$ :

- $V(\vec{G}(k, d))=\{0,1,2, \ldots, k-1\}$,
- $E(\vec{G}(k, d))=$

$$
\{(i, i-t) \mid i \in V(\vec{G}(k, d)), 1 \leq t \leq k-d\} .
$$

For $k, d \in \mathbb{Z}, k \geq d$ :

$$
\chi_{c}(\vec{G}(k, d))=\frac{k}{d} .
$$

# Circular colorings and homomorphisms 

- $D, G$ - digraphs.


## Circular colorings and homomorphisms

- $D, G$ - digraphs.
- Acyclic homomorphism: $f: V(D) \rightarrow V(G)$,


## Circular colorings and homomorphisms

- $D, G$ - digraphs.
- Acyclic homomorphism: $f: V(D) \rightarrow V(G)$,

$$
u v \in A \Rightarrow f(u)=f(v) \text { or } f(u) f(v) \in A,
$$

## Circular colorings and homomorphisms

- $D, G$ - digraphs.
- Acyclic homomorphism: $f: V(D) \rightarrow V(G)$,
$u v \in A \Rightarrow f(u)=f(v)$ or $f(u) f(v) \in A$,
- $\forall x \in V(G): f^{-1}(x)$ acyclic subdigraph of $D$.


## Circular colorings and

## homomorphisms

- $D, G$ - digraphs.
- Acyclic homomorphism: $f: V(D) \rightarrow V(G)$,
- $u v \in A \Rightarrow f(u)=f(v)$ or $f(u) f(v) \in A$,
- $\forall x \in V(G): f^{-1}(x)$ acyclic subdigraph of $D$.
- $D$ digraph.
$\chi_{c}(D) \leq \frac{k}{d}$ if and only if there exists an acyclic homomorphism $f: D \rightarrow \vec{G}(k, d)$.


## Definitions:

## Oriented hexagonal systems

- Hexagonal system of length $n$ :


## Definitions:

## Oriented hexagonal systems

- Hexagonal system of length $n$ :
- $\mathcal{C}=\left\{C^{i} \mid 1 \leq i \leq n\right\}$ family of 6 -cycles,



## Definitions:

## Oriented hexagonal systems

- Hexagonal system of length $n$ :
- $\mathcal{C}=\left\{C^{i} \mid 1 \leq i \leq n\right\}$ family of 6 -cycles,
- $e_{i}, e_{i}^{\prime}$ distinct edges of $C^{i}$,



## Definitions:

## Oriented hexagonal systems

- Hexagonal system of length $n$ :
- $\mathcal{C}=\left\{C^{i} \mid 1 \leq i \leq n\right\}$ family of 6 -cycles,
- $e_{i}, e_{i}^{\prime}$ distinct edges of $C^{i}$, graph $G$ obtained from $\mathcal{C}$ by identifying $e_{i+1}$ with $e_{i}^{\prime}$.



## Definitions:

## Oriented hexagonal systems

- Hexagonal system of length $n$ :
- $\mathcal{C}=\left\{C^{i} \mid 1 \leq i \leq n\right\}$ family of 6 -cycles,
- $e_{i}, e_{i}^{\prime}$ distinct edges of $C^{i}$,
- graph $G$ obtained from $\mathcal{C}$ by identifying $e_{i+1}$ with $e_{i}^{\prime}$.
- Orientation of edges.



## Problem statement

## Problem: Given an oriented hexagonal system $S$, find its circular chromatic number $\chi_{c}(S)$.

## Problem statement

## Problem: Given an oriented hexagonal system $S$, find its circular chromatic number $\chi_{c}(S)$.

Theorem: Let $\lambda(S)$ be the characteristics of $S$ and let $d \in \mathbb{N}$ be largest with $w \in \mathcal{O}^{d}$ being a subword of $\lambda(S)$. Then $\chi_{c}(S)=\frac{5 d+1}{4 d+1}$.

## Properties of a single oriented $C_{6}$

- Are $e$ and $e^{\prime}$ oriented coherently?



## Properties of a single oriented $C_{6}$

- Are $e$ and $e^{\prime}$ oriented coherently?
- How many of other edges are oriented coherently with $e$ ?



## Properties of a single oriented $C_{6}$

- Are $e$ and $e^{\prime}$ oriented coherently?
- How many of other edges are oriented coherently with $e$ ?
- How many of other edges are oriented incoherently with $e$ ?



## Distance pairs

## Given:

## Distance pairs

## Given: <br> - orientation $S$ of $C_{6}$,

## Distance pairs

## Given:

- orientation $S$ of $C_{6}$,
- edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$,


## Distance pairs

## Given:

- orientation $S$ of $C_{6}$,
- edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$,
- integers $d_{1}, d_{2}, k, d\left(0 \leq d_{i} \leq d, 1 \leq d<\frac{k}{5}\right)$.


## Distance pairs

## Given:

- orientation $S$ of $C_{6}$,
- edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$,
- integers $d_{1}, d_{2}, k, d\left(0 \leq d_{i} \leq d, 1 \leq d<\frac{k}{5}\right)$.

Does there exist $c: S \rightarrow \vec{G}(k, k-d)$, such that

## Distance pairs

## Given:

- orientation $S$ of $C_{6}$,
- edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$,
- integers $d_{1}, d_{2}, k, d\left(0 \leq d_{i} \leq d, 1 \leq d<\frac{k}{5}\right)$.

Does there exist $c: S \rightarrow \vec{G}(k, k-d)$, such that

$$
c(v)-c(u)=d_{1},
$$

## Distance pairs

## Given:

- orientation $S$ of $C_{6}$,
- edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$,
- integers $d_{1}, d_{2}, k, d\left(0 \leq d_{i} \leq d, 1 \leq d<\frac{k}{5}\right)$.

Does there exist $c: S \rightarrow \vec{G}(k, k-d)$, such that

- $c(v)-c(u)=d_{1}$,
- $c\left(v^{\prime}\right)-c\left(u^{\prime}\right)=d_{2}$ ?


## Distance pairs

- Given:
- orientation $S$ of $C_{6}$,
- edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$,
- integers $d_{1}, d_{2}, k, d\left(0 \leq d_{i} \leq d, 1 \leq d<\frac{k}{5}\right)$.
- Does there exist $c: S \rightarrow \vec{G}(k, k-d)$, such that
- $c(v)-c(u)=d_{1}$,
- $c\left(v^{\prime}\right)-c\left(u^{\prime}\right)=d_{2}$ ?
- Yes: $S$ admits the distance pair $\left(d_{1}, d_{2}\right)$ for $\vec{G}(k, k-d)$.


## Lemma: Conditions for admitting distance pairs

Given: Orientation $S$ of $C_{6}$, edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$, integers $d_{1}, d_{2}, k, d$.

## Lemma: Conditions for admitting distance pairs

- Given: Orientation $S$ of $C_{6}$, edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$, integers $d_{1}, d_{2}, k, d$.
- $\quad e$ and $e^{\prime}$ are oriented coherently.
$S$ admits $\left(d_{1}, d_{2}\right)$ if and only if
$n=0, p=4, k \leq d_{1}+d_{2}+4 d$ or
$n=1, p=3, d_{1}+d_{2} \leq d$ or $n \geq 2$.


## Lemma: Conditions for admitting distance pairs

- Given: Orientation $S$ of $C_{6}$, edges $e=u v, e^{\prime}=u^{\prime} v^{\prime} \in E\left(C_{6}\right)$, integers $d_{1}, d_{2}, k, d$.
- $\quad e$ and $e^{\prime}$ are oriented coherently.
$S$ admits $\left(d_{1}, d_{2}\right)$ if and only if
$n=0, p=4, k \leq d_{1}+d_{2}+4 d$ or
$n=1, p=3, d_{1}+d_{2} \leq d$ or $n \geq 2$.
- $e$ and $e^{\prime}$ are oriented incoherently.
$S$ admits ( $d_{1}, d_{2}$ ) if and only if
$n=0, p=4, d_{1}=d_{2}$ or $n \geq 1$.


## Outline of the approach

- Propagating permissible distances through the chain.



## Outline of the approach

- Propagating permissible distances through the chain.
- Apply the lemma to classify the orientations of $C_{6}$,


## Outline of the approach

- Propagating permissible distances through the chain.
- Apply the lemma to classify the orientations of $C_{6}$,
- attribute letters of a (small) alphabet to the classes,


## Outline of the approach

- Propagating permissible distances through the chain.
- Apply the lemma to classify the orientations of $C_{6}$,
- attribute letters of a (small) alphabet to the classes,
- attribute characteristic words to oriented hexagonal systems,


## Outline of the approach

- Propagating permissible distances through the chain.
- Apply the lemma to classify the orientations of $C_{6}$,
- attribute letters of a (small) alphabet to the classes,
- attribute characteristic words to oriented hexagonal systems,
- establish lower bound on $\chi_{c}$ for certain subwords,


## Outline of the approach

- Propagating permissible distances through the chain.
- Apply the lemma to classify the orientations of $C_{6}$,
- attribute letters of a (small) alphabet to the classes,
- attribute characteristic words to oriented hexagonal systems,
- establish lower bound on $\chi_{c}$ for certain subwords,
- find standard coloring with the minimum number of colors.


## Classification of orientations I.

Directed cycle ( $\diamond$ ): $e, e^{\prime}$ coherent, $p=4$.


## Classification of orientations I.

Directed cycle ( $\diamond$ ): $e, e^{\prime}$ coherent, $p=4$.

$k-4 d-d_{1} \leq d_{2} \leq d$. Small $\rightsquigarrow$ large.

## Classification of orientations II.

Obstacle (०): $e, e^{\prime}$ coherent, $p=3, n=1$.


## Classification of orientations II.

Obstacle (०): $e, e^{\prime}$ coherent, $p=3, n=1$.

$0 \leq d_{2} \leq d-d_{1}$. Large $\rightsquigarrow$ small.

## Classification of orientations III.

Extension ( $\triangleright$ ): $e, e^{\prime}$ incoherent, $p=4$.


## Classification of orientations III.

Extension ( $\triangleright$ ): $e, e^{\prime}$ incoherent, $p=4$.

$d_{1} \leq d_{2} \leq d$. Large $\rightsquigarrow$ large.

## Classification of orientations IV.

Antiextension ( $\triangleleft$ ): $e, e^{\prime}$ incoherent, $n=4$.


## Classification of orientations IV.

Antiextension ( $\triangleleft$ ): $e, e^{\prime}$ incoherent, $n=4$.

$0 \leq d_{2} \leq d_{1}$. Small $\rightsquigarrow$ small.

## Classification of orientations V.

Other (*): at least two edges in every direction.


## Classification of orientations V.

Other (*): at least two edges in every direction.

$0 \leq d_{1}, d_{2} \leq d$. Freedom.

## Hexagonal systems and words



Characteristics of orientation $S$ :

$$
\lambda(S)=\diamond * \triangleleft * * \triangleleft
$$

## Words of obstruction

$$
\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\} .
$$

## Words of obstruction

$$
\begin{aligned}
& \mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\} . \\
& \mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\} .
\end{aligned}
$$

## Words of obstruction

- $\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\}$.
- $\mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\}$.
$\mathcal{O}^{d}=\left\{w w^{\prime} \mid w \in \mathcal{O}^{d-1}, w^{\prime} \in \mathcal{U}\right\}$.


## Words of obstruction

- $\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\}$.
- $\mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\}$.
- $\mathcal{O}^{d}=\left\{w w^{\prime} \mid w \in \mathcal{O}^{d-1}, w^{\prime} \in \mathcal{U}\right\}$.
- $S$ an oriented hexagonal system. Then:


## Words of obstruction

- $\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\}$.
- $\mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\}$.
- $\mathcal{O}^{d}=\left\{w w^{\prime} \mid w \in \mathcal{O}^{d-1}, w^{\prime} \in \mathcal{U}\right\}$.
- $S$ an oriented hexagonal system. Then:
- Lemma: $\lambda(S) \in O^{d}$ implies $\chi_{c}(S) \geq \frac{5 d+1}{4 d+1}$.


## Words of obstruction

- $\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\}$.
- $\mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\}$.
- $\mathcal{O}^{d}=\left\{w w^{\prime} \mid w \in \mathcal{O}^{d-1}, w^{\prime} \in \mathcal{U}\right\}$.
- $S$ an oriented hexagonal system. Then:
- Lemma: $\lambda(S) \in O^{d}$ implies $\chi_{c}(S) \geq \frac{5 d+1}{4 d+1}$.
- Proof: no homomorphisms into $\vec{G}(k, k-d)$ for $k<5 d+1$.


## Words of obstruction

- $\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\}$.
- $\mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\}$.
- $\mathcal{O}^{d}=\left\{w w^{\prime} \mid w \in \mathcal{O}^{d-1}, w^{\prime} \in \mathcal{U}\right\}$.
- $S$ an oriented hexagonal system. Then:
- Lemma: $\lambda(S) \in O^{d}$ implies $\chi_{c}(S) \geq \frac{5 d+1}{4 d+1}$.
- Proof: no homomorphisms into $\vec{G}(k, k-d)$ for $k<5 d+1$.
- Theorem: $n$ largest with $w \in \mathcal{O}^{d}, w$ subword of $\lambda(S)$. Then $\chi_{c}(S)=\frac{5 d+1}{4 d+1}$.


## Words of obstruction

- $\mathcal{U}=\left\{\triangleright^{i} \circ \triangleleft^{j} \diamond \mid i, j \in \mathbb{N}_{0}\right\}$.
- $\mathcal{O}^{0}=\emptyset, \mathcal{O}^{1}=\{\diamond\}$.
- $\mathcal{O}^{d}=\left\{w w^{\prime} \mid w \in \mathcal{O}^{d-1}, w^{\prime} \in \mathcal{U}\right\}$.
- $S$ an oriented hexagonal system. Then:
- Lemma: $\lambda(S) \in O^{d}$ implies $\chi_{c}(S) \geq \frac{5 d+1}{4 d+1}$.
- Proof: no homomorphisms into $\vec{G}(k, k-d)$ for $k<5 d+1$.
- Theorem: $n$ largest with $w \in \mathcal{O}^{d}, w$ subword of $\lambda(S)$. Then $\chi_{c}(S)=\frac{5 d+1}{4 d+1}$.
- Proof: Lemma, coloring algorithm.


## Summary: Duality formulation

- $\mathcal{S}_{d}=$ oriented hexagonal systems with

$$
\chi_{c}(S) \leq \frac{5 d+1}{4 d+1} .
$$

## Summary: Duality formulation

- $\mathcal{S}_{d}=$ oriented hexagonal systems with

$$
\begin{aligned}
\chi_{c}(S) & \leq \frac{5 d+1}{4 d+1} \\
\mathcal{H}_{d} & =\{\vec{G}(5 d+1,4 d+1)\} .
\end{aligned}
$$

## Summary: Duality formulation

- $\mathcal{S}_{d}=$ oriented hexagonal systems with

$$
\begin{aligned}
\chi_{c}(S) & \leq \frac{5 d+1}{4 d+1} \\
\quad \mathcal{H}_{d} & =\{\vec{G}(5 d+1,4 d+1)\} .
\end{aligned}
$$

- $\mathcal{F}_{d}=$ oriented hexagonal systems with $\lambda(S) \in \mathcal{O}^{d+1}$.


## Summary: Duality formulation

- $\mathcal{S}_{d}=$ oriented hexagonal systems with

$$
\begin{aligned}
& \chi_{c}(S) \leq \frac{5 d+1}{4 d+1} \\
& \quad \mathcal{H}_{d}=\{\vec{G}(5 d+1,4 d+1)\} .
\end{aligned}
$$

- $\mathcal{F}_{d}=$ oriented hexagonal systems with
$\lambda(S) \in \mathcal{O}^{d+1}$.
- $S$ an oriented hexagonal system. Then:
$\exists D \in \mathcal{H}_{d} \ni: S \rightarrow D \Leftrightarrow S \in \mathcal{S}_{d} \Leftrightarrow \nexists D \in \mathcal{F}_{d} \ni: D \rightarrow S$.

