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MAP/ML Decoding Algorithm (Part 1)

Channel Channel
DecodingCoding

SinkBSS Channel
XU Y X̂ Û

Assume that the codeword x ∈ C was sent, the word y ∈ Yn was received,
and based on y we would like to find the “most likely” transmitted
codeword x̂. An algorithm that performs the above task is called a
decoding algorithm.

• Symbol-wise MAP decoding gives

x̂i (y) = argmax
xi ∈X

PXi |Y(xi |y) (for each i = 1, . . . ,n).

• Block-wise MAP decoding gives

x̂(y) = argmax
x∈C

PX|Y(x|y).

transparency 3 Vontobel/Koetter



CSL/UIUC Graph Covers and Iterative Decoding

MAP/ML Decoding Algorithm (Part 2)

decision boundary

decide for red codeword

decide for green codeword

decision boundary

decide for red codeword

decide for blue codeword

decide for green codeword

Left-hand side: MAP (ML) decision re-
gions for a codebook with two codewords.

Right-hand side: MAP (ML) decision re-
gions for a codebook with three code-
words.

These are decision regions (where the axes are log-likelihoods of the symbols) for block-wise
MAP decoding, under the assumption that all codewords are equally likely.

Based on the Hamming distances of the codewords we can calculate the distances to the
decision boundaries.
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Tanner/Factor Graph of an LDPC Code

Example:

H =







1 1 1 0 0

0 1 0 1 1

0 0 1 1 1







fXOR(1)X2

X1

X3

X4

X5

fXOR(2)

fXOR(3)

This factor/Tanner graph has cylces of
length four, six, and eight.

LDPC codes in general:

• An LDPC code has a matrix
with very few ones.

• ( j ,k)-regular LDPC code:
all bit nodes have degree j
and all check nodes have
degree k. Equivalently, H,
has uniform column weight
j and uniform row weight k.

• One can show that fac-
tor/Tanner graphs of good
codes have cycles (under
the assumption of bounded
state-space sizes).
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Message-Passing Decoding Algorithms

For interesting code sizes, the above MAP/ML decoding procedures are intractable, therefore
we need low-complexity, sub-optimal algorithms: message-passing algorithms are such a
class of decoding algorithms.

fXOR(2)

X2 = U2

X3

fXOR(3)

pY3|X3

pY2|X2

Y4

Y5

Y2

Y5

Y3

Y4

X1 = U1

pY2|X2

pY3|X3

X1 = U1

pY5|X5

pY4|X4

X3Y3

pY1|X1

pY5|X5

i-th iteration i.5-th iteration

Y2

Y1

fXOR(1)

fXOR(3)

fXOR(2)

X2 = U2

X4

X5

Y1

pY4|X4

X5

X4

pY1|X1

fXOR(1)

A message-passing algorithm

• sends messages along the edges,

• does processing of the messages at the vertices.

Note: all operations are performed locally!
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Analysis of Message-Passing Algorithms
in finite length graphs

• Wiberg (1996): pseudo-codewords, computation tree,
pseudo-weight, deviation set

• Horn (1999): pseudo-codewords, cycle codes

• Forney et al. (2001): extensions to other channels, tail-biting-
trellis

• Frey et al. (2001): signal-space interpretation of iterative de-
coding

• Di et al. (2002): stopping sets, erasure channel

• MacKay et al. (2002): near codewords

• Tian et al. (2002): extrinsic message degree

• Feldman (2003): linear progamming decoding

• Richardson (2003): trapping sets

• enormous anecdotal evidence . . .
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A Simple Example (Part 1)

X2

X1

X3

We consider the (trivial) binary linear [3,0,∞] code C with parity-check
matrix

H =







1 1 0

1 1 1

0 1 1






.

• Obviously, C =
{

(0,0,0)
}

.

• Symbol-wise MAP decoding: yields always x̂1 = 0, x̂2 = 0, x̂3 = 0
(independent of y).

• Block-wise MAP decoding: yields always x̂ = (0,0,0)
(independent of y).
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A Simple Example (Part 2)

λ1

λ2

λ3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

The plot shows the decision regions when using the sum-product
algorithm for the trivial code (here, λ3 = −0.45). As can be seen, the
decision region for x̂1 = 0, x̂2 = 0, x̂3 = 0 seems to be described by

λ1 +λ2 +λ3 > 0.
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A Simple Example (Part 3)

The plot shows the convergence time when using the sum-product algorithm for the trivial
code (here, λ3 = −0.45). As can be seen, the convergence time increases towards the plane

λ1 +λ2 +λ3 = 0.

The message-passing decoding algorithm behaves as if code C were a repetition code. But
where is the all-ones word in the decoding? Before we continue to give an interpretation of
these results, we have to introduce graph covers . . .
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Graph Covers (Part 1)

original graph
sample of possible
double covers of

the original graph

Definition: A double cover of a graph is . . .

Note: the above graph has 2! ·2! ·2! ·2! ·2! = 32 double covers.
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Graph Covers (Part 2)

original graph double cover of triple cover of
(a possible)

the original graph the original graph

(a possible)

· · ·

Besides double covers, a graph also has many triple covers,
quadruple covers, quintuple covers, etc.
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Graph Covers (Part 3)

original graph
original graph

(possible)
m-fold cover of

· · ·

· · · · · ·

· · ·

m

π2 π3

π1

π5

π4

An m-fold cover is also called a cover of degree m. Do not confuse
this degree with the degree of a vertex!

Note: there are many possible m-fold covers of a graph.
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Factor-Graph Covers (Part 1)

π4

π5

π6

X1

X4

m

m

X1

X3

X2 X2

X3

X4

π3

π2

π1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Similarly to graph covers, we can also define factor graph covers.
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A Simple Example (Part 4)

factor graph

(a possible)
triple cover of the

original factor graph

(a possible)
double cover of the
original factor graph

X3

X2

X1

original

X2

X3X3

X2

X1 X1

The figure shows a (possible) double cover and a (possible) triple
cover of the original factor graph.
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A Simple Example (Part 5)

factor graph
original

original factor graph
triple cover of the

(a possible)

X3

X1

X2

original factor graph
double cover of the

(a possible)

X3

X2

0

0

0

1

X1 1

1

1

1

1

X1

X2

X3

The figure shows a (possible) double and a (possible) triple cover of the
original factor graph.

Assume that λ1 +λ2 +λ3 < 0. Then the indicated (valid) configuration in
the triple cover has a larger likelihood than the the all-zeros configuration.
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A Simple Example (Part 6)
i-th iteration i.5-th iteration

Why do factor graph covers matter? Well, a locally operating decoding algorithm cannot
distinguish if it is decoding on the original factor graph or on any of its covers.

The messages in the triple cover factor graph correspond to three identical copies of the
messages in the original factor graph.
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Factor-Graph Covers (Part 2)

Two questions:

• What is the influence of a valid configuration of a finite cover
upon the decoding behavior?

=⇒ Pseudo-weight

• How do we characterize all the valid configurations from all
the finite covers?

=⇒ Pseudo-codewords
=⇒ Fundamental polytope / fundamental cone
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Valid Configurations in Factor Graph Covers (Part 1)

• We are looking at the factor graph of a code C of length n. We
assume that all codewords are equally likely.

• We assume to have an m-fold cover of the factor graph. The valid
configurations of this factor graph cover form a code C̃ with
codewords of length m ·n.

• Let 0̃ be the lifting of 0 to the cover.

• Let x̃ be a (valid) configuration in the cover.

• Let ỹ be the lifting of y to the cover, i.e. ỹi ,`
4
= yi .

• Let λi
4
= log

PYi |Xi
(yi |0)

PYi |Xi
(yi |1) be the i-th log-likelihood ratio.

We calculate

log
PỸ|X̃(ỹ|0̃)

PỸ|X̃(ỹ|x̃)
=

n
∑

i=1

m
∑

`=1

log
PYi |Xi (ỹi ,`|0)

PYi |Xi (ỹi ,`|x̃i ,`)
=

n
∑

i=1

∣

∣

{

` | x̃i ,` = 1
}∣

∣ ·λi .
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Valid Configurations in Factor Graph Covers (Part 2)

We see that all we need to know is how often the variables in a cover
assume the value 1 or 0. Therefore, we define

ωi (x̃)
4
=

∣

∣

{

` | x̃i ,` = 1
}
∣

∣

m
, ω(x̃)

4
=
(

ω1(x̃),ω2(x̃), . . . ,ωn (x̃)
)

,

and obtain

log
PỸ|X̃(ỹ|0̃)

PỸ|X̃(ỹ|x̃)
=

n
∑

i=1

∣

∣

{

` | x̃i ,` = 1
}
∣

∣ ·λi = m ·

n
∑

i=1

∣

∣

{

` | x̃i ,` = 1
}∣

∣

m
·λi

= m ·

n
∑

i=1

ωi (x̃) ·λi

∝
〈

ω(x̃),λ
〉

.

The vector ω(x̃) gives the information what influence the configuration x̃
(that lives in the cover factor graph) has when competing against the
all-zeros codeword. We call ω(x̃) a pseudo-codeword.
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Pseudo-Weight / Pseudo-Distance (Part 1)

Assume, that only the zero codeword 0 and the pseudo-codeword ω(x̃)
are competing against each other.

decision boundary

0

”decide” for pseudo-codeword

decide for zero codeword

log
PỸ|X̃(ỹ|0̃)

PỸ|X̃(ỹ|x̃)
> 0 ⇐⇒

〈

ω(x̃),λ
〉

> 0
AWGNC
⇐⇒

〈

ω(x̃),y
〉

> 0
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Pseudo-Weight / Pseudo-Distance (Part 2)

decision boundary

x = 0

”decide” for pseudo-codeword

decide for zero codeword

pseudo-distance/weight

Virtual Point
corresponding to

distance to

the pseudo-codeword

decision boundary

Based on the distance to the decision boundary we introduce a virtual
point corresponding to the pseudo-codeword. The “distance”/weight of
the virtual point is measured by the pseudo-“distance”/weight

wAWGNC
p (ω)

4
=

||ω||21

||ω||22

=
(|ω1|+ · · ·+ |ωn |)2

|ω1|
2 +·· ·+ |ωn |2

=
(ω1 +·· ·+ωn )2

ω2
1 +·· ·+ω2

n
.
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Pseudo-Codewords (Part 1)

In any locally operating message passing algorithm, the set of
pseudo-codewords competes with the transmitted codeword for
being the “best” solution!

How to characterize the set of pseudo-codewords ω from the
union of all degree-m covers for m = 1,2,3, . . .?

X4

X3

X2

X1

m

m

π6

π5

π4

π3

π2

π1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
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Pseudo-Codewords (Part 2)

For a typical check we have:

π2

π3

π1

ω3

ω2
.

.

.

ω1

.

.

.

.

.

.

.

.

.

We can find permutations π1, π2, π3 for the tuple ω1,
ω2, ω3 if and only if

0 ≤ ω1 ≤ 1

0 ≤ ω2 ≤ 1

0 ≤ ω3 ≤ 1

and

−ω1 +ω2 +ω3 ≥ 0

+ω1 −ω2 +ω3 ≥ 0

+ω1 +ω2 −ω3 ≥ 0

+ω1 +ω2 +ω3 ≤ 2

or, equivalently,

0 ≤ ωi ≤ 1 and
max

{

ω1,ω2,ω3
}

≤ 1
2

(

ω1 +ω2 +ω3
)

ω1 +ω2 +ω3 ≤ 2

transparency 24 Vontobel/Koetter



CSL/UIUC Graph Covers and Iterative Decoding

Pseudo-Codewords (Part 3)

ω1

ω3

(0, 0, 0)

(1, 1, 0)

ω2

(1, 0, 1)

(0, 1, 1)

The set of all allowed configurations (ω1,ω2,ω3) is called the
fundamental polytope.
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Pseudo-Codewords (Part 4)

In general, we have that a check of degree δ constrains the set of allowable ω1, ω2 , . . ., ωδ to
values such that

max
{

ω1,ω2, . . . ,ωδ
}

≤
1

2

δ
∑

i=1

ωi , (additional affine inequalities), 0 ≤ ωi ≤ 1.

We define an indicator function

Îδ (ω1,ω2, . . . ,ωδ ) =

{

1 max
{

ω1,ω2, . . . ,ωδ
}

≤ 1
2
∑δ

i=1 ωi , (additional affine inequalities),

0 otherwise.

The indicator funtions Îδ (ω1,ω2, . . . ,ωδ ) will allow us to write a facor graph for the
pseudo-codeword indicator function.

In order to describe (traditional) codewords, we will use

Iδ (x1, x2, . . . , xδ ) =

{

1 x1 + x2 +·· ·+ xδ = 0 (mod 2),
0 otherwise.
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Pseudo-Codewords (Part 5)

Î3(x4, x5, x6)

Î3(x2, x3, x4)

Î3(x1, x2, x5)I3(x1, x2, x5)

x6

x5

x4

ω1

ω2

ω3x3

x2

x1

I3(x4, x5, x6)

I3(x2, x3, x4)

ω6

ω5

ω4

Codeword indicator function:
I3(x1, x2, x5) · I3(x2, x3, x4) · I3(x4, x5, x6)

Set of codewords:

discrete set of size 2dim(C) in �

n

Remember:
xi ∈

{

0,1
}

Pseudo-codeword indicator function:
Î3(ω1,ω2,ω5) · Î3(ω2,ω3,ω4) · Î3(ω4,ω5,ω6)

Set of all pseudo-codewords:

dense in the fund. polytope in �

n that is cut
out by the individual indicator functions

Remember:
ωi ∈

[

0,1
]
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Pseudo-Codewords (Part 6)

For ML/MAP decoding:

minimum Hamming weight / Hamming weight spectrum
is relevant!

For message-passing decoding:

minimum pseudo-weight / pseudo-weight spectrum
is relevant!

Given an LDPC code graph, we therefore want to find the minimum
pseudo-weight rather than the minimum Hamming weight!

Note: whereas the minimum Hamming weight is a function of the
code, the minimum pseudo-weight is a function of a factor graph
that is a realization of the code.
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[7,4,3] Hamming Code

We consider a possible factor/Tanner graph realization of the [7,4,3]
Hamming code.

ω4 = 1/3

ω5 = 0

ω3 = 0ω2 = 0

ω6 = 1/3

ω1 = 1

ω7 = 1/3

The (scaled) pseudo-codeword shown in the above figure is

ω =

(

1 0 0 1
3 0 1

3
1
3

)

.

It has pseudo-weight wAWGNC
p (ω) = 3.
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A [155,64,20] Code by Tanner (Part 1)

A (3,5)-regular LDPC code constructed by Tanner.

Codelength 155

Rate 64/155 = 0.4129

Girth of the factor graph 8 (optimal)

Diameter of the factor graph 6 (optimal)

Minimum Hamming weight 20

Minimum pseudo-weight 10.8 < wAWGNC
p,min < 16.4
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A [155,64,20] Code by Tanner (Part 2)
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The horizontal axis shows the parameter α; α = 0.5 corresponds to the hypothetical decision
boundary.

α

0 1/2 1
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Bounds on the Minimum Pseudo-Weight

For a given factor graph of a given code, we would like to find the
minimum pseudo-weight, or at least lower and upper bounds for it.

Techniques for obtaining upper bounds on the min. pseudo-weight:

• The pseudo-weight of any valid pseudo-codeword gives an
upper bound.

• Canonical completion.

Techniques for obtaining lower bounds on the min. pseudo-weight:

• Bounds based on largest and second largest eigenvalue of
HT ·H.

• Linear programming bounds.

transparency 32 Vontobel/Koetter



CSL/UIUC Graph Covers and Iterative Decoding

An Upper Bound on the Minimum Pseudo-Weight
based on the Canonical Completion (Part 1)

2`
−

1

2(
`
−

1)Tier: 4321

1
(k−1)2

0

1
(k−1)`−1

1
(k−1)`

1
3

1
9

1
k−1

1

1

2`

The canonical completion for a (3,4)-regular LDPC code. On
check-regular graphs the canonical completion always gives a (valid)
pseudo-codeword.
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An Upper Bound on the Minimum Pseudo-Weight
based on the Canonical Completion (Part 2)

Example: [7,4,3] binary Hamming code.

ω4 = 1/3

ω5 = 1/9

ω3 = 1/9ω2 = 1/9

ω6 = 1/3

ω1 = 1

ω7 = 1/3

The (scaled) pseudo-codeword of the canoni-
cal completion starting at ω1 is

ω =
(

1 1
9

1
9

1
3

1
9

1
3

1
3

)

.

The pseudo-weight of ω is

wAWGNC
p (ω) =

||ω||21
||ω||22

=

(

1+ 1
9 + 1

9 + 1
3 + 1

9 + 1
3 + 1

3

)2

1+ 1
81 + 1

81 + 1
9 + 1

81 + 1
9 + 1

9
= 3.973.
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An Upper Bound on the Minimum Pseudo-Weight
based on the Canonical Completion (Part 3)

Theorem: Let C be a ( j ,k)-regular LDPC code with 3 ≤ j < k. Then the
minimum pseudo-weight is upper bounded by

wAWGNC
p,min (C) ≤ β ′

j ,k ·nβj ,k ,

where

β ′
j ,k =

(

j( j −1)

j −2

)2

, βj ,k =
log

(

( j −1)2)

log
(

( j −1)(k −1)
)< 1.

Corollary: The minimum relative pseudo-weight for any sequence {Ci } of
( j ,k)-regular LDPC codes of increasing length satisfies

lim
n→∞

(

wAWGNC
p,min (Ci )

n

)

= 0.
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A Lower Bound on the Minimum Pseudo-Weight
based on Eigenvalues

Let C be a ( j ,k)-regular code of length n.

• Let H be the parity-check matrix.

• We assume that the corresponding factor/Tanner graph has
one component.

• Let L
4
= HTH.

• Let µ1 and µ2 be the largest and second largest eigenvalue,
respectively, of L.

Then the minimum Hamming weight and the minimum AWGNC
pseudo-weight of C are lower bounded by

wmin
H (C) ≥ wmin

p (C) ≥ n ·
2 j −µ2

µ1 −µ2
.

transparency 36 Vontobel/Koetter



CSL/UIUC Graph Covers and Iterative Decoding

A Lower Bound on The Minimum Pseudo-Weight
based on Linear Programming

Let ω be any pseudo-codeword with ||ω||1 = 1. Then the
(rank-1) matrix

M
4
= ω

T ·ω =





















ω2
1 ω1ω2 ω1ω3 · · · ω1ωn

ω2ω1 ω2
2 ω2ω3 · · · ω2ωn

ω3ω1 ω3ω2 ω2
3 · · · ω3ωn

.

.

.
.
.
.

.

.

.
. . .

.

.

.

ωnω1 ωnω2 ωnω3 · · · ω2
n





















has the following properties:

• entries are non-negative,

•
∑

i , j [M]i , j = 1,

• Trace(M) = ||ω||22 ,

• row i of M equals ωi ·ω,

• column j of M equals ωj ·ωT.

Maximizing

Trace(N )

over all n × n-matrices N
(not necessarily of rank 1)
that fulfill

• entries are non-
negative,

•
∑

i , j [N]i , j = 1,

• the rows are in the
fundamental cone,

• the columns are
in the fundamental
cone,

we obtain 1/Trace(N ) as
a lower bound on the
minimum pseudo-weight.
(Note: the above optimiza-
tion problem is a linear
program.)
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Pseudo-Weights for other Channels

Let ω be a (valid) pseudo-codeword. For each channel we can define a
pseudo-weight, see [Wiberg:96], [FKKR:01].

• The AWGN channel pseudo-weight wp(ω) of ω is given by

wAWGNC
p (ω) =

||ω||21

||ω||22

=
(|ω1|+ · · ·+ |ωn |)2

|ω1|
2 +·· ·+ |ωn |2

=
(ω1 +·· ·+ωn )2

ω2
1 +·· ·+ω2

n
.

• The BSC channel pseudo-weight wBSC
p (ω) is twice the median of the

descendingly sorted vector ω.

• The BEC channel pseudo-weight wBEC
p (ω) is the support of ω, i.e.

wBEC
p (ω) = supp(ω) =

∣

∣

{

i ∈ {1, . . . ,n} | ωi 6= 0
}
∣

∣.

Note: the pseudo-weight definition depends on the channel but the
fundamental polytope/cone is independent of the channel!
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Connections to the Linear Programming Decoder
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Max-Product decoder vs. linear program decoder

• The linear programming
decoder was recently in-
troduced by Feldman,
Karger, and Wainwright.

• They formulate the de-
coding of a code as a re-
laxed integer program-
ming problem in order to
obtain a linear program.

• The most canonical re-
laxation yields exactly
the polytope that we
called the fundamental
polytope.
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Conclusions and Outlook (Part 1)

• MAP/ML vs. message-passing decoding:

• When using a MAP/ML decoder, the transmitted
codeword competes against all other codewords
in the code.

• When using a locally operating message-passing
algorithms, the transmitted codeword competes
against all pseudo-codewords.

• Codewords in graph covers are the systematic price
one has to pay for using any locally operating mes-
sage passing algorithm.

• Pseudo-codewords are characterized by funda-
mental polytope/cone.

• The pseudo-weight indicates badness of pseudo-
codeword.
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Conclusions and Outlook (Part 2)

• We have shown several techniques to lower/upper
bound the minimum pseudo-weight of a factor graph
realization of a code.

• Future work: LDPC code construction based on the
avoidance of “bad patterns”.

• An intriguing question: how to design codes with good
minimum pseudo-distance!
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