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I - Introduction

Purpose:

To show that the topological structure associated with each metric space
(block diagram) should be considered in the design of a communication
system.

What should be the approach?

The identification of the surface topology of each block diagram, starting
with the graph associated with the DMC channel.

Consequences:

New mathematical concepts and approaches may be incorporated to
the already known ones to achieve the goals of better performance and
less complexity.
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Figure 1: Communication system model

� Current design is based on metric spaces (vector space structure).

� Proposal: design should also consider the topological structure
associated with each metric space.
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Results:

� To extend the concept of geometrically uniform codes (Euclidean
space) to other spaces with constant curvature (homogeneous
spaces, in particular, to the hyperbolic space);

� To consider the performance analysis of a digital communication
system in n-dimensional manifolds;

� To show the best performance, among the spaces with constant
curvature, is achieved when the curvature is negative.
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Motivation for the Proposal: First Case
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Motivation for the Proposal: Second Case
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Figure 4: Metric and Topological spaces
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Classification Theorem for Surfaces (with boundary):

Every compact, connected surface is topologically equivalent to a
sphere, or a connected sum of tori, or a connected sum of projective
planes (with some finite number of discs removed).

Example 1 Ω# 2T� g# 2 � χ ! Ω "# % 2

Plane Model Space Model

Edges identification
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Figure 6: 2 Torus
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The majority of DMC channels of practical interest are embedded in
compact surfaces with genus g# 1 � 2 � 3.

This motivates us to construct signal sets matched to groups, equivalently,
GU signal sets;

� The design of GU signal sets is strongly dependent on the existence of
regular tessellations in homogeneous spaces.

� Homogeneous spaces are important for the rich algebraic and
geometric properties, so far not fully explored in the context of
communication and coding theory.

� The algebraic structures provide the means for systematic devices
implementations whereas the geometric properties are relevant with
respect to the efficiency of demodulation and decoding processes.
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II - Embedding of Graphs in Surfaces

! i " Minimum genus of an oriented surface is, [Ringel]:

gm ! Km � n "$# + ! m% 2 " ! n% 2 ", 4 - � for m � n ) 2 �

where + a - denotes the least integer greater than or equal to the real
number a.

! ii " Maximum genus of an oriented surface is, [Ringeisen]:

gM ! Km � n " #  ! m% 1 " ! n% 1 ", 2 � � for m � n ) 1 �

where  a � denotes the greatest integer less than or equal to the real
number a.

! iii " Minimum genus of a non-oriented surface is, [Ringel]:

g̃ ! Km � n " #  ! m% 2 " ! n% 2 ", 2 �/.
Theorem 1 (Ringeisen) If a graph G has a 2-cell embedding in surfaces of
genus gm and gM, then for every integer g, gm 0 g 0 gM , G has a 2-cell
embedding in a surface of genus g.
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Assumption: All embeddings are 2-cell embeddings of Km � n preserving the
Euler characteristic of Ω.

Needed Elements:

� A model 1 mn� Ω ! α "# 2 α
i3 1Ri spanned by the minimum embedding of

the graph Km � n in an oriented compact surface Ω.

� The cardinality of the set of models 1 mn,

4 α# + 1 mn : Km � n �� Ω ! α " and 1 mn� Ω ! α " - .

The number of regions associated with 1 mn is constant and depends
on χ ! Ω " .
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¿From this, and Theorem 1, we have

Proposition 1 If Ω� gT (a g-torus), then the number of regions of 1 mn is
5 1 mn 5# 2% 2g% m% n 6 mn �87 1 mn9 4 α.

Proposition 2 Let 1 mn� Ω ! α " and 1 mn# : α
j3 1 Ri j , then i j is always an even

integer greater than or equal to 4.

Lemma 1 The cardinality of the set 4 α is equal to the number of positive
integer solutions of the following equations

2mn# 4R4 6 6R6 6 8R8 6�; ; ; and ∑i < 0 R4 = 2i# α �

where Rk denotes the number of regions with k edges.
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Definition 1 A channel class Cm � n is the set consisting of all channels with m
vertices in X and n vertices in Y .

! i " Channel class Cm � n  P� Q �# Cm � n  + p1 �; ; ; � pm - � + q1 �; ; ; � qn - � ;

! ii " Channel class Cm � n  p � q � . A type of soft-decision channel;

! iii " Channel class Cm  p � . A type of hard-decision channel.
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Let > Ω ! α "? denote the set of surfaces corresponding to the embeddings
of Cm � n  P� Q � �� Ω ! α " , that is,

> Ω ! α "? # + Ω ! α " ,Ω1 ! α% 1 " ,; ; ; ,Ωα@ 1 ! 1 " - �

where Ωi ! j " denotes surface Ω with j regions and i discs removed.

Lemma 2 If Cm  p � �� gmT ! α " and Cm  p � �� g̃P ! β " are minimum embeddings,
then the set of surfaces for the 2-cell embedding of the Cm  p � channel is

A

Sm � p#
BCCC

D CCCE
F > ! gm 6 i " T ! α% 2i "?HG α@ 2 IJ 2

i3 0 K 2F > ! g̃ 6 j " P ! β% j "? β@ 1
j3 0 K if α is even

F > ! gm 6 i " T ! α% 2i "?LG α@ 1 IJ 2
i3 0 K 2F > ! g̃ 6 j " P ! β% j "? β@ 1

j3 0 K if α is odd.

where the corresponding surfaces are denoted by T (torus) and P
(projective plane).
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Riemann Surfaces as Quotient Spaces for the Embeddings

Uniformization Theorem (Klein, Poincaré, Köbe): Every simply connected
Riemann surface is conformally equivalent to one of the three Riemann
surfaces, universal covering,

AM # M : + ∞ - � N 2, Riemann sphere; M � O 2 ,
complex plane; P 2 , upper half-plane.

A Riemann surface P 2, Γ may be constructed from P 2 and a subgroup
Γ Q Aut ! P 2 " . However, Γ has to satisfy: every element of Γ, except the
identity, has no fixed points in P 2 , and acts properly discontinuously on P 2 .
Γ is called a Fuchsian group.

The elements of a Fuchsian group are Möbius transformations:

� Aut ! ∆ " (Poincaré disc) � T ! z "# az = b
bz = a � a � b9 M � 5 a 5 2% 5 b 5 2# 1.

� Aut ! P 2 " (upper half-plane) � T ! z "$# az = b
cz = d � a � b � c � d9 O � ad% bc# 1.
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In order to obtain a geometric image of P 2, Γ, we use a fundamental
domain for Γ. An open set F of P 2 is a fundamental domain for Γ if

� T ! F "SR F# /0 �7 T9 Γ � T T# id (properly discontinuously);

� If

U

F is the closure of F in P 2 , then P 2# : T V Γ T !U

F " .
Therefore, P 2, Γ� U

F with points in ∂F identified by the elements of Γ.

Figure 7: Fundamental domain of the 2-torus
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Steps for the Embedding of DMC Channels in Surfaces

P1 - Identify the complete bipartite graph Km � n having Cm � n  P� Q � channel as
a subgraph;

P2 - Determine gm and gM of the surfaces for the embedding of Km � n
associated with the Cm � n  P� Q � channel. From Theorem 1, if Km � n �� Ω
and Ω has genus g, then gm 0 g 0 gM ;

P3 - For each g use Proposition 1 and identify a model 1 mn �� Ω ! α " ;
P4 - For each model in P3 identify the set of surfaces generated by Ω ! α " ,

> Ω ! α "? , apply Lemma 2 to obtain the set of surfaces

A

Sm � n for the
embeddings of the Cm � n  P� Q � channel;

P5 - Use Lemma 1 and identify in P4 the set of regular tessellations with m
identical regions.
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Examples of Embedded DMC Channels

The surfaces are denoted by S (sphere), T (torus), P (projective plane) or
K (Klein bottle).

BSC Channel

C2  2 � � K2 � 2 �� A
S2 � 2# + S ! 2 " � S1 ! 1 " � P ! 2 " � P ! 1 " � P1 ! 1 " - .

Figure 8: C2  2 � channel
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Ternary Channels with Degree 3

C3  3 � � K3 � 3 �� A
S3 � 3# + > T ! 3 "? � 2T ! 1 " � > P ! 4 "? � > K ! 3 "? � > 3P ! 2 "? � 2K ! 1 " - .

Ξ3 � 3# + T  3R6 � P1  3R4 � � K  3R6 � - .

Figure 9: C3  3 � channel
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Minimal Surfaces - Embedding Channels in n-noid

Definition 2 An α-totem channel is a tower of α Cm � n  P� Q � channels, with
α ) 3.

Figure 10: 3-totem channel embedded in a catenoid

A

S3-totem# + S ! 4 " � T ! 2 " � S1 ! 3 " � 2N ! 2 " � S3 ! 1 " � T1 ! 1 " - .
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Embedding Channels in a Torus with 3 Boundary Components

Fig. 11 shows the embedding of the C6  4 � channel in an oriented compact
surface of genus one with three boundary components, denoted by T3

C6  4 � �� T3# 9R4.

Figure 11: 8-totem channel embedded in a torus with 3N
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III - GU Signal Sets in Homogeneous Spaces

Among the important facts about Slepian signal sets, ”spherical codes”,
is the association of discrete groups of isometries to such signal sets. So is
for Lattice signal sets, ”torus codes”.

Forney´s introduction of GU codes (isometry codes) in 1991, intensified
the search for signal sets associated with discrete groups of isometries in
metric spaces and placed the previous two approaches in the same
context.

Therefore, the next step is to look for signal sets as either subsets of regular
tessellations in P 2 or on compact (non-compact) surfaces with g ) 2
obtained by quotient, ”g-torus codes”.
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Hyperbolic Signal Sets

Definition 3 A regular tessellation in P 2 is a partition of P 2 by
non-overlapping regular polygons with the same number of edges which
intersect entirely on edges or vertices. A regular tessellation in which q
regular p-gons meet at each vertex is denoted by + p � q - .
Euclidean + p � q - exists iff ! p% 2 " ! q% 2 "# 4. Solutions: + 4 � 4 - ; + 6 � 3 - ; + 3 � 6 - .
Hyperbolic + p � q - exists iff ! p% 2 " ! q% 2 "' 4. Solutions: infinite.

Associated with each + p � q - is the complete symmetry group  p � q � of

+ p � q - . This is the isometry group of P 2 .

The group  p � q � is generated by r1, r2 and r3 in the sides of the hyperbolic

triangle with angles
π
2 � π

p � π
q

. The presentation of  p � q � is

 p � q �# W r1 � r2 � r3 : r2
1# r2

2# r2
3# ! r2r1 " p# ! r3r2 " q# ! r1r3 " 2# e X .
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Tessellation + p � q -Y% � group  p � q � .
Dual tessellation + q � p -Y% � group  q � p � .
When  p � q �#  q � p � , it is called self-dual.

If p# q# 4g, g ) 2, then + 4g � 4g - is such that the identification of its sides
yields a universal covering for P 2 as an oriented compact surface of
genus g and its group  4g � 4g � has as a normal subgroup,

πg# a1 �. . . � ag � b1 �. . . � bg :
g

∏
i3 1

 ai � bi �# e (fundamental group)

Since the fundamental region is a polygon with 4g sides, it follows that its
symmetry group isZ 4g . Therefore,  4g � 4g �# πg[ Z 4g .
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Quotient Space Approach (Compact Surfaces)

The hyperbolic space is relevant for:

� Any g-torus, locally isometric to P 2 , can be obtained topologically by

P 2, G\ # Tg, where G is a Fuchsian group.

� For each genus g, this action occurs by the identification of edges in a
regular polygon with 4g or 4g 6 2 edges in P 2 by 2g or 2g 6 1 isometries
which generate G.

This provides a systematic way of generating signal sets on Tg. Any
Fuchsian group Γ9 P 2 such that G Q Γ is a normal subgroup may be used
to generate GU signal sets on Tg.
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An important aspect when considering quotients E, G of spaces with
constant curvature by discrete groups of isometries is that the geometry
of the space E is induced to the quotient by the projection of orbits,

π : E % � E, G

x % � π ! x "# Gx

that is, all local metric properties in E are preserved in E, G due to the
existence for each p9 E of a neighborhood Vp Q E such that π ]Vp is
injective due to the fact that G consists of isometries (therefore preserving
metric properties).

This means that the study of signal sets in the quotient is related to the
study of signal sets in E, however, locally.
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Figure 12: 2-torus.
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Figure 13: 3-torus.
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Figure 14: Hyperbolic Cylinder.
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IV - Performance of Signal Sets in Riemannian Manifolds

Elements of Riemannian Geometry

Definition 4 A differentiable manifold of dimension n consists of a set M
and a family of bijective mappings xα : Uα Q O n� M of open sets Uα of O n

in M such that

1. 2 αxα ! Uα " # M.

2. For every pair α and β, with xα ! Uα "R xβ ! Uβ "# W T# φ, the sets x@ 1
α ! W " and

x@ 1
β ! W " are open sets in O n and the mappings x@ 1

β^ xα are
differentiable.

3. The family + ! Uα � xα " - is maximal with respect to (1) e (2).
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Definition 5 A Riemannian metric in a differentiable manifold M is a
correspondence associating with each point p of M a dot product > � ? p

(that is, a positive definite, symmetric, bilinear form) in the tangent space
TpM, varying differentiably.

We use a Riemannian metric to determine the length of a curve
c : I Q O � M constrained to the closed interval  a � b � Q I as follows

s# b

a _

dc
dt � dc

dt `
1J 2

dt �
where dcG t I

dt denotes a vector field originating from c ! t " .
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A parameterized curve γ : I� M is a geodesic γ ! t " # ! x1 ! t " �. . . � xn ! t " " in a
system of coordinates ! U � x " if and only if it satisfies

d2xk

dt2 6 ∑
i � j

Γk
i j

dxi

dt
dx j

dt

# 0 � k# 1 �. . . � n � (1)

where Γm
i j are the Christoffel symbols of a Riemannian connection M,

given by

Γm
i j# 1

2 ∑
ka

∂
∂xi

g jk 6 ∂
∂x j

gki% ∂
∂xk

gi j b gkm �

where gkm is an element of the matrix Gkm, whose inverse is Gkm.

Definition 6 (Carmo) Given a point p9 M and a 2-D subspace Σ Q TpM,
with + x � y - any basis for Σ, the real number K ! x � y "$# K ! Σ " is called sectional
curvature of Σ in M, defined by

K ! x � y "$# > R ! x � y " x � y?

5 x 5 2 6 5 y 5 2% > x � y? 2 �

where R ! x � y " denotes the Riemann curvature tensor (depends only on the
metric), and the denominator denotes the area of a 2-D parallelogram.
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Signal Sets in Riemannian Manifolds

In designing signal sets in a Riemannian manifold we may consider
different Riemannian metrics for the modulator, channel and
demodulator. However, the composition has to be matched to the
metric in the metric space ! E � d " originated from the embedding of the
DMC channel.

Definition 7 A signal set X# + x1 �. . . � xm - in an n-dimensional Riemannian
manifold M with a coordinate system ! U � x " is a set of n-dimensional points.

X# + x1# ! x11 �. . . � xn1 " �. . . � xm# ! x1m �. . . � xnm " - Q U.

The distance between any two given points in M will be the least
geodesic distance.
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The noise action is a transformation that takes xm9 M to the received
signal y9 M. This transformation is given by

y# expxm ! v " � v9 TxmM � (2)

where expxm
: Txm M� M is called exponential map.

Note that the exponential map takes the noise in the tangent space to
the manifold M.

Knowing the pdf of the n-D random vector v# ! v1 �. . . � vn " , v9 Txm M. Then

pYJ X3 xm ! y, xm "# pV ! v# exp@ 1
xm ! y " " 5 J 5 � (3)

where 5 J 5 is the Jacobian of the transformation.

If each v j, j# 1 �. . . � n, is gaussian then y is also gaussian, since Txm M is a n-D
vector space.
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The pdf of y is well defined if the Riemannian manifold M is complete, that
is, for every xm9 M the map expxm ! v " is defined for every v9 Txm M.

Let the v js, j# 1 �. . . � n, be gaussian r.v. with zero mean and equal
variances. Then, the pdf of y given xm, is

p ! y, xm " # k1e@ k2d2G y � xm I c det ! G " � (4)

where d2 ! y � xm " is the squared geodesic distance, c det ! G " is the volume
element of the manifold M, and k1, k2 are constants satisfying the
condition

M
k1e@ k2d2G y � xm I c det ! G " dx1. . . dxn# 1. (5)
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Let Rm be the decision region of xm. Then

Pe � m# 1%

Rm

p ! y, xm " dx1. . . dxn. (6)

Pe � m does not depend on a particular coordinate system ! U � x " .
Pe ! X " in a Riemannian manifold may be written as Pe# ∑X P ! xm " Pe � m.

The average energy of X is Et# ∑X P ! xm " d2 ! xm � x̄ " , where d2 ! xm � x̄ " is the
squared geodesic distance and x̄ is the center of mass of the signal set.

It is known that the center of mass minimizes the average energy.
Therefore, x̄ is the unique solution to

∂Et

∂x j

ddddd x3 x̄

# ∑
X

P ! xm " d ! xm � x̄ " ∂d ! xm � x "
∂x j

ddddd x3 x̄

# 0 � j# 1 �. . . � n. (7)

The noise power is defined as

σ2#

M
d2 ! y � xm " p ! y, xm " dx1. . . dxn. (8)
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Determining the PDF in Spaces with K Constant

We consider an example of an M-PSK signal set in a 2-D Riemannian
manifold. For this example, we use the geodesic polar coordinate system,

! ρ � θ " .
In this system, the coefficients g11 ! ρ � θ " , g21 ! ρ � θ "# g12 ! ρ � θ " and g22 ! ρ � θ " of
the Riemannian metric (2e 2 matrix G) must satisfy the following conditions

g11# 1 � g12# g21# 0 � lim
ρ f 0

g22# 0 � lim
ρ f 0 ! g g22 " ρ# 1. (9)

A geodesic γ : I Q R� M in polar coordinates, γ ! t "# ! ρ ! t " � θ ! t " " must satisfy

B
D E

ρh h % 1
2 ! g22 " ρ ! θh " 2# 0 �

θh h 6 G g22 I ρ
g22

ρh θh 6 1
2

G g22 I θ
g22 ! θh " 2# 0.

The distance between signal points in M is given by the length of the
geodesic γ ! t " , from t1 to t2, that is,

s# t2

t1

! ρh " 2 6 g22 ! θh " 2 dt.
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For the polar coordinate system g22 is the solution to

! g g22 " ρρ 6 K g g22# 0 � (10)

where K denotes the sectional curvature of M.

When M is 2-D, K is known as the gaussian curvature.

Assuming K constant, the solutions to (10) are

g22 ! ρ � θ "$#
BCCCC

D CCCCE

ρ2 � if K# 0 (Euclidean) �

1
K sin2 ! g Kρ " � if K' 0 (Elliptic) �

1@ K sinh2 ! g % Kρ " � if K* 0 (Hyperbolic).

(11)

Note that g22 must also satisfy (9), and det ! G "# g22 ! ρ � θ " .
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1- When K# 0, the geodesic distance between any two given points
z1 � z29 O 2 is

d i # 5 z1% z2 5 � (12)

where 5 5 denotes the absolute value of zi# rie jθi , i# 1 � 2.

2- When K' 0, the geodesic distance between any two given points
z1 � z29 N 2 is

d j # 2πl

g K

k 1
j g K

log 5 1 6 z1z̄2 5 6 j 5 z1% z2 5

5 1 6 z1z̄2 5% j 5 z1% z2 5 � (13)

where l is the number of times that a geodesic passes by the point z1

or its antipodal, until arriving at z2, zi# rie jθi and
ri# % j ! e jρil K% 1 ", ! e jρil K 6 1 " , i# 1 � 2.

3- When K* 0, the geodesic distance between any two given points
z1 � z29 P 2 is

d m # 1

g % K
log 5 1% z1z̄2 5 6 5 z1% z2 5

5 1% z1z̄2 5% 5 z1% z2 5 � (14)

where zi# rie jθi and ri# ! eρil @ K% 1 ", ! eρil @ K 6 1 " , i# 1 � 2.
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Therefore, p ! y, xm " and σ2 can be found for each one of the
homogeneous spaces O 2 , N 2 and P 2 . Under this assumption, k1, k2 and σ2

are independent of the transmitted signal xm.

We assume xm# ! 0 � θ " . Hence, for y# ! ρ � θ " , we have

1. For K# 0, the pdf is

p i ! ρ � θ "# k1e@ k2ρ2
ρ � (Rayleigh)

where k1# k2, π and σ2# 1, k2.

2. For K* 0, the pdf is

p m ! ρ � θ "# k1

g % K
e@ k2ρ2

sinh ! g % Kρ " �
with

k1# π@ 3J 2eKJ 4k2 g % Kk2

erf ! g % K, 2 g k2 " � and σ2# 2 g % Kk2eKJ 4k2 6 g πerf ! c % K, 4k2 " ! 2k2% K "

4k2
2 g πerf ! c % K, 4k2 " .
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3. For K' 0, the pdf is

p j ! ρ � θ "# k1

g K
e@ k2ρ2 5 sin ! g Kρ " 5 �

where

k1# g K
2π

∞

∑
i3 0

G i = 1 I π
iπ

!% 1 " ie@ k2ρ2
sin ! g Kρ " dρ

@ 1

.

For k2n K, k1 may be approximated by

k1o iπ@ 3J 2eKJ 4k2 g Kk2

erf ! i g K, 2 g k2 " � and σ2o 2i g Kk2eKJ 4k2 6 g πerf ! i c K, 4k2 " ! 2k2% K "

4k2
2 g πerf ! i c K, 4k2 " .
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Figure 15: Hyperbolic gaussian pdf.

45



Performance Analysis of M-PSK in Spaces with K Constant
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Figure 16: Pee S, N for 4-PSK in
spaces with curvatures 1, 0, -1 and
-2.
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Figure 17: Pee S, N for 8-PSK and
16-PSK in spaces with curvatures 0
and -1.
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Fixing Et# ! π, 2 " 2 for an M-PSK, Fig. 18 shows dK, d0 versus M-PSK, where dK is
the minimum distance in a space with curvature K, and d0 is the minimum
distance in the Euclidean space, K# 0, d0.
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Figure 18: dK, d0e M for Et# ! π, 2 " 2.
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Figure 19: Sectional curvature ver-
sus signal set X .

Conclusion: K1* K2 � Pe ! K1 " * Pe ! K2 " . (15)
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Fig. 20 shows Pee K (4-PSK and 8-PSK) for S, N# 4dB. As expected, Pe

diminishes with decreasing values of K.
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Figure 20: Error probability versus sectional curvature
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