Compression and Estimation Over Large Alphabets

Alon Orlitsky

Narayana P. Santhanam

Krishnamurthy Viswanathan

Junan Zhang

UCSD

Compression [Sh 48]

Setup: \mathcal{A} — alphabet p — p.d. over \mathcal{A}^n random sequence $\sim p$ $L_q \stackrel{\text{def}}{=}$ expected # bits of encoder q

Question:
$$L \stackrel{\text{def}}{=} \min_q L_q = ?$$

Answer:
$$L \approx H(p)$$

Problem: p not known

Solution: Universal compression

Univeral Compression [Sh 48] [Fi 66, Da 73]

Setup: \mathcal{A} — alphabet \mathcal{P} — collection of p.d.'s over \mathcal{A}^n random sequence $\sim p \in \mathcal{P}$ (unknown) $L_a \stackrel{\text{def}}{=} \text{expected} \ \# \text{ bits of encoder } q$ Redundancy: $R_a \stackrel{\text{def}}{=} \max_p L_a - H(p)$ Question: $R \stackrel{\text{def}}{=} \min_{q} R_{q} = ?$ if $R/n \rightarrow 0$, Universally Compressible Answer: iid, markov, cxt tree, stnr ergd — UC iid: $R \approx \frac{1}{2}(|\mathcal{A}| - 1)\log n$ Problem: $|\mathcal{A}| \approx \text{or} > n$ (text, images) [Kief. 78]: As $|\mathcal{A}| \to \infty$, $R/n \to \infty$ Solution: Several

Solutions

Theoretical: Constrain distributions

Monotone: [Els 75], [GPM 94], [FSW 02]

Bounded moments: [UK 02,03]

Others: [YJ 00], [HY 03]

Concern: May not apply

Practical: Convert to bits

Lempel Ziv

Context-tree weighting

Concern: May lose context

Change the question

Why ∞ ?

Alphabet: $\mathcal{A} \stackrel{\mathsf{def}}{=} \mathbb{N}$

Collection: $\mathcal{P} \stackrel{\text{def}}{=} \{p_k : k \in \mathbb{N}\}$

 p_k : constant-k distribution

$$p_k(\overline{x}) \stackrel{\text{def}}{=} \begin{cases} 1 & \text{if } \overline{x} = k \dots k \\ 0 & \text{otherwise} \end{cases}$$

If k is known: $H(p_k) = 0$

0 bits

Universally: must describe k

 ∞ bits (for worst k)

 $R = \infty$

Conclusion: Describe elts & pattern separately

Patterns

Replace each symbol by its order of appearance

Sequence: a b r a c a d a b r a Pattern: 1 2 3 1 4 1 5 1 2 3 1

Convey

pattern: 12314151231

dictionary:

1	2	З	4	5
а	b	r	С	d

Compress pattern and dictionary separately

Related application (PPM): [ÅSS 97]

Main result

Patterns of iid distributions over any alphabet (large, infinite, uncountably infinite, unknown) can be universally compressed (sequentially and efficiently).

Details

Block:
$$R \leq \left(\pi \sqrt{\frac{2}{3}} \log e\right) \sqrt{n}$$

Sequential (super-poly): $R \leq \left(\frac{4\pi}{3(2-\sqrt{2})}\right)\sqrt{n}$

Sequential (linear): $R \le 10 n^{2/3}$

In all: $R/n \rightarrow 0$

Additional results

 R_m : redundancy for *m*-symbol patterns

Identical technique

For $m \le o(n^{1/3})$,

$$R_m \leq \log\left(\binom{n-1}{m-1}\frac{1}{m!}\right)$$

Similar average-problem when alphabet assumed to contain no unseen symbols consequently considered by [Sh 03]

Proof technique

Compression = probability estimation

Estimate distributions over large alphabets

Considered by I.J. Good and A. Turing

Good-Turing estimator is good, not optimal

View as set partitioning

Construct optimal estimators

Use results by Hardy and Ramanujan

Probability estimation

Safari preparation

Observe sample of animals

3 giraffes, 1 hippopotamus, 2 elephants

Probability estimation?

Species	Prob
giraffe	3/6
hippo	1/6
elephant	2/6

Problem?

Lions!

Laplace estimator

Add one, including to new

- 3+1 giraffes, 1+1 hippopotamus,
- 2+1 elephants, 0+1 new

Species	Prob
giraffe	4/10
hippo	2/10
elephant	3/10
new	1/10

Many add-constant variations

Krichevsky-Trofimov estimator

Add half

Achieves Jeffreys' prior

Best for fixed alphabet, length $\rightarrow\infty$

Are add-constant estimators good?

DNA

n samples (n large)

All different

Probability estimation?

For each observed: 1 + 1 = 2

For new: 0 + 1 = 1

Sample	Probability
observed	2/(2n+1)
new	1/(2n+1)

Problem?

 $P(\text{new}) = 1/(2n+1) \approx 0$

 $P(\text{observed}) = 2n/(2n+1) \approx 1$

Opposite more accurate

Good-Turing problem

Enigma cipher

Captured German book of keys

Had previous decryptions

Looked for distribution of key pages

Similar as # pages large compared to data

Good-Turing estimator

Surprising and complicated

Works well for infrequent elements

Used in a variety of applications

Suboptimal for frequent elements

Modifications: empirical for frequent elements

Several explanations

Some evaluations

Evaluation

Observe sequence:

 x_1, x_2, x_3, \dots

Successively estimate prob given previous:

$$q(x_i | x_1^{i-1})$$

Assign probability to whole sequence:

$$q(x_1^n) = \prod_{i=1}^n q(x_i | x_1^{i-1})$$

Compare to highest possible $p(x_1^n)$

Cf. compression, online algorithms/learning

Precise definitions require patterns

Pattern of a sequence

Replace symbol by order of appearance

g,h,g,e,e,g

giraffe — 1, hippo — 2, elephant — 3

1,2,1,3,3,1

Can enumerate, assign probabilities

Sequence = pattern

Example: q_{+1}

Sequence: ghge \rightarrow NNgN

$$q_{+1}(ghge) = q_{+1}(N) \cdot q_{+1}(N|g) \cdot q_{+1}(g|gh) \cdot q_{+1}(N|ghg)$$
$$= \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{1}{6}$$
$$= \frac{1}{45}$$

Pattern: 1213

$$q_{+1}(1213) = q_{+1}(1) \cdot q_{+1}(2|1) \cdot q_{+1}(1|12) \cdot q_{+1}(3|121)$$
$$= \frac{1}{1} \cdot \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{1}{6}$$
$$= \frac{1}{45}$$

Patterns

Strings of positive ingeters

First appearance of i > 2 follows that of i - 1

Patterns: 1, 11, 12, 121, 122, 123

Not patterns: 2, 21, 132

 Ψ^n — length-*n* patterns

Pattern probability

 \mathcal{A} — alphabet

$$p$$
 — distribution over \mathcal{A}

$$\overline{\psi}$$
 — pattern in Ψ^n

$$p^{\Psi}(\overline{\psi}) \stackrel{\text{def}}{=} p\{\overline{x} \in \mathcal{A}^n \text{ with pattern } \overline{\psi}\}$$

Example

$$\mathcal{A} = \{a, b\}$$

$$p(a) = \alpha, \ p(b) = \overline{\alpha}$$

$$p^{\Psi}(11) = p\{aa, bb\} = \alpha^2 + \overline{\alpha}^2$$

$$p^{\Psi}(12) = p\{ab, ba\} = 2\alpha\overline{\alpha}$$

Maximum pattern probability

Highest probability of pattern

$$\widehat{p}^{\Psi}(\overline{\psi}) \stackrel{\text{def}}{=} \max_{p} p^{\Psi}(\overline{\psi})$$

Examples

 $\hat{p}^{\Psi}(11) = 1$ [constant distributions]

 $\hat{p}^{\Psi}(12) = 1$ [continuous distributions]

In general, difficult

 $\hat{p}^{\Psi}(112) = 1/4 \quad [p(a) = p(b) = 1/2]$

 $\hat{p}^{\Psi}(1123) = 12/125 \quad [p(a) = ... = p(e) = 1/5]$

General results

Obtained several results

m: # symbols appearing

 μ_i : # times *i* appears

 μ_{\min} , μ_{\max} : smallest, largest μ_i

Example: 111223, $\mu_1 = 3$, $\mu_{min} = 1$, $\mu_{max} = 3$

 \hat{k} : # symbols in maximizing distribution

Upper bound: $\hat{k} \leq m + \frac{m-1}{2^{\mu}\min-2}$

Lower bound: $\hat{k} \ge m - 1 + \frac{\sum 2^{-\mu_i} - 2^{-\mu_{\max}}}{2^{\mu_{\max}} - 2}$

Attenuation

Attenuation of q for ψ_1^n

$$R(q,\psi_1^n) \stackrel{\text{def}}{=} \frac{\widehat{p}^{\Psi}(\psi_1^n)}{q(\psi_1^n)}$$

Worst-case sequence attenuation of q (n symb)

$$R_n(q) \stackrel{\text{def}}{=} \max_{\psi_1^n} R(q, \psi_1^n)$$

Worst-case attenuation of \boldsymbol{q}

$$R^*(q) \stackrel{\text{def}}{=} \limsup_{n \to \infty} (R_n(q))^{1/n}$$

Laplace estimator

Pattern: 123...n $\hat{p}^{\Psi}(123...n) = 1$ $q_{+1}(123...n) = \frac{1}{1\cdot 3\cdot ...\cdot (2n+1)}$ $R_n(q_{+1}) \ge \frac{\hat{p}^{\Psi}(123...n)}{q_{+1}(123...n)} = 1\cdot 3 \cdots (2n+1) \approx \left(\frac{2n}{e}\right)^n$ $R^*(q_{+1}) = \limsup_{n \to \infty} \frac{2n}{e} = \infty$

Good-Turing estimator

Multiplicity of $\psi \in \mathbb{Z}^+$ in ψ_1^n

$$\mu_{\psi} \stackrel{\text{def}}{=} |\{1 \le i \le n : \psi_i = \psi\}|$$

Prevalence of multiplicity μ in ψ_1^n

$$\varphi_{\mu} \stackrel{\mathsf{def}}{=} |\{\psi : \mu_{\psi} = \mu\}|$$

Increased multiplicity

$$r \stackrel{\mathrm{def}}{=} \mu_{\psi_{n+1}}$$

Good-Turing estimator

$$q(\psi_{n+1}|\psi_1^n) = \begin{cases} \frac{\varphi_1'}{n}, & r = 0\\ \frac{r+1}{n}\frac{\varphi_{r+1}'}{\varphi_r'}, & r \ge 1 \end{cases}$$

 $arphi_{\mu}'$ — smoothed version of $arphi_{\mu}$

Performance of Good Turing

Analyzed three versions

Simple: $1.39 \le R^*(q_{sgt}) \le 2$

Church-Gale: experimatnatally > 1

Common-sense: same

Diminishing attenuation

$$c[n] = \left\lceil n^{1/3} \right\rceil$$

$$f_{c[n]}(\varphi) \stackrel{\text{def}}{=} \max(\varphi, c[n])$$

$$q_{\frac{1}{3}}(\psi_{n+1}|\psi_{1}^{n}) = \frac{1}{S_{c[n]}(\psi_{1}^{n})} \cdot \begin{cases} f_{c[n]}(\varphi_{1}+1) & r=0\\ (r+1)\frac{f_{c[n]}(\varphi_{r+1}+1)}{f_{c[n]}(\varphi_{r})} & r>0 \end{cases}$$

$$S_{c[n]}(\psi_{1}^{n}) \text{ is a normalization factor}$$

$$R_{n}(q_{\frac{1}{3}}) \leq 2^{\mathcal{O}(n^{2/3})}, \quad \text{constant} \leq 10$$

$$R^{*}(q_{\frac{1}{3}}) \leq 2^{\mathcal{O}(n^{-1/3})} \rightarrow 1$$

Proof: Potential functions

Low-attenuation estimator

$$t_{n} - \text{ largest power of 2 that is } \leq n$$

$$\Psi^{2t_{n}}(\psi_{1}^{n}) \stackrel{\text{def}}{=} \{y_{1}^{2t_{n}} \in \Psi^{2t_{n}} : y_{1}^{n} = \psi_{1}^{n}\}$$

$$\tilde{p}(\psi_{1}^{n}) \stackrel{\text{def}}{=} \frac{\prod_{\mu=1}^{n} \mu!^{\varphi_{\mu}} \varphi_{\mu}!}{n!}$$

$$q_{\frac{1}{2}}(\psi_{n+1}|\psi_{1}^{n}) = \frac{\sum_{\overline{y} \in \Psi^{2t_{n}}(\psi_{1}^{n+1})}{\sum_{\overline{y} \in \Psi^{2t_{n}}(\psi_{1}^{n})}}$$

$$R_{n}(q_{\frac{1}{2}}) \leq \exp\left(\frac{4\pi}{\sqrt{3}(2-\sqrt{2})}\sqrt{n}\right)$$

$$R^{*}(q_{\frac{1}{2}}) \leq \exp\left(\frac{4\pi}{\sqrt{3}(2-\sqrt{2})}\sqrt{n}\right) \rightarrow 1$$

Proof: Integer partitions, Hardy-Ramanujan

Lower bound

$$R_n(q_{\frac{1}{3}}) \le 2^{\mathcal{O}(n^{2/3})}$$

$$R_n(q_{\frac{1}{2}}) \le 2^{\mathcal{O}(n^{1/2})}$$

For any q,

$$R_n(q) \ge 2^{\Omega(n^{1/3})}$$

Proof: Generating functions and Hayman's thm

"Test"

aaaa ...
$$q(\text{new}) = \Theta(\frac{1}{n})$$

abab... $q(\text{new}) = \Theta(\frac{1}{n})$

abcd...
$$q(\text{new}) = 1 - \Theta(\frac{1}{n^{2/3}})$$

aabbcc... q(new) = Possible guess: 1/2

q(new) = 1/4 after even, 0 after odd

"Explanation": likely $|\alpha\beta| = 0.62n$

 $p(\text{new}) \approx 0.2$