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Univeral Compression [Sh 48] [Fi 66, Da 73]

Setup: A — alphabet

p — collection of p.d.’s over An

random sequence ∼ p ∈ P (unknown)

Lq
def
= expected # bits of encoder q

Redundancy: Rq
def
= maxp Lq −H(p)

Question: L
def
= minq Lq = ?

if R/n→ 0, Universally Compressible

Answer: L ≈ H(p)

iid: R ≈ 1
2(|A| − 1)logn

Problem: p not known

[Kief. 78]: As |A| → ∞, R/n→∞

Solution: Universal compression
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Univeral Compression [Sh 48] [Fi 66, Da 73]

Setup: A — alphabet

P — collection of p.d.’s over An

random sequence ∼ p ∈ P (unknown)

Lq
def
= expected # bits of encoder q

Redundancy: Rq
def
= maxp Lq −H(p)

Question: R
def
= minq Rq =?

if R/n→ 0, Universally Compressible

Answer: iid, markov, cxt tree, stnr ergd — UC

iid: R ≈ 1
2(|A| − 1)logn

Problem: |A| ≈ or > n (text, images)

[Kief. 78]: As |A| → ∞, R/n→∞

Solution: Several
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Solutions

Theoretical: Constrain distributions

Monotone: [Els 75], [GPM 94], [FSW 02]

Bounded moments: [UK 02,03]

Others: [YJ 00], [HY 03]

Concern: May not apply

Practical: Convert to bits

Lempel Ziv

Context-tree weighting

Concern: May lose context

Change the question
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Why ∞?

Alphabet: A def
= N

Collection: P def= {pk : k ∈ N}

pk: constant-k distribution

pk(x)
def
=







1 if x = k . . . k

0 otherwise

If k is known: H(pk) = 0

0 bits

Universally: must describe k

∞ bits (for worst k)

R =∞

Conclusion: Describe elts & pattern separately
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Patterns

Replace each symbol by its order of appearance

Sequence: a b r a c a d a b r a

Pattern: 1 2 3 1 4 1 5 1 2 3 1

Convey

pattern: 12314151231

dictionary:
1 2 3 4 5

a b r c d

Compress pattern and dictionary separately

Related application (PPM): [ÅSS 97]
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Main result

Patterns of iid distributions over any alphabet

(large, infinite, uncountably infinite, unknown)

can be universally compressed (sequentially and

efficiently).

Details

Block: R ≤
(

π
√

2
3 log e

)√
n

Sequential (super-poly): R ≤
(

4π
3(2−

√
2)

)√
n

Sequential (linear): R ≤ 10 n2/3

In all: R/n→ 0
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Additional results

Rm: redundancy for m-symbol patterns

Identical technique

For m ≤ o(n1/3),

Rm ≤ log
(

(n− 1
m− 1

) 1

m!

)

Similar average-problem when alphabet assumed

to contain no unseen symbols consequently con-

sidered by [Sh 03]
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Proof technique

Compression = probability estimation

Estimate distributions over large alphabets

Considered by I.J. Good and A. Turing

Good-Turing estimator is good, not optimal

View as set partitioning

Construct optimal estimators

Use results by Hardy and Ramanujan
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Probability estimation
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Safari preparation

Observe sample of animals

3 giraffes, 1 hippopotamus, 2 elephants

Probability estimation?

Species Prob

giraffe 3/6
hippo 1/6
elephant 2/6

Problem?

Lions!
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Laplace estimator

Add one, including to new

3+1 giraffes, 1+1 hippopotamus,

2+1 elephants, 0+1 new

Species Prob

giraffe 4/10
hippo 2/10
elephant 3/10
new 1/10

Many add-constant variations
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Krichevsky-Trofimov estimator

Add half

Achieves Jeffreys’ prior

Best for fixed alphabet, length →∞

Are add-constant estimators good?

13



DNA

n samples (n large)

All different

Probability estimation?

For each observed: 1 + 1 = 2

For new: 0 + 1 = 1

Sample Probability

observed 2/(2n+1)
new 1/(2n+1)

Problem?

P (new) = 1/(2n+1) ≈ 0

P (observed) = 2n/(2n+1) ≈ 1

Opposite more accurate
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Good-Turing problem

Enigma cipher

Captured German book of keys

Had previous decryptions

Looked for distribution of key pages

Similar as # pages large compared to data
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Good-Turing estimator

Surprising and complicated

Works well for infrequent elements

Used in a variety of applications

Suboptimal for frequent elements

Modifications: empirical for frequent elements

Several explanations

Some evaluations
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Evaluation

Observe sequence:

x1, x2, x3, . . .

Successively estimate prob given previous:

q(xi|xi−11 )

Assign probability to whole sequence:

q(xn1) =
n
∏

i=1

q(xi|xi−11 )

Compare to highest possible p(xn1)

Cf. compression, online algorithms/learning

Precise definitions require patterns
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Pattern of a sequence

Replace symbol by order of appearance

g,h,g,e,e,g

giraffe — 1, hippo — 2, elephant — 3

1,2,1,3,3,1

Can enumerate, assign probabilities
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Sequence = pattern

Example: q+1

Sequence: ghge → NNgN

q+1(ghge) = q+1(N) · q+1(N |g) · q+1(g|gh) · q+1(N |ghg)

=
1

1
· 1
3
· 2
5
· 1
6

=
1

45

Pattern: 1213

q+1(1213) = q+1(1) · q+1(2|1) · q+1(1|12) · q+1(3|121)

=
1

1
· 1
3
· 2
5
· 1
6

=
1

45
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Patterns

Strings of positive ingeters

First appearance of i > 2 follows that of i− 1

Patterns: 1, 11, 12, 121, 122, 123

Not patterns: 2, 21, 132

Ψn — length-n patterns
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Pattern probability

A — alphabet

p — distribution over A

ψ — pattern in Ψn

pΨ(ψ)
def
= p{x ∈ An with pattern ψ}

Example

A = {a, b}

p(a) = α, p(b) = α

pΨ(11) = p{aa, bb} = α2+ α2

pΨ(12) = p{ab, ba} = 2αα
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Maximum pattern probability

Highest probability of pattern

p̂Ψ(ψ)
def
= max

p
pΨ(ψ)

Examples

p̂Ψ(11) = 1 [constant distributions]

p̂Ψ(12) = 1 [continuous distributions]

In general, difficult

p̂Ψ(112) = 1/4 [p(a) = p(b) = 1/2]

p̂Ψ(1123) = 12/125 [p(a) = ... = p(e) = 1/5]
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General results

Obtained several results

m: # symbols appearing

µi: # times i appears

µmin, µmax: smallest, largest µi

Example: 111223, µ1 = 3, µmin = 1, µmax = 3

k̂: # symbols in maximizing distribution

Upper bound: k̂ ≤ m+ m−1
2µmin−2

Lower bound: k̂ ≥ m− 1+
∑

2−µi−2−µmax
2µmax−2
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Attenuation

Attenuation of q for ψn1

R(q, ψn1)
def
=

p̂Ψ(ψn1)

q(ψn1)

Worst-case sequence attenuation of q (n symb)

Rn(q)
def
= max

ψn1
R(q, ψn1)

Worst-case attenuation of q

R∗(q) def= limsup
n→∞

(Rn(q))
1/n
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Laplace estimator

Pattern: 123 . . . n

p̂Ψ(123 . . . n) = 1

q+1(123 . . . n) =
1

1·3·...·(2n+1)

Rn(q+1) ≥
p̂Ψ(123...n)
q
+1
(123...n)

= 1·3 · · · (2n+1) ≈
(

2n
e

)n

R∗(q+1) = lim sup
n→∞

2n
e =∞
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Good-Turing estimator

Multiplicity of ψ ∈ Z+ in ψn1

µψ
def
= |{1 ≤ i ≤ n : ψi = ψ}|

Prevalence of multiplicity µ in ψn1

ϕµ
def
= |{ψ : µψ = µ}|

Increased multiplicity

r
def
= µψn+1

Good-Turing estimator

q(ψn+1|ψn1) =











ϕ′1
n , r = 0

r+1
n

ϕ′r+1
ϕ′r

, r ≥ 1

ϕ′µ — smoothed version of ϕµ
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Performance of Good Turing

Analyzed three versions

Simple: 1.39 ≤ R∗(qsgt) ≤ 2

Church-Gale: experimatnatally > 1

Common-sense: same
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Diminishing attenuation

c[n] =
⌈

n1/3
⌉

fc[n](ϕ)
def
= max(ϕ, c[n])

q1
3
(ψn+1|ψn1) = 1

Sc[n](ψ
n
1)
·











fc[n](ϕ1+1) r = 0

(r+1)
fc[n](ϕr+1+1)

fc[n](ϕr)
r > 0

Sc[n](ψ
n
1) is a normalization factor

Rn(q1
3
) ≤ 2O(n2/3), constant ≤ 10

R∗(q1
3
) ≤ 2O(n−1/3) → 1

Proof: Potential functions
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Low-attenuation estimator

tn — largest power of 2 that is ≤ n

Ψ2tn(ψn1)
def
= {y2tn1 ∈ Ψ2tn : yn1 = ψn1}

p̃(ψn1)
def
=

∏n
µ=1 µ!

ϕµϕµ!

n!

q1
2

(ψn+1|ψn1) =
∑

y∈Ψ2tn(ψn+1
1

)
p̃(y)

∑

y∈Ψ2tn(ψn
1
)
p̃(y)

Rn(q1
2

) ≤ exp
(

4π√
3(2−

√
2)

√
n

)

R∗(q1
2

) ≤ exp
(

4π√
3(2−

√
2)

√
n

)

→ 1

Proof: Integer partitions, Hardy-Ramanujan

29



Lower bound

Rn(q1
3
) ≤ 2O(n2/3)

Rn(q1
2

) ≤ 2O(n1/2)

For any q,

Rn(q) ≥ 2Ω(n
1/3)

Proof: Generating functions and Hayman’s thm
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“Test”

aaaa . . . q(new) = Θ(1n)

abab . . . q(new) = Θ(1n)

abcd . . . q(new) = 1−Θ( 1
n2/3

)

aabbcc . . . q(new) = Possible guess: 1/2

q(new) = 1/4 after even, 0 after odd

“Explanation”: likely |αβ| = 0.62n

p(new) ≈ 0.2
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