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Compression [Sh 48]

A — alphabet
p — p.d. over A"

random segquence ~ p

Lq déf expected # bits of encoder q

def :
L = mingLg =7

L ~ H(p)
p hot known

Universal compression



Univeral Compression [Sh 48] [Fi 66, Da 73]

A — alphabet
P — collection of p.d.'s over A"
random sequence ~ p € P (unknown)

Lq déf expected # bits of encoder q

Redundancy: R4 det maxp Lg — H(p)

def .
R = ming Rq =7

if R/n — 0, Universally Compressible
iid, markov, cxt tree, stnr ergd — UC
iid: R~ 5(|A| - 1)logn

Al ~ or > n (text, images)

[Kief. 78]: As |A| — oo, R/n —

Several



Solutions

Constrain distributions
Monotone: [Els 75], [GPM 94], [FSW 02]
Bounded moments: [UK 02,03]

Others: [YJ 00], [HY 03]
May not apply

Convert to bits
Lempel Ziv
Context-tree weighting

May lose context



Why oo?

Alphabet: A &' N

Collection: P & {pr : k € N}

pr. constant-k distribution

(f)dgf 1 ifz=k...k
Pk ~ ]0 otherwise

H(py) =0
0 bits
must describe k
oo bits (for worst k)

R =

Conclusion: Describe elts & pattern separately



Patterns

Replace each symbol by its order of appearance

Sequence:a bracadabra
Pattern: 1 2314151231

pattern: 12314151231

dictionary:

Related application (PPM): [ASS 97]



Main result

Patterns of iid distributions over any alphabet
(large, infinite, uncountably infinite, unknown)
can be universally compressed (sequentially and

efficiently).

Block: R < (w\/glog e) N

. _ ) 47
Sequential (super-poly): R < (3(2_\/§)> vn

Sequential (linear): R < 10 n2/3

R/n — 0



Additional results

R,,: redundancy for m-symbol patterns
Identical technique

For m < o(nl/3),

Ry < log ((n B 1>i>

m—1/m!
Similar average-problem when alphabet assumed
to contain no unseen symbols consequently con-
sidered by [Sh 03]



Proof technique

Compression = probability estimation

Estimate distributions over large alphabets

Considered by I.J. Good and A. Turing

Good-Turing estimator is good, not optimal

View as set partitioning

Construct optimal estimators

Use results by Hardy and Ramanujan



Probability estimation
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Safari preparation

Observe sample of animals

3 giraffes, 1 hippopotamus, 2 elephants

Probability estimation?

Species | Prob
giraffe 3/6
hippo 1/6
elephant | 2/6

Problem?

Lions!
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LLaplace estimator

Add one, including to

341 giraffes, 14+1 hippopotamus,
241 elephants, 041

Species | Prob
giraffe 4/10
hippo 2/10
elephant | 3/10
1/10

Many add-constant variations



Krichevsky-Trofimov estimator

Add half

Achieves Jeffreys' prior

Best for fixed alphabet, length — o

Are add-constant estimators good?

13



DNA

n samples (n large)
All different

Probability estimation?

For each observed: 14+ 1 =2

For new: 0+1=1

Sample Probability
observed | 2/(2n+ 1)
new 1/(2n+ 1)

Problem?

P(new) =1/(2n+1) =0

P(observed) =2n/(2n+1) = 1

Opposite more accurat

e
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Good-Turing problem

Enigma cipher

Captured German book of keys

Had previous decryptions

Looked for distribution of key pages

Similar as # pages large compared to data
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Good-Turing estimator

Surprising and complicated

Works well for infrequent elements

Used in a variety of applications

Suboptimal for frequent elements

Modifications: empirical for frequent elements

Several explanations

Some evaluations

16



Evaluation

Observe sequence:

L1y LDy, xL3y ...

Successively estimate prob given previous:

q(zilzt1)

Assign probability to whole sequence:

q(z}) = [T q(zilziH)
=1

1=
Compare to highest possible p(z?)
Cf. compression, online algorithms/learning

Precise definitions require patterns
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Pattern of a sequence

Replace symbol by order of appearance

grhvgverelg
giraffe — 1, hippo — 2, elephant — 3
1,2,1,3,3,1

Can enumerate, assign probabilities
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Sequence = pattern
Example: qyq

Sequence: ghge — NNgN

q.,(ghge) = q,,(N) - q.,(Nlg) - a,,(glgh) - a,,(N|ghg)
11 21
=TS re
1

45

Pattern: 1213

q_|_1(1213) — q_|_1(1) ' q_|_1(2|1) ' q_|_1(1|12) ' q_|_1(3|121)
11 21
1

45
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Patterns
Strings of positive ingeters
First appearance of 7 > 2 follows that of 7 — 1

Patterns: 1, 11, 12, 121, 122, 123

Not patterns: 2, 21, 132

Y — length-n patterns
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Pattern probability

A — alphabet
p — distribution over A

» — pattern in W

p¥ () € p{z € A" with pattern ¥}

Example

A ={a,b}

p(a) = a, pb) =a

p¥(11) = p{aa, bb} = o2 + o>

pV¥ (12) = p{ab, ba} = 2a@
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Maximum pattern probability

Highest probability of pattern

7Y () € max pV¥ (@)

p

Examples

pY(11) =1 [constant distributions]
pV(12) =1 [continuous distributions]

In general, difficult

p¥(112) = 1/4 [p(a) = p(b) = 1/2]

p¥(1123) = 12/125 [p(a) = ... = p(e) = 1/5]
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General results

Obtained several results

m. F symbols appearing

w;. F times ¢ appears

Umin: Mmax: Smallest, largest u;

Example: 111223, pu1 = 3, min = 1, pmax = 3
k: # symbols in maximizing distribution
Upper bound: &k < m + Qm;l

Fmin—2

2 Hi _2—Hmax

Lower bound: E>m — 1+ 2 SHEmax —?
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Attenuation

Attenuation of g for 7

def Pw (w”)
q(¥7)

Worst-case sequence attenuation of ¢ (n symb)

R( 7¢1)

def
Rn(q) = max R(q, v1)
1

Worst-case attenuation of ¢

R*(q) € nmsupmn(q))”n
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LLaplace estimator

Pattern: 123...n

pV(123...n) =1

_ 1
q,1(123...1n) = 33551

pVY(123..n) __  (2n\"
Rn(qy,) > qp+1((123...n) =1.3.--(2n41) ~ (?)

R* = limsup 2% =
(q_|_1) 'n—>oop e o0
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Good-Turing estimator

Multiplicity of ¢ € ZT in o7

py E {1 <i<ny =)

Prevalence of multiplicity p in ¥%

def
op = [y = pl
Increased multiplicity

def
T = M,y

Good-Turing estimator

)
=L r=20
ny n’
AP 1l¥1) = Liel, o1
nog o =

i), — smoothed version of ¢,
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Performance of Good Turing
Analyzed three versions
Simple: 1.39 < R*(gsgt) < 2
Church-Gale: experimatnatally > 1

Common-sense: same
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Diminishing attenuation

c[n] = [nl/ﬂ

Lo (9) € max(e, cln])

i . fepmy(p1 + 1) r=0
Q%(wn+1|¢1) — Sc[n](w?)' (’I" i 1)fC[nJ]f([g0]r(_t01T_)|_1) r>0

Sc[n](w?) iSs @ normalization factor

Rn(q1) < 20(n??)  constant < 10
3

R*(q1) <2007 1
3

Proof: Potential functions
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L ow-attenuation estimator
tn, — largest power of 2 that is <n

W2in(yp) [y € w2 yp = g

def HM 1 :UJHO’UJSO,M

p(wn) -

dewgtn (¢7f+1) ﬁ(y)

q%(¢n+1|¢?) =

yertn (le) ﬁ(@)

4
Bnlqy) < exp (ﬁ(z—@ ﬁ)

* 47
R(ay) < o0 (75 7 2) = 1

Proof: Integer partitions, Hardy-Ramanujan
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Lower bound

Rn(Q%) < 20(n?/3)

Rn(gq,) < 2002
2

For any g,

Rn(Q) > QQ(n1/3)

Proof: Generating functions and Hayman’'s thm
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“Test"”

aaad . .. g(new) = @(%)
abab . .. g(new) = @(%)
—1_o(.1_
abcd . . . g(new) =1 e(n2/3)
aabbcc... q(new) = Possible guess: 1/2

g(new) = 1/4 after even, 0 after odd
“Explanation”: likely |a8| = 0.62n

p(new) ~ 0.2
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