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Multiterminal Source Coding



The Model
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• m ≥ 2 terminals.

• X1, . . . , Xm, m ≥ 2, are rvs with finite alphabets X1, . . . ,Xm.

• Consider a discrete memoryless multiple source with components
Xn

1 = (X11, . . . , X1n), . . . , Xn
m = (Xm1, . . . , Xmn).

• Terminal Xi observes the component Xn
i = (Xi1, . . . , Xin).
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• The terminals are allowed to communicate over a noiseless channel, possibly
interactively in several rounds.

• All the transmissions are observed by all the terminals.

• No rate constraints on the communication.

• Assume w.l.o.g that transmissions occur in consecutive time slots in r rounds.

• Communication depicted by rvs F
�
= F1, . . . Frm, where

∗ Fν = transmission in time slot ν by terminal i ≡ ν mod m.

∗ Fν is a function of Xn
i and (F1, . . . , Fν−1).



Communication for Omniscience
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• Each terminal wishes to become “omniscient,” i.e., recover (Xn
1 , . . . , Xn

m) with
probability ≥ 1− ε.

• What is the smallest achievable rate of communication for omniscience (CO-rate),
limn

1
nH(F1, . . . , Frm)?



Minimum Communication for Omniscience

Proposition [I. Csiszár - P. N., ’02]: The smallest achievable CO-rate,
limn

1
nH(F (n)

1 , . . . , F
(n)
rm ), which enables (Xn

1 , . . . , Xn
m) to be εn-recoverable at all the

terminals with communication (F (n)
1 , . . . , F

(n)
rm ) (with the number of rounds possibly

depending on n), with εn → 0, is

Rmin = min
(R1,... ,Rm)∈RSW

m∑
i=1

Ri,

where RSW =
{

(R
′
1, · · · , R

′
m) :

∑
i∈B R

′
i ≥ H(XB|XBc), B ⊂ {1, . . . , m}

}
.

Remark: The region RSW , if stated for all B ⊆ {1, . . . , m}, gives the achievable rate
region for the multiterminal version of the Slepian-Wolf source coding theorem.

Case: m = 2; Rmin = H(X1|X2) + H(X2|X1).



Communication for Omniscience

Proof of Proposition: The proposition is a source coding theorem of the
“Slepian-Wolf” type, with the additional element that interactive communication is
not a priori excluded.

Achievability: Straightforward extension of the multiterminal Slepian-Wolf source
coding theorem; the CO-rates can be achieved with noninteractive communication.

Converse: Nontrivial; consequence of the following “Main Lemma.”



Common Randomness

x

x

x

x

1

2

3

m

1

n
F

K   = K  (X  ,   )m m m

n
F

 2

n
F22K  = K  (X  ,   )

1 1K   = K  (X  ,   ) 3 F3

n
K  = K   (X  ,    )3

Common Randomness (CR): A function K of (Xn
1 , · · · , Xn

m) is ε-CR, achievable
with communication F, if

Pr{K = K1 = · · · = Km} ≥ 1− ε.

Thus, CR consists of random variables generated by different terminals, based on

– local measurements or observations

– transmissions or exchanges of information

such that the random variables agree with probability ∼= 1.



Main Lemma
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Lemma [I. Csiszár - P. N., ’02]: If K is ε-CR for the terminals X1, · · · ,Xm,
achievable with communication F = (F1, · · · , Frm), then

1
n

H(K|F) = H(X1, · · · , Xm)−
m∑

i=1

Ri +
m(ε log |K|+ 1)

n

for some numbers (R1, · · · , Rm) ∈ RSW where

RSW =

{
(R

′
1, · · · , R

′
m) :

∑
i∈B

R
′
i ≥ H(XB|XBc), B ⊂ {1, . . . , m}

}
.

Remark: Decomposition of total joint entropy H(X1, . . . , Xm) into the normalized
conditional entropy of any achievable ε-CR conditioned on the communication with
which it is achieved, and a sum of rates which satisfy the SW conditions.



Secrecy Capacities



The General Model

User 1
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Wiretapper
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The user terminals wish to generate CR which is effectively concealed from an
eavesdropper with access to the public interterminal communication or from a
wiretapper.



Secret Key
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Secret Key (SK): A function K of (Xn
1 , · · · , Xn

m) is an ε-SK, achievable with
communication F, if

• Pr{K = K1 = · · · = Km} ≥ 1− ε (“ε-common randomness”)

• 1
nI(K ∧ F) ≤ ε (“secrecy”)

• 1
nH(K) ≥ 1

n log |K| − ε (“uniformity”)

where K = set of all possible values of K.

Thus, a secret key is effectively concealed from an eavesdropper with access to F, and
is nearly uniformly distributed.



Secret Key Capacity
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• Achievable SK-rate: The (entropy) rate of such a SK, achievable with suitable
communication (with the number of rounds possibly depending on n).

• SK-capacity CSK = largest achievable SK-rate.
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The Connection



Special Case: Two Users

X X

2x x

21

n n
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1~H(X  |X  )2
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Observation

CSK = I(X1 ∧X2) [Maurer 1993, Ahlswede - Csiszár 1993]

= H(X1, X2)− [H(X1|X2) + H(X2|X1)]

= Total rate of shared CR− Smallest achievable

CO-rate (Rmin).



The Main Result

• SK-capacity [I. Csiszár - P. N., ’02]:

CSK = H(X1, . . . , Xm)− Smallest achievable CO-rate, Rmin, i.e., smallest

rate of communication which enables each terminal to reconstruct

all the m components of the multiple source.

• A single-letter characterization of Rmin, thus, leads to the same for CSK .

Remark: The source coding problem of determining the smallest achievable CO-rate
Rmin does not involve any secrecy constraints.



Secret Key Capacity

Theorem [I. Csiszár - P. N., ’02]: The SK-capacity CSK for a set of terminals
{1, . . . , m} equals

CSK = H(X1, . . . , Xm)−Rmin,

and can be achieved with noninteractive communication.

Proof: Converse: From Main Lemma.

Idea of achievability proof: If L represents ε-CR for the set of terminals, achievable
with communication F for some block length n, then 1

nH(L|F) is an achievable
SK-rate if ε is small. With L ∼= (Xn

1 , . . . , Xn
m), we have

1
n

H(L|F)∼= H(X1, . . . , Xm)− 1
n

H(F).

Remark: The SK-capacity is not increased by randomization at the terminals.

Case: m = 2; CSK = I(X1 ∧X2).



Example
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[I. Csiszár - P. N.,’03]:

• X1, · · · , Xm−1 are {0, 1}-valued, mutually independent, (1
2 , 1

2 ) rvs, and

Xmt = X1t + · · ·+ X(m−1)t mod 2, t ≥ 1.

• Total rate of shared CR=H(X1, . . . , Xm) = H(X1, . . . , Xm−1) = m− 1 bits.

• Rmin = . . . = m(m−2)
m−1 bits

• CSK = (m− 1)− m(m−2)
m−1 = 1

m−1 bit.



Example – Scheme for Achievability

• Claim: 1 bit of perfect SK (i.e., with ε = 0) is achievable with observation
length n = m− 1.

• Scheme with noninteractive communication:

- Let n = m− 1.

- For i = 1, · · · , m− 1, Xi transmits Fi = fi(Xn
i ) = block Xn

i excluding Xii.

- Xm transmits Fm = fm(Xn
m) = (Xm1 + Xm2 mod 2, Xm1 + Xm3 mod 2,

· · · , Xm1 + Xmn mod 2).

• X1, · · · ,Xm all recover (Xn
1 , · · · , Xn

m). (Omniscience)

• In particular, X11 is independent of F = (F1, · · · , Fm).

• X11 is an achievable perfect SK, so CSK ≥ 1
m−1H(X11) = 1

m−1 bit.



Eavesdropper with Wiretapped Side Information
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• The secrecy requirement now becomes

1
n

I(K ∧ F, Zn) ≤ ε.

• General problem of determining the “Wiretap Secret Key” capacity, CWSK ,
remains unsolved.



Wiretapping of Noisy User Sources

The eavesdropper can wiretap noisy versions of some or all of the components of the
underlying multiple source. Formally,

Pr {Z1 = z1, . . . , Zm = zm|X1 = x1, . . . , Xm = xm} =
m∏

i=1

Pr {Zi = zi|Xi = xi} .

Theorem [I. Csiszár - P. N., ’03]: The WSK-capacity for a set of terminals
{1, . . . , m} equals

CWSK = H(X1, . . . , Xm, Z1, . . . , Zm)− “Revealed” entropy H(Z1, . . . , Zm)

−Smallest achievable CO-rate for user terminals

when they additionally know (Z1, . . . , Zm)

= H(X1, . . . , Xm|Z1, . . . , Zm)−Rmin(Z1, . . . , Zm),

provided that randomization is permitted at the user terminals.

Case: m = 2; CWSK = I(X1 ∧X2|Z1, Z2).



A Few Variants



Secret Key Capacity with Helpers

A  : "helper" terminals
c
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A  : "user" terminals

Theorem [I. Csiszár - P. N.,’02]: The SK-capacity for the terminals in A, with the
terminals in Ac as helpers, is

CSK(A) = H(X1, . . .Xm) − Smallest achievable CO-rate for user terminals in A

= H(X1, . . .Xm)−Rmin(A).

Case: m = 3, A = {2, 3}, Ac = {1}; CSK(A) = min{I(X1, X2 ∧X3), I(X1, X3 ∧X2)}.



Private Key Capacity
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A  : "user" terminals

A  : "helper" terminals
c

D     A : "compromised helpers"
c

Theorem [I. Csiszár - P. N.,’02]: The PK-capacity for the terminals in A, with
privacy from the set of wiretapped helper terminals D ⊆ Ac, is

CPK(A|D) = H(X1, . . . , Xm)− “Revealed” entropy H({Xi, i ∈ D})

− Smallest achievable CO-rate for user terminals in A when

they additionally know {Xi, i ∈ D}

= H(X1, . . . , Xm|{Xi, i ∈ D})−Rmin(A|D).

Case: m = 3, A = {2, 3}, Ac = D = {1}; CPK(A|D) = I(X2 ∧X3|X1).



Example

Markov Chain on a Tree [I. Csiszár - P. N.,’03]

• A tree with vertex set {1, · · · , m}, i.e., a connected graph G containing no
circuits.

• For (i, j) ∈ edge set E(G) of G, let

B(i← j) ∆= set of all vertices connected with j by a

path containing the edge (i, j).

• The random variables X1, · · · , Xm form a Markov chain on the tree G if for each
(i, j) ∈ E(G), the conditional pmf of Xj given {Xl, l ∈ B(i← j)} depends only on
Xi.

• If G is a chain, then X1, · · · , Xm form a (standard) Markov chain.



Markov Chain on a Tree

• CSK = min(i,j)∈E(G) I(Xi ∧Xj).

• When an eavesdropper wiretaps Z1, · · · , Zm which are noisy versions of
X1, · · · , Xm,

CWSK = min
(i,j)∈E(G)

I(Xi ∧Xj |Z1, · · · , Zm).

• CSK(A) = min(i,j)∈E(G(A)) I(Xi ∧Xj),
where G(A) is the smallest subtree of G whose vertex set contains A.

• CPK(A|D) = min(i,j)∈E(G(A)) I(Xi ∧Xj |{Xl, l ∈ D}).



Multiple Levels of Secrecy



Simultaneous Generation of Multiple Keys

• Simultaneous generation of multiple keys

– by different groups of terminals (with possible overlaps),

– with protection from prespecified terminals as also from an eavesdropper;

– at the outset of operations.

• Useful, for instance, when some terminals are disabled or cease to be authorized,
and their keys are compromised.



Two Private Keys for Three Terminals

K3 = K3(X
n
3 ,F)

X1

X2 X3K2 = K2(X
n
2 ,F)

K12 = K12(X
n
1 ,F), K13 = K13(X

n
1 ,F)

Private Keys for (X1,X2) and (X1,X3)

• Pr{K12 = K2} ≥ 1−ε, Pr{K13 = K3} ≥ 1−ε (“ε-common randomness”)

• 1
nI(K12 ∧ F, Xn

3 ) ≤ ε, 1
nI(K13 ∧ F, Xn

2 ) ≤ ε (“secrecy”)

• 1
nH(K12) ≥ 1

n log |K12| − ε, 1
nH(K13) ≥ 1

n log |K13| − ε. (“uniformity”)

Thus, a “central” terminal X1 establishes a separate key with each terminal X2 (resp.
X3) which is concealed from the remaining helper terminal X3 (resp. X2), as also from
an eavesdropper with access to F; and the keys are nearly uniformly distributed.



Private Key Capacity Region

K3 = K3(X
n
3 ,F)

X1

X2 X3K2 = K2(X
n
2 ,F)

K12 = K12(X
n
1 ,F), K13 = K13(X

n
1 ,F)

Theorem [C. Ye, ’03]: If X2 and X3 are deterministically correlated, the
PK-capacity region equals the set of pairs (R12, R13) which satisfy

R12 ≤ I(X1 ∧X2|X3), R13 ≤ I(X1 ∧X3|X2),

R12 + R13 ≤ I(X1 ∧X2, X3)− I(X1 ∧Xmcf ),

where Xmcf is the maximal common function of X2 and X3.


