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A Classi£cation of Posets admitting MacWilliams
Identity

Hyun Kwang Kim and Dong Yeol Oh

Abstract— In this paper all poset structures are classi£ed
which admit the MacWilliams identity, and the MacWilliams
identities for poset weight enumerators corresponding to such
posets are derived. We prove that being a hierarchical poset
is a necessary and suf£cient condition for a poset to admit
MacWilliams identity. An explicit relation is also derived between
P-weight distribution of a hierarchical poset code and P-weight
distribution of the dual code.

Index Terms— MacWilliams identity, poset codes, P-weight
enumerator, leveled P-weight enumerator, hierarchical poset.

I. INTRODUCTION

LET Fq be the £nite £eld with q elements and F
n
q be the

vector space of n-tuples over Fq . Coding theory may
be considered as the study of F

n
q when F

n
q is endowed with

Hamming metric. Since the late 1980’s several attempts have
been made to generalize the classical problems of the coding
theory by introducing a new non-Hamming metric on F

n
q (cf

[8 - 10]). These attempts led Brualdi et al. [1] to introduce the
concept of poset codes. First, we begin by brie¤y introducing
the basic notions of poset code such as poset-weight and poset-
distance. See [1] for details.

Let F
n
q be the vector space of n-tuples over a £nite £eld Fq

with q elements. Let P be a partial ordered set, which will
be abbreviated as a poset in the sequel, on the underlying set
[n] = {1, 2, . . . , n} of coordinate positions of vectors in F

n
q

with the partial order relation denoted by ≤ as usual. For u =
(u1, u2, · · · , un) ∈ F

n
q , the support supp(u) and P-weight

wP(u) of u are de£ned to be

supp(u) = {i ∣∣ ui �= 0} and wP(u) = | < supp(u) > |,
where < supp(u) > is the smallest ideal (recall that a subset
I of P is an ideal if a ∈ I and b ≤ a, then b ∈ I) containing
the support of u. It is well-known that for any u, v ∈ F

n
q ,

dP(u, v) := wP(u − v) is a metric on F
n
q . The metric dP is

called P-metric on F
n
q . Let F

n
q be endowed with P-metric.

Then a (linear) code C ⊆ F
n
q is called a (linear) P-code of

length n. The P-weight enumerator of a linear P-code C is
de£ned by

WC,P(x) =
∑
u∈C

xwP(u) =
n∑

i=0

Ai,Pxi,

where Ai,P = |{u ∈ C ∣∣ wP(u) = i}|.
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Remark : If P is an antichain, then P-metric is equal to
Hamming metric. So P-weight enumerator of a linear code C
becomes Hamming weight enumerator of C.
The MacWilliams identity for linear codes over Fq is one
of the most important identities in the coding theory, and
it expresses Hamming weight enumerator of the dual code
C⊥ of a linear code C over Fq in terms of Hamming weight
enumerator of C. Since Hamming metric is a special case of
poset metrics, it is natural to attempt to obtain MacWilliams-
type identity for certain P-weight enumerators. See [3 - 5]
for this direction of researches. Essentially, what enables us
to obtain MacWilliams identity for Hamming metric is that
Hamming weight enumerator of the dual code C⊥ is uniquely
determined by that of C. The following example suggests that
we need some modi£cation to generalize MacWilliams identity
for certain type of poset weight enumerators.

Example 1.1: Let P = {1, 2, 3} be a poset with order
relation 1 < 2 < 3 and P = {1, 2, 3} be a poset with order
relation 1 > 2 > 3. Consider the following binary linear P-
codes:

C1 = {(0, 0, 0), (0, 0, 1)} , C2 = {(0, 0, 0), (1, 1, 1)}.
It is easy to check that P-weight enumerators of C1 and C2

are given by
WC1,P(x) = 1 + x3 = WC2,P(x).

The dual codes of C1 and C2 are respectively given by
C⊥
1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}

and
C⊥
2 = {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

The P-weight enumerators of C⊥
1 and C⊥

2 are given by
WC⊥

1 ,P(x) = 1 + x + 2x2, WC⊥
2 ,P(x) = 1 + x2 + 2x3,

while P-weight enumerators of C⊥
1 and C⊥

2 are given by
WC⊥

1 ,P(x) = 1 + x2 + 2x3 = WC⊥
2 ,P(x).

As it is seen above, although P-weight enumerators of the
codes C1 and C2 are the same, P-weight of the dual codes
may be different. Fortunately,however, P-weight enumerators
of the dual codes are the same.

Feeding back this information we de£ne, for a given poset
P, the poset P as follows:

P and P have the same underlying set and

x ≤ y in P ⇔ y ≤ x in P.

The poset P is called the dual poset of P.
De£nition 1.2: Let P be a poset on [n]. It is said that P

admits MacWilliams identity if P-weight enumerator of the
dual code C⊥ of a linear code C over Fq is uniquely determined
by P-weight enumerator of C.

For an illustration of our de£nition, we give two classes of
posets which admit MacWilliams identity.
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In [11], Rosenbloom and Tsfasman introduced a new
non-Hamming metric which is called the ρ-metric or the
Rosenbloom-Tsfasman metric on linear spaces over £-
nite £elds. The ρ-metric is de£ned on the linear space
Matm,n(Fq), where Matm,n(Fq) is the set of all matrices
with m-rows and n-columns over Fq . For the sake of simplic-
ity, we introduce it only in the case m = 1 and refer to [2],
[12] for a general treatment. We remark that ρ-metric can be
realized as a poset metric over the disjoint union of chains.

Now let m = 1. For u = (u1, u2, · · · , un) ∈ F
n
q , we set

ρ(0) = 0 and ρ(u) = max{i ∣∣ ui �= 0} for u �= 0. For a given
linear code C ⊆ F

n
q , we de£ne the ρ-weight enumerator for C

by

W (C|z) =
n∑

i=0

wi(C)zi =
∑
u∈C

zρ(u),

where wi(C) = |{u ∈ C ∣∣ ρ(u) = i}|, 0 ≤ i ≤ n.
The following identity was obtained in [12, Theorem 4.4]:

(qz − 1)W (C∗⊥|z) + 1 − z

= |C⊥|zn+1[q(1 − z)W (C| 1
qz

) + qz − 1], (1)

where C∗⊥ = {v ∈ F
n
q

∣∣< u, v >= 0 for all u ∈ C}, and

< u, v >=
n∑

i=1

uivn+1−i.

If we put P = {1, 2, . . . , n} with order relation 1 < 2 <
. . . < n, then ρ-metric becomes P-metric and W (C∗⊥|z) =
WC⊥,P(z).

The MacWilliams identity for Hamming weight enumera-
tors and the work of Skriganov [12, Theorem 4.4] state that
antichain and chain on [n], n ≥ 1, admit MacWilliams identity.

In this paper, we classify all poset structures which admit
MacWilliams identity. We also derive MacWilliams identities
for poset weight enumerators corresponding to such poset
codes.

Section 2 gives a necessary condition for a poset P to
admit MacWilliams identity. It will be proved that being a
hierarchical poset is a necessary condition for a poset P to
admit MacWilliams identity.

In section 3, MacWilliams identity for a hierarchical poset
code is derived, and it will be proved that our necessary con-
dition in Section 2 is also a suf£cient condition for admitting
MacWilliams identity.

Section 4 examines the relationship between {Ai,P}i=0,...,n

and {A′
i,P

}i=0,...,n. More precisely, we will express explicitly
A′

i,P
in terms of Aj,P, 0 ≤ j ≤ n, using Krawtchouk

polynomials.

II. NECESSARY CONDITION FOR ADMITTING

MACWILLIAMS IDENTITY

In this section, we will give a necessary condition for a
poset P to admit MacWilliams identity. First, a hierarchical
poset as the ordinal sum of antichains is introduced, and it
will be proved that being a hierarchical poset is a necessary
condition for a poset P to admit MacWilliams identity.

Let n1, n2, . . . , nt be positive integers with n1 +n2 + · · ·+
nt = n. We de£ne the poset H(n;n1, n2, . . . , nt) on the set

{(i, j) ∣∣ 1 ≤ i ≤ t, 1 ≤ j ≤ ni} whose order relation is given
by

(i, j) < (l,m) ⇔ i < l.

The poset H(n;n1, n2, . . . , nt) is called a hierarchical poset
with t-levels and n-elements. For each 1 ≤ i ≤ t, the subset
{(i, j) ∣∣ 1 ≤ j ≤ ni} of H(n;n1, n2, . . . , nt) is called ith-
level set of H(n;n1, n2, . . . , nt), and it is denoted by Γi(H).
Note that Γi(H) is an antichain with cardinality ni.

Let H(n;n1, n2, . . . , nt) be a hierarchical poset with t-
levels and n-elements. From now on, we will identify the
underlying set of H(n;n1, n2, . . . , nt) with the coordinate
positions of vectors in F

n
q by identifying the subset {n1 +

n2 + · · · + ni−1 + 1, . . . , n1 + n2 + · · · + ni−1 + ni} of [n]
with the ith level set Γi(H) in an obvious way. By convention
we set n0 = 0.

For a poset P, we de£ne min(P) = {i ∈ P
∣∣

i is minimal in P}. The following lemma is an immediate
consequence of the concepts developed so far and will be
useful in the sequel.

Lemma 2.1: Let P be a poset on [n] and P be the dual
poset of P. For u ∈ F

n
q , we have

wP(u) = n ⇔ supp(u) ⊇ min(P).
For a given poset P, we put P′ = P \min(P). Then P′ is

also a poset under the partial order relation induced from that
of P.

Lemma 2.2: Let P be a poset of cardinality n. Suppose
that min(P) has n1 elements. Then, for each vector u ∈ F

n
q

satisfying supp(u) ⊆ min(P),
qn−n1

∣∣ |{v ∈ F
n
q

∣∣ u · v = 0 and wP(v) = n}|,
where a|b denotes that a divides b.

Proof : Without loss of generality, we may assume that
min(P) = {1, 2, . . . , n1}. Since supp(u) ⊆ min(P), u
can be written in the form u = (a1, . . . , ai, 0, . . . , 0), where
0 �= aj ∈ Fq for all 1 ≤ j ≤ i and i ≤ n1. Let A be the set
of vectors over Fq of length i de£ned by

A := {(b1, . . . , bi) ∈ F
i
q

∣∣ a1b1 + · · · + aibi = 0 and bj �=
0 for 1 ≤ j ≤ i}.

Then we have
|{v ∈ F

n
q

∣∣ u · v = 0, wP(v) = n}| = |A|qn−n1(q − 1)n1−i.
Lemma 2.3: Suppose that P admits MacWilliams identity.

Then, for each minimal element i in P′ = P \min(P) and j
in min(P), we have i ≥ j.

Proof : Let |P| = n and |min(P)| = n1. If n = n1, then
the lemma is true. Hence we may assume that n > n1.
We claim that | < i > | = 1+|min(P)| for each i ∈ min(P′).
Suppose not. Then we can choose i ∈ min(P′) such that
| < i > | < 1 + |min(P)|. Since | < i > | < 1 + |min(P)|,
we can choose two vectors u1, u2 ∈ F

n
q such that supp(u1) =

{i}, supp(u2) ⊆ min(P), and | < supp(u1) > | = | <
supp(u2) > |. Now we consider two linear codes C1 and C2

generated by u1 and u2, respectively. Since | < supp(u1) >
| = | < supp(u2) > |, C1 and C2 have the same P-weight
enumerator. It follows from our assumption that C⊥

1 and C⊥
2

have the same P-weight enumerator. Therefore we should have
the following equation:

|{v ∈ C⊥
1

∣∣ wP(v) = n}| = |{v ∈ C⊥
2

∣∣ wP(v) = n}|.
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It is immediate that

|{v ∈ C⊥
1

∣∣ wP(v) = n}| = qn−(n1+1)(q − 1)n1 ,

and it follows from Lemma 2.2 that

qn−n1
∣∣ |{v ∈ C⊥

2

∣∣ wP(v) = n}|.
These yield that qn−n1

∣∣ qn−(n1+1)(q − 1)n1 . However it is
impossible, since q is power of a prime. This prove that | <
i > | = 1 + |min(P)| for each i ∈ min(P′). The statement
of Lemma 2.3 follows immediately from this fact.

Remark : If i ∈ P′, then i ≥ k for some k ∈ min(P′).
Therefore we have obtained : if P admits MacWilliams iden-
tity, then for i ∈ P′ and j ∈ min(P), we have i ≥ j.

Lemma 2.4: If a poset P admits MacWilliams identity, then
P′ also admits MacWilliams identity.

Proof : Let |P| = n and |min(P)| = n1. If n = n1, then
the lemma is true. Hence we may assume that n > n1.

Let C′
1, C′

2 be two linear codes of length n − n1 with the
same P′-weight enumerators. We consider two linear codes of
length n de£ned by

Ci = F
n1
q

⊕ C′
i := {(u, v)

∣∣ u ∈ F
n1
q , v ∈ C′

i}, i = 1, 2.
It follows from the previous remark that C1 and C2 have
the same P-weight enumerators. Therefore C⊥

1 , C⊥
2 have the

same P-weight enumerators. Since C⊥
i = {(u, v)

∣∣ u =
0 ∈ F

n1
q , v ∈ C′⊥

i }, for i = 1, 2, C′⊥
1 and C′⊥

2 have the
same P′-weight enumerators. This proves that P′ also admits
MacWilliams identity.

From the above lemmas and inductive argument, we have
the following theorem.

Theorem 2.5: If P admits MacWilliams identity, then P is
a hierarchical poset.

III. MACWILLIAMS IDENTITY FOR A HIERARCHICAL

POSET CODE

In this section, we will derive the MacWilliams identity for
a hierarchical poset code. Let C be a linear P-code of length n
over Fq. We £rst introduce the ‘leveled’ P-weight enumerator
WC,P(x : y0, y1, . . . , yt) and obtain an equation which relates
WC⊥,P(x : zt+1, zt, . . . , z1) with variations of leveled P-
weight enumerator of C. By specializing this equation, we will
obtain the MacWilliams identity for a hierarchical poset code,
and prove that our necessary condition in Section 2 is also a
suf£cient condition for admitting the MacWilliams identity. In
this section, P will denote a hierarchical poset with t-levels
and n-elements unless otherwise speci£ed.

Let P = H(n;n1, n2, . . . , nt) be a hierarchical poset with
t-levels and n - elements on the set [n] = {1, 2, . . . , n}. As
mentioned earlier, we identify the underlying set of P with the
coordinate positions of vectors in F

n
q . Since n = n1 + · · ·+nt

and F
n
q = F

n1
q

⊕
F

n2
q

⊕ · · ·⊕ F
nt
q , for u ∈ F

n
q , we may write

u = (u1, u2, . . . , ut), and ui ∈ F
ni
q .

For an integer 0 ≤ i ≤ t, we also use the following notation:

n̂i = n − (n1 + · · · + ni) = ni+1 + · · · + nt,

ũi+1 = (ui+1, . . . , ut) ∈ F
n̂i
q .

For a linear P-code C, we de£ne Ci and C1
i as follows:

Ci = {u ∈ C ∣∣ ui+1 = · · · = ut = 0}, and
C1

i = {u ∈ Ci

∣∣ ui �= 0}.

Let C be a linear P-code of length n over Fq. We introduce
the ‘leveled’ P-weight enumerator WC,P(x : y0, y1, . . . , yt) of
C as follows:

WC,P(x : y0, y1, . . . , yt) =
∑
u∈C

xwP (u)ysP (u)

= A0,Py0 + (A1,Px + · · · + An1,Pxn1)y1

+(An1+1,Pxn1+1 + · · · + An1+n2,Pxn1+n2)y2

+ · · ·
+(An1+···+nt−1+1,Pxn1+···+nt−1+1 + · · ·
+An1+···+nt,Pxn1+···+nt)yt,

where sP (u) = max{i|ui �= 0} in the expression u =
(u1, . . . , ut) and Ai,P = |{u ∈ C ∣∣ wP(u) = i}|.

For the sake of simplicity in our calculation, we also
introduce the ith-level P-weight enumerator LW

(i)
C,P(x), 1 ≤

i ≤ t, as follows:

LW
(i)
C,P(x) :=

ni∑
j=1

An1+···+ni−1+j,Pxn1+···+ni−1+j

= (An1+···+ni−1+1,Px1 + · · · + An1+···+ni,Pxni)xn−n̂i−1 .

By convention, we put LW
(0)
C,P(x) := A0,P.

Remark : (a) If we put y0 = y1 = · · · = yt = 1, then the
‘leveled’ P-weight enumerator of C becomes the ‘usual’
P-weight enumerator of C:

WC,P(x : 1, . . . , 1) = WC,P(x) =
t∑

i=0

LW
(i)
C,P(x). (2)

(b) If we put yj = 1 for 1 ≤ j ≤ i and yk = 0 for k > i,
then the ‘leveled’ P-weight enumerator of C becomes the
P-weight enumerator of the subspace Ci

(c) It is easy to see that

WCi,P(x) − WCi−1,P(x) = LW
(i)
C,P(x) =

∑
u∈C1

i

xwP(u). (3)

Recall that an additive character χ on Fq is just a homomor-
phism from the additive group of Fq into the multiplicative
group of complex numbers of magnitude 1. We give the
following lemmas about additive characters on Fq which
play an important role in the proof of the main theorem
without proof. See [6], [7] for detailed discussion on additive
characters.

Lemma 3.1: Let χ be a nontrivial additive character of Fq

and α be a £xed element of Fq. Then∑
β∈Fq

χ(αβ) =

{
q if α = 0
0 if α �= 0 .

Lemma 3.2: Let χ be a nontrivial additive character of Fq.
Then, for any linear code C over Fq,∑

v∈C
χ(u · v) =

{
0 if u �∈ C⊥

|C| if u ∈ C⊥ .

Let f be a complex-valued function de£ned on F
n
q . The

Hadamard transform f̂ of f is de£ned by
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f̂(u) =
∑

v∈Fn
q

χ(u · v)f(v).

The following lemma, which is called the discrete Poisson
summation formula, is an easy consequence of Lemma 3.2.

Lemma 3.3: Let C be a linear code of length n over Fq and
f be a function on F

n
q . Then∑

u∈C⊥
f(u) =

1
|C|

∑
u∈C

f̂(u).

Lemma 3.4: If a function f is de£ned on F
n
q by f(u) =

xwH(u), then its Hadamard transform f̂ of f is given by

f̂(u) =
∑
v∈Fn

q

χ(u · v)f(v)

= (1 + (q − 1)x)n−wH(u)(1 − x)wH(u).
The MacWilliams identity for Hamming weight enumer-

ators can be obtained by applying discrete Poisson sum-
mation formula to the complex-valued function f(u) =
xwH(u). We now apply discrete Poisson summation formula
to the complex-valued function f(u) = xwP(u)zsP(u), where
sP(u) = min{i ∣∣ ui �= 0} in the expression u =
(u1, . . . , ut), ui ∈ F

ni
q . By convention, we set sP(0) = t + 1.

We now analyze the value f̂(u) in detail. For an integer
0 ≤ i ≤ t, we put

Bi = {u = (u1, . . . , ut) ∈ F
n
q

∣∣ u1 = . . . = ui =
0, and ui+1 �= 0}.

Note that F
n
q =

t⋃
i=0

Bi is a disjoint union.

It follows from the above observation that

f̂(u) =
∑
v∈Fn

q

χ(u · v)f(v)

=
t∑

i=0

∑
v∈Bi

χ(u · v)xwP(v)zsP(v). (4)

Denote the inner sum in (4) by Si(u), 0 ≤ i ≤ t. For v ∈ Bi

with i < t, we have wP(v) = ni+2 + · · ·+ nt + wH(vi+1) =
n̂i+1 + wH(vi+1) and sP(v) = i + 1, where n̂i = n − (n1 +
n2+· · ·+ni). For v ∈ F

n
q , we write v = (v1, v2, · · · , vi, ṽi+1),

where ṽi+1 = (vi+1, vi+2, . . . , vt) ∈ F
n̂i
q . Hence the inner sum

Si(u) in (4) for i < t is

Si(u) =
∑
v∈Bi

χ(u · v)xwP(v)zsP(v)

= xn̂i+1zi+1

∑
v∈Bi

χ(u · v)xwH(vi+1)

= xn̂i+1zi+1

∑
ṽi+2∈F

̂ni+1
q

χ(ũi+2 · ṽi+2)

×
∑

vi+1 �=0∈F
ni+1
q

χ(ui+1 · vi+1)xwH(vi+1).

It follows from Lemma 3.4 that∑
vi+1 �=0∈F

ni+1
q

χ(ui+1 · vi+1)xwH(vi+1)

= (
1 − x

Q(x)
)ni+1Q(x)wH(ui+1) − 1,

where Q(x) = 1−x
1+(q−1)x . Hence we have

Si(u) = xn̂i+1zi+1

∑
ṽi+2∈F

̂ni+1
q

χ(ũi+2 · ṽi+2)

× (
(
1 − x

Q(x)
)ni+1Q(x)wH(ui+1) − 1

)
= xn̂i+1zi+1

(
(
1 − x

Q(x)
)ni+1Q(x)wH(ui+1) − 1

)
×

∑
ṽi+2∈F

̂ni+1
q

χ(ũi+2 · ṽi+2).

For i < t, it follows from the Lemma 3.2 that

Si(u) =

⎧⎪⎨⎪⎩
0 if ũi+2 �= 0 ∈ F

n̂i+1
q

(qx)n̂i+1zi+1

× (
( 1−x

Q(x) )
ni+1Q(x)wH(ui+1) − 1

)
if ũi+2 = 0 .

(5)
For i = t, it is clear that St(u) = zt+1.

Hence we have f̂(u) = zt+1 +
t−1∑
i=0

Si(u), where Si(u) is given

by (5).

Let C be a linear P-code of length n over Fq , where P =
H(n : n1, . . . , nt) is a hierarchical poset with t-levels and n-
elements. For 0 ≤ i ≤ t, we consider the subspace Ci of C
de£ned by

Ci = {u = (u1, . . . , ut) ∈ C|ui+1 = · · · = ut = 0}.

Note that Ci is the subset of the codewords u of C satisfying
ũi+1 = 0. Therefore it follows from (5) that

∑
u∈C

Si(u) =
∑

u∈Ci+1

Si(u)

= (qx)n̂i+1zi+1

∑
u∈Ci+1

(
(
1 − x

Q(x)
)ni+1Q(x)wH(ui+1) − 1

)
.(6)

Denote the right hand side of the sum in (6) by S(Ci+1). Then,

S(Ci+1)

=
∑

u∈Ci+1

(
(
1 − x

Q(x)
)ni+1Q(x)wH(ui+1) − 1

)
= (1 + (q − 1)x)ni+1

∑
u∈Ci+1

Q(x)wH(ui+1) − |Ci+1|.(7)

Put C0
i+1 = {u ∈ Ci+1

∣∣ ui+1 = 0} and C1
i+1 = {u ∈ Ci+1

∣∣
ui+1 �= 0}. For each u ∈ C1

i+1, we have

wP(u) = wH(ui+1)+n1+n2+· · ·ni = wH(ui+1)+(n−n̂i).

It follows from this observation that the inner sum in (7) is

(1+(q−1)x
1−x )n−n̂i

∑
u∈C1

i+1

( 1−x
1+(q−1)x )wP(u) + |Ci|.
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It follows form (2) and (3) that∑
u∈C

Si(u) =
∑

u∈Ci+1

Si(u)

= (qx)n̂i+1(1 + (q − 1)x)ni+1(
1

Q(x)
)n−n̂i

× zi+1

∑
u∈C1

i+1

Q(x)wP(u)

+(qx)n̂i+1zi+1

( |Ci|(1 + (q − 1)x)ni+1 − |Ci+1|
)

= (
qx

1 − x
)n(

1 + (q − 1)x
qx

)n−n̂i+1(1 − x)n̂i

× LW
(i+1)
C,P (Q(x))zi+1

+(qx)n̂i+1zi+1

( |Ci|(1 + (q − 1)x)ni+1 − |Ci+1|
)

.(8)

Since

f̂(u) =
t∑

i=0

∑
v∈Bi

χ(u · v)xwP(v)zsP(v) = zt+1 +
t−1∑
i=0

Si(u),

we have∑
u∈C

f̂(u)

= |C|zt+1 +
∑
u∈C

t−1∑
i=0

Si(u)

= |C|zt+1 + (
qx

1 − x
)n

t−1∑
i=0

ai(x)LW
(i+1)
C,P (Q(x))zi+1

+
t−1∑
i=0

bi(x)|Ci|zi+1 −
t−1∑
i=0

(qx)n̂i+1 |Ci+1|zi+1, (9)

where ai(x) = (1+(q−1)x
qx )n−n̂i+1(1 − x)n̂i and bi(x) = (1 +

(q − 1)x)ni+1(qx)n̂i+1 .

Since WC,P(x : y0, . . . , yt) =
t∑

i=0

LW
(i)
C,P(x)yi, Q(x) =

1−x
1+(q−1)x , and ai(x) = (1+(q−1)x

qx )n−n̂i+1(1 − x)n̂i , the £rst
summation in (9) becomes

(
qx

1 − x
)nWC,P(

1 − x

1 + (q − 1)x
: f0, f1, . . . , ft), (10)

where

fi =

{
0 if i = 0

( 1+(q−1)x
qx )n−n̂i(1 − x)n̂i−1zi if i ≥ 1 .

(11)

Since |Ci| = A0,P + (A1,P + · · · + An1,P) + · · · +
(An1+···+ni−1+1,P + · · · + An1+···+ni,P), we have the fol-
lowing equation:

t−1∑
i=0

bi(x)|Ci|zi+1

= b0(x)|C0|z1 + b1(x)|C1|z2 + · · · + bt−1(x)|Ct−1|zt

= A0,P(b0(x)z1 + b1(x)z2 + · · · + bt−1(x)zt)
+(A1,P + · · · + An1,P)(b1(x)z2 + · · · + bt−1(x)zt)
+ · · · +
+(An1+···+nt−2+1,P + · · · + An1+···+nt−1,P)bt−1(x)zt.

Let gj =
t−1∑
i=j

bi(x)zi+1, for 0 ≤ j ≤ t − 1 and gt = 0.

(Recall that bi(x) = (qx)n̂i+1(1 + (q − 1)x)ni+1 .)
Since LW

(i)
C,P(1) = |Ci|−|Ci−1| = An1+···+ni−1+1,P+· · ·+

An1+···+ni,P and WC,P(1 : y0, . . . , yt) =
t∑

i=0

LW
(i)
C,P(1)yi,

the second summation in (9) becomes
t−1∑
i=0

bi(x)|Ci|zi+1 =
t∑

i=0

LW
(i)
C,P(1)gi

= WC,P(1 : g0, g1, . . . , gt), (12)

where

gj =

⎧⎪⎨⎪⎩
t−1∑
i=j

(qx)n̂i+1(1 + (q − 1)x)ni+1zi+1 if 0 ≤ j ≤ t − 1

0 if j = t .
(13)

In the same manner, the last summation in (9) becomes
t−1∑
i=0

(qx)n̂i+1zi+1|Ci+1| = WC,P(1 : h0, h1, . . . , ht),(14)

where

hj =

⎧⎪⎪⎨⎪⎪⎩
t∑

i=j

(qx)n̂izi if 1 ≤ j ≤ t

t∑
i=1

(qx)n̂izi if j = 0 .

(15)

By applying discrete Poisson summation formula∑
u∈C⊥

f(u) = 1
|C|

∑
u∈C

f̂(u),

we £nally obtain the following theorem.
Theorem 3.5: Let P = H(n : n1, . . . , nt) be the hierarchi-

cal poset of n-elements with t-levels and C be a linear P-code
of length n over Fq . Then

WC⊥,P(x : zt+1, . . . , z1) =
1
|C|

∑
u∈C

f̂(u)

= zt+1 +
1
|C|

(
(

qx

1 − x
)nWC,P(Q(x) : f0, . . . , ft)

+WC,P(1 : g0, . . . , gt) − WC,P(1 : h0, . . . , ht)
)
,

where Q(x) = 1−x
1+(q−1)x , and fi, gi, hi are given by Equations

(11), (13) and (15).
If we put z1 = z2 = · · · = zt+1 = 1 in Theorem 3.5,

then WC⊥,P(x : 1, 1, . . . , 1) becomes the ‘usual’ the P-weight
enumerator WC⊥,P(x) of the dual code C⊥ on the poset
P. Hence the P-weight enumerator of the dual code C⊥ is
uniquely determined by the P-weight enumerator of C itself.

Combining this with Theorem 2.5, we obtain the following
main theorem.

Theorem 3.6: A poset P admits MacWilliams identity if
and only if P is a hierarchical poset.

As an illustration, we apply Theorem 3.5 to special cases,
and compare our results with the previous result.

Let P be an antichain of n-elements, that is, P is a
hierarchical poset with 1-level. Put z1 = z2 = 1. The equations
(11), (13) and (15) can be written as follows:
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f0 = 0, f1 =
( 1 + (q − 1)x

qx

)n (1 − x)n, (16)

g0 = (1 + (q − 1)x)n, g1 = 0, (17)

h0 = h1 = 1. (18)

After a simple calculation, we obtain the following corol-
lary.

Corollary 3.7: Let P be an anti-chain of n-elements and C
be a linear P-code over Fq. Then,

WC⊥(x) = WC⊥,P(x : 1, 1)

=
1
|C| (1 + (q − 1)x)nWC

( 1 − x

1 + (q − 1)x
)

. (19)

We remark that (19) is exactly the ‘classical’ MacWilliams
identity for Hamming weight enumerators (cf [7, Ch5, Theo-
rem 13]).

Let P be a chain of t-elements, that is, P is a hierarchical
poset of t-levels and n1 = · · · = nt = 1 so that n̂i = t − i
for 0 ≤ i ≤ t. Put z1 = z2 = . . . = zt = 1. Then we have the
following equations:

fi =

{
0 if i = 0

(1 − x)t+1
( 1+(q−1)x

qx(1−x)

)i
if 1 ≤ i ≤ t ,

(20)

gi =
1 + (q − 1)x

qx − 1
((qx)t−i − 1) if 0 ≤ i ≤ t , (21)

hi =

{
1

qx−1 ((qx)t−i+1 − 1) if 1 ≤ i ≤ t
1

qx−1 ((qx)t − 1) if 1 ≤ i ≤ t.
(22)

From (20), (21), and (22), we have the followings:

(
qx

1 − x
)tWC,P

( 1 − x

1 + (q − 1)x
: f0, . . . , ft

)
= (1 − x)(qx)t

(
WC,P(

1
qx

) − 1
)
, (23)

WC,P(1 : g0, . . . , gt)

=
1 + (q − 1)x

qx − 1
(

(qx)tWC,P(
1
qx

) − |C| )
, (24)

WC,P(1 : h0, . . . , ht)

=
(qx)t+1

qx − 1
WC,P(

1
qx

) − 1
qx − 1

|C| − (qx)t. (25)

By applying (23) − (25) to Theorem 3.5, we have the
followings:

WC⊥,P(x) = WC⊥,P(x : 1, 1, . . . , 1)

= 1 − (q − 1)x
qx − 1

+

1
|C|

( (qx)t+1(1 − x)
qx − 1

WC,P(
1
qx

) + x(qx)t
)

. (26)

Note that |C||C⊥| = qt and some computations yield the
following corollary.

Corollary 3.8: Let P be a chain of n-elements and C a
linear P-code over Fq. Then,

(qx − 1)WC⊥,P(x) + 1 − x

= |C⊥|xt+1
(

q(1 − x)WC,P(
1
qx

) + qx − 1
)

. (27)

This is the same as the result in [12, Theorem 4.4].

IV. RELATIONSHIP BETWEEN WEIGHT DISTRIBUTIONS

Let P = H(n;n1, . . . , nt) be a hierarchical poset of n-
elements with t-levels and P be its dual poset. Let C be a linear
P-code of length n over Fq, and let {Ai,P}i=0,...,n (resp.
{A′

i,P
}i=0,...,n) be the weight distributions of the P(resp. P)

-code C (resp. C⊥), that is, Ai,P = |{u ∈ C ∣∣ wP(u) = i}|
while A′

i,P
= |{v ∈ C⊥ ∣∣ wP(v) = i}|. In this section,

we will study the relationship between {Ai,P}i=0,...,n and
{A′

i,P
}i=0,...,n. More precisely, we will express explicitly A′

i,P
in terms of Aj,P, 0 ≤ j ≤ n, using Krawtchouk polynomials.

Before proceeding with hierarchical posets, we brie¤y re-
view the relationship between {A′

i}i=0,...,n and {Ai}i=0,...,n,
where A′

i = |{u ∈ C⊥ ∣∣ wH(u) = i}| and Ai = |{u ∈ C ∣∣
wH(u) = i}|. For convenience, we set γ = q − 1 in this
section.

De£nition 4.1: For any prime power q and positive integer
n, the Krawtchouk polynomial is de£ned by

Pk(x : n) =
k∑

j=0

(−1)jγk−j

(
x

j

)(
n − x

k − j

)
, k = 0, 1, . . . , n.

These polynomials have the generating function

(
1 + γx

)n−i (1 − x)i =
n∑

k=0

Pk(i : n)xk, 0 ≤ i ≤ n. (28)

Theorem 4.2: (Relationship between Hamming weight dis-
tributions) Let C be a linear code of length n over Fq. Then

A′
k =

1
|C|

n∑
i=0

AiPk(i : n),

where A′
k = |{u ∈ C⊥ ∣∣ wH(u) = k}| and Ai = |{u ∈ C ∣∣

wH(u) = i}|.
Let P = H(n;n1, . . . , nt) be a hierarchical poset of n-

elements with t-levels and C be a linear P-code of length n

over Fq. We de£ne LW
(i)
C,P(x, y) as follows:

LW
(i)
C,P(x, y) :=

ni∑
j=1

An1+···+ni−1+jx
ni−jyn1+···+ni−1+j . (29)

Then it is easy to see that

LW
(i)
C,P(x, y) = WCi,P(x, y) − xniWCi−1,P(x, y). (30)

The LW
(i)
C,P(x, y) is also called the ith level P-weight enu-

merator of C.
By setting z1 = z2 = · · · = zt+1 = 1 in Theorem 3.5, we

obtain the following theorem.
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Theorem 4.3: Let P = H(n;n1, . . . , nt) and C be a linear
P-code over Fq . Then

WC⊥,P(x)

= 1 +
1
|C|

t−1∑
i=0

(qx)n̂i+1

(1 − x)n−n̂i
LW

(i+1)
C,P (1 + γx, 1 − x)

+
1
|C|

t−1∑
i=0

(qx)n̂i+1
(

(1 + γx)ni+1 |Ci| − |Ci+1|
)

. (31)

Since n − n̂i = n1 + · · · + ni, the following equation can be
easily derived from (28), (29), and (30):

(qx)n̂i+1

(1 − x)n−n̂i
LW

(i+1)
C,P (1 + γx, 1 − x)

= (qx)n̂i+1

ni+1∑
k=0

( ni+1∑
j=1

An1+···+ni+jPk(j : ni+1)
)

xk.

For convenience, we set

ak(j : ni+1) :=
ni+1∑
j=1

An1+···+ni+jPk(j : ni+1).

Since P0(j : ni+1) = 1, we have

a0(j : ni+1) =
ni+1∑
j=1

An1+···+ni+j = |Ci+1| − |Ci|. (32)

Therefore, the £rst summation in (31) becomes

1
|C|

t−1∑
i=0

(qx)n̂i+1
( ni+1∑

k=0

ak(j : ni+1)xk
)

. (33)

It follows from the binomial series that the last summation in
(31) becomes

1
|C|

t−1∑
i=0

(qx)n̂i+1
( |Ci| − |Ci+1| +

ni+1∑
k=1

(
ni+1

k

)
γk|Ci|xk

)
. (34)

By (32), (33), and (34), the RHS of (31) in the Theorem 4.3
becomes

1 +
1
|C|

t−1∑
i=0

(qx)n̂i+1

×
ni+1∑
k=1

(
ak(j : ni+1) +

(
ni+1

k

)
γk|Ci|

)
xk. (35)

On the other hand, the LHS of (31) in the Theorem 4.3 can
be written as

WC⊥,P(x)

= A′
0,P

+ A′
1,P

x + · · · + A′
nt,P

xnt

+
(

A′
nt+1,P

x + · · · + A′
nt+nt−1,P

xnt−1
)

xnt

+ · · ·
+

(
A′

nt+···+n2+1,P
x + · · · + A′

nt+···+n1,P
xn1

)
xnt+···+n2

= 1 +
t−1∑
i=0

xn̂i+1

ni+1∑
k=1

A′
nt+···+ni+2+k,P

xk. (36)

Since ak(j : ni+1) =
ni+1∑
j=1

An1+···+ni+j,PPk(j : ni+1) and

|Ci| =
n1+···+ni∑

k=0

Ak, we have the following theorem from (35)

and (36). (Note A′
0,P

= A0,P = 1.)
Theorem 4.4: Let P = H(n;n1, . . . , nt) be a hierarchical

poset of n-elements with t-levels and C be a linear P-code of
length n over Fq . Then, for each 0 ≤ i ≤ t−1, 1 ≤ k ≤ ni+1,

A′
nt+···ni+2+k,P

=
qn̂i+1

|C|
ni+1∑
j=1

Pk(j : ni+1)An1+···+ni+j,P

+
qn̂i+1

|C|
(

ni+1

k

)
γk

n1+···+ni∑
j=0

Aj,P.
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