Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs

Sergiy Butenko

Department of Industrial Engineering Texas A&M University College Station, TX 77843

Joint work with P. Pardalos, I. Sergienko, V. Shylo, and P. Stetsyuk

Outline

- Introduction
- Maximum clique/independent set problems
- Error-correcting codes
- Lower bound for codes correcting one error on the Z-channel
- Conclusion

Definitions:

G = (V, E) is a simple undirected graph, $V = \{1, 2, ..., n\}.$

 $\overline{G} = (V, \overline{E})$, is the complement graph of G = (V, E), where $\overline{E} = \{(i, j) \mid i, j \in V, i \neq j \text{ and } (i, j) \notin E\}.$

For $S \subseteq V$, $G(S) = (S, E \cap S \times S)$ the subgraph induced by S.

Example: V = $\{1, 2, 3, 4, 5\}$ E = $\{(1,2), (1,3),$ (1,4), (2,3), (2,4), (3,4), $(3,5), (4,5)\}$

$$S = \{1, 3, 5\}$$

 $G(S):$

$$\frac{S = \{1, 3, 5\}}{G(S)}:$$

Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs – p.4/30

A subset $I \subseteq V$ is called an *independent set* (stable set, vertex packing) if G(I) has no edges.

A subset $C \subseteq V$ is called a *clique* if G(C) is complete, i.e. it has all possible edges.

An independent set (clique) is said to be

- *maximal*, if it is not a subset of any larger independent set (clique);
- *maximum*, if there is no larger independent set (clique) in the graph.

Example:

A maximal clique: $\{3, 4, 5\}$

The maximum clique: $\{1, 2, 3, 4\}$

 $\alpha(G)$ – the independence (stability) number of G. $\omega(G)$ – the clique number of G.

 $VC \subseteq V$ is a vertex cover if every edge has at least one endpoint in VC.

MC, MIS and MVC problems are NP-hard

Given:

Set B^n of all binary vectors of length n; For $u \in B^n$ denote by

$$F_e(u) = \left\{ v : u \xrightarrow{\text{error } e} v \right\}$$

A subset $C \subseteq B^n$ is said to be an *e*-correcting code if $F_e(u) \bigcap F_e(v) = \emptyset$ for all $u, v \in C, u \neq v$.

Find:

The largest correcting code.

Example: Single Deletion

Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs – p.9/30

Example: Single Deletion

Computing Largest Correcting Codes and Their Estimates Using Optimization on Specially Constructed Graphs – p.9/30

Example: Single Deletion

We construct the following graph $G_n = (V_n, E_n^{(e)})$:

•
$$V_n = B^n$$
;
• $(u, v) \in E_n^{(e)}$ if and only if $u \neq v$ and
 $F_e(u) \bigcap F_e(v) \neq \emptyset$.

Then a correcting code corresponds to an independent set in G_n . Hence, the largest *e*-correcting code can be found by solving the maximum independent set problem in the considered graph.

- Single-Deletion-Correcting Codes (1dc);
- Two-Deletion-Correcting Codes (2dc);
- Codes For Correcting a Single Transposition, Excluding the End-Around Transposition (1tc);
- Codes For Correcting a Single Transposition, Including the End-Around Transposition (1et);
- Codes For Correcting One Error on the Z-Channel (1zc).

http://www.research.att.com/~njas/doc/graphs.html

(Neil Sloane's webpage)

- Preprocessing: Simplicial vertices are removed and connected components are considered separately.
- Clique Partitioning: We partition the set of vertices V of G as follows:

$$V = \bigcup_{i=1}^{k} C_i,$$

where C_i - cliques such that $C_i \cap C_j = \emptyset$, $i \neq j$.

An upper bound:

$$O_{\mathcal{C}}(G) = \max \sum_{i=1}^{n} x_i$$

s. t.
$$\sum_{i \in C_j} x_i \le 1, j = 1, \dots, m$$
$$x \ge 0.$$

where $C_j \in C$ is a maximal clique, C- a set of maximal cliques, |C| = m.

Branch-and-Bound algorithm

- Branching: Based on the fact that the number of vertices from a clique that can be included in an independent set is always equal to 0 or 1.
- Bounding: We use a heuristic solution as a lower bound and $O_{\mathcal{C}}(G)$ as an upper bound.

Exact Solutions Found.

Graph	V	E	$\alpha(G)$
1dc512	512	9727	52
2dc512	512	54895	11
ltc128	128	512	38
ltc256	256	1312	63
ltc512	512	3264	110
let128	128	672	28
let256	256	1664	50
let512	512	4032	100

A scheme of the Z-channel

n	Lower bound	Upper bound
4	4	4
5	6	6
6	12	12
7	18	18
8	36	36
9	62	62
10	112	117
11	198	210
12	379*	410

Varshamov (1973), Constantin and Rao (1979), Delsarte and Piret (1981), Etzion and Östergard (1998)

The asymmetric distance $d_A(x, y)$ between vectors $x, y \in B^n$ is defined as follows:

$$d_A(x,y) = \max\{N(x,y), N(y,x)\},\$$

where $N(x, y) = |\{i : (x_i = 0) \land (y_i = 1)\}|$. It is related to the Hamming distance

$$d_H(x,y) = \sum_{i=1}^n |x_i - y_i| = N(x,y) + N(y,x)$$
 by the

expression

$$2d_A(x,y) = d_H(x,y) + |w(x) - w(y)|$$

The minimum asymmetric distance Δ for a code $C \subset B^n$ is defined as

$$\Delta = \min \{ d_A(x, y) | x, y \in C, x \neq y \}.$$

Rao and Chawla (1975): A code C with the minimum asymmetric distance Δ can correct at most $(\Delta - 1)$ asymmetric errors.

We consider $\Delta = 2$.

The partitioning method (Van Pul and Etzion, 1989)

$$V(n) = \bigcup_{i=1}^{m} I_i, \ I_i \text{ is an independent set}, \ I_i \bigcap I_j = \emptyset, \ i \neq j.$$

$$\Pi(n) = (I_1, I_2, \ldots, I_m).$$

The *index vector* of partition $\Pi(n)$:

$$\pi(n) = (|I_1|, |I_2|, \dots, |I_m|),$$

We assume that $|I_1| \ge |I_2| \ge \ldots \ge |I_m|$.

Constant weight codes of weight wConstruct a graph G(n, w)

- $\blacksquare \binom{n}{w} \text{ vertices}$
- x and y are adjacent iff $d_H(x, y) < 4$
- an independent set partition

$$\Pi(n,w) = (I_1^w, I_2^w, \dots, I_m^w)$$

(each ind. set is a subcode with minimum Hamming distance 4)

The *direct product* $\Pi(n_1) \times \Pi(n_2, w)$ of a partition of asymmetric codes $\Pi(n_1) = (I_1, I_2, \dots, I_{m_1})$ and a partition of constant weight codes $\Pi(n_2, w) = (I_1^w, I_2^w, \dots, I_{m_2}^w)$ is the set of vectors

$$C = \{ (u, v) : u \in I_i, v \in I_i^w, 1 \le i \le m \},\$$

where $m = \min\{m_1, m_2\}$. Etzion and Östergard (1998): *C* is a code of length $n = n_1 + n_2$ with minimum asymmetric distance 2, *i.e.* a code correcting one error on the Z-channel of length $n = n_1 + n_2$.

A procedure for finding a code C of length n and minimum asymmetric distance 2:

- 1. Choose n_1 and n_2 such that $n_1 + n_2 = n$.
- 2. Choose $\epsilon = 0$ or 1.
- 3. Compute $\Pi(n_1)$ and $\Pi(n_2, 2i + \epsilon), i = 0, ..., \lfloor n_2/2 \rfloor$.

4. Set

$$C = \bigcup_{i=0}^{\lfloor n_2/2 \rfloor} \left(\Pi(n_1) \times \Pi(n_2, 2i + \epsilon) \right).$$

INPUT: G = (V, E);OUTPUT: $I_1, I_2, ..., I_m$. 0. i=0; 1. while $G \neq \emptyset$ for j = 1 to kFind a maximal independent set IS_j ; if $|IS_j| < |IS_{j-1}|$ break end Construct graph \mathcal{G} ; Find a maximal independent set $MIS = \{IS_{i_1}, \ldots, IS_{i_n}\}$ of \mathcal{G} ; $I_{i+q} = IS_{i_a}, \ q = 1, \dots, p;$ $G = G - \bigcup_{i=1}^{p} G(I_{i+q}); \ i = i+p;$ end

- $\Pi(n,0)$ consists of one (zero) codeword,
- $\blacksquare \Pi(n,1) \text{ consists of } n \text{ codes of size 1,}$
- $\blacksquare \Pi(n,2) \text{ consists of } n-1 \text{ codes of size } n/2 \text{ for even } n,$
- Index vectors of $\Pi(n, w)$ and $\Pi(n, n w)$ are equal;

Partitions of asymmetric codes found.

n	#	Partition index vector	Norm	m
8	1	36,34, 34, 33, 30, 29, 26, 25, 9	7820	9
9	1	62, 62, 62, 61, 58, 56, 53, 46, 29, 18, 5	27868	11
	2	62, 62, 62, 62, 58, 56, 53, 43, 32, 16, 6	27850	11
	3	62, 62, 62, 61, 58, 56, 52, 46, 31, 17, 5	27848	11
	4	62, 62, 62, 62, 58, 56, 52, 43, 33, 17, 5	27832	11
	5	62, 62, 62, 62, 58, 56, 54, 42, 31, 15, 8	27806	11
10	1	112, 110, 110, 109, 105, 100, 99, 88, 75, 59, 37, 16, 4	97942	13
	2	112, 110, 110, 109, 105, 101, 96, 87, 77, 60, 38, 15, 4	97850	13
	3	112, 110, 110, 108, 106, 99, 95, 89, 76, 60, 43, 15, 1	97842	13
	4	112, 110, 110, 108, 105, 100, 96, 88, 74, 65, 38, 17, 1	97828	13

Partitions of constant weight codes obtained

k	W	Partition index-vector	Norm	m
10	4	30, 30, 30, 30, 26, 25, 22, 15, 2	5614	9
12	4	51, 51, 51, 51, 49, 48, 48, 42, 42, 37, 23, 2	22843	12
12	4	51, 51, 51, 51, 49, 48, 48, 45, 39, 36, 22, 4	22755	12
12	4	51, 51, 51, 51, 49, 48, 48, 45, 41, 32, 22, 6	22663	12
12	6	132, 132, 120, 120, 110, 94, 90, 76, 36, 14	99952	10
14	4	91, 91, 88, 87, 84, 82, 81, 79, 76, 73, 66, 54, 38, 11	78399	14
14	4	91, 90, 88, 85, 84, 83, 81, 79, 76, 72, 67, 59, 34, 11, 1	78305	15
14	6	278, 273, 265, 257, 250, 231, 229, 219, 211,	672203	16
		203, 184, 156, 127, 81, 35, 4		

Example: $n = 18, n_1 = 8, n_2 = 10.$

 $\Pi(8) = \{36, 34, 34, 33, 30, 29, 26, 25, 9\};$ $\Pi(10, 4) = \{30, 30, 30, 30, 26, 25, 22, 15, 2\}.$

- $|\Pi(8) \times \Pi(10,0)| = |\Pi(8) \times \Pi(10,10)| = 36 \cdot 1 = 36;$
- $|\Pi(8) \times \Pi(10,2)| = |\Pi(8) \times \Pi(10,8)| = 256 \cdot 5 = 1280;$
- $|\Pi(8) \times \Pi(10,4)| = |\Pi(8) \times \Pi(10,6)| =$ $36 \cdot 30 + 34 \cdot 30 + 34 \cdot 30 + 33 \cdot 30 + 30 \cdot 26 + 29 \cdot$ $25 + 26 \cdot 22 + 25 \cdot 15 + 9 \cdot 2 = 6580;$
- The total is 2(36 + 1280 + 6580) = 15792 codewords.

Improved lower bounds. Previous results by: (a)-Etzion (1991); (b)- Etzion and Östergard (1998)

	Lower bound		
n	new	previous	
18	15792	15762(a)	
19	29478	29334(b)	
20	56196	56144(b)	
21	107862	107648(b)	
22	202130	201508(b)	
24	678860	678098(b)	

Conclusion

- Improved lower bounds and exact solutions for the size of largest error-correcting codes were obtained.
- Structural properties (automorphisms, ...) of the considered graphs can be utilized more efficiently to reduce problem size.
- We used computational approach. Can the problem be solved analytically?