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Aim of this talk

✓ Consider a wireless system where very short packets as well as longer ones are
allowed

✗ For example, wireless IP
✗ Or any other system where transmission is packet-oriented with packet of any

size

✓ Consider a full rate MIMO system with 4 transmit antennas and using 16 QAM
symbols.

✗ The spectral efficiency of such a system would be 16 bits p.c.u.
✗ A packet of length 128 bits would correspond to a space-time codeword of length

8 channel uses (very short!! )

We should be able to transmit very short codewords at any time, without knowing
channel coefficients.
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Non Coherent reception and space-time coding

Definition. A non coherent communication system is a communication system where
Channel Side Information is not known at the receiver end.
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Non Coherent reception and space-time coding

Definition. A non coherent communication system is a communication system where
Channel Side Information is not known at the receiver end.

✓ For MIMO systems, this includes

✗ Pseudo-coherent reception with training sequences, pilot symbols, ... [HH00,
GDE, TB03]

✗ Differential reception with differential space-time codes [HH02, HS00, Hug00,
TJ00]

✗ Purely non coherent reception with unitary codewords [ARU01, HMR+00] (do
not try to estimate the channel; construct a code which does not care of the
channel)
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Non Coherent reception and space-time coding

Definition. A non coherent communication system is a communication system where
Channel Side Information is not known at the receiver end.

✓ For MIMO systems, this includes

✗ Pseudo-coherent reception with training sequences, pilot symbols, ... [HH00,
GDE, TB03]

✗ Differential reception with differential space-time codes [HH02, HS00, Hug00,
TJ00]

✗ Purely non coherent reception with unitary codewords [ARU01, HMR+00, JH03]
(do not try to estimate the channel; construct a code which does not care of the
channel)

✓ We are interested in the pure non coherent case

✗ Zheng and Tse [ZT02] used the Grassmann manifold to adress the non coherent
case problem (Information Theory)

✗ We are able to construct full rate fully diverse non coherent codes as “packings”
in the Grassmann manifold
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Outline

✓ Introduction

✓ Non coherent reception

✗ Differential detection and degrees of freedom
✗ GLRT detector
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Outline

✓ Introduction

✓ Non coherent reception

✗ Differential detection and degrees of freedom
✗ GLRT detector

✓ Grassmann packings on GT,M (C)

✗ The Grassmann manifold
✗ Principal angles and Product “distance”
✗ Parameterization of GT,M (C)

✓ The case GT,1 (C) (one single antenna): spherical codes

✗ Construction
✗ An example

✓ The general case



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

System model

Transmitted Codeword

X
Received Codeword

Y

Rx

Rx

Rx

Rx

Rx

M N

H
Channel Matrix

Tx

Tx

Tx

Tx

Tx

✓ Received signal (quasi-static channel)

YT×N = XT×M .HM×N + WT×N (1)

with H
✗ perfectly known at the receiver (coherent codes)
✗ completely unknown at the receiver end (differential or non coherent codes)

✓ We are interested in non coherent space-time codes with M = N , T ≥ 2M and
high spectral efficiency.
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Design methodology

✓ Choose the number of degrees of freedom ς (symbols per channel use) as a
function of M , N , T and the type of code (coherent, differential or non coherent).
Table 1 gives ςopt for each case.

✓ We construct a code which satisfies to the asymptotic design criterion

✗ Diversity
✗ Coding advantage based on a product “pseudo-distance”

✓ Aim: Find codes with large minimum product ”pseudo-distance”

Coherent STC Differential STC Non Coherent STC

min (M, N) 1
2 min (M, N) M? ·

“
1− M?

T

”
Table 1: Optimal number of degrees of freedom ςopt per channel use
M? = min

`
M, N,

¨
T
2

˝´
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Differential detection

✓ Differential codes are associated to a maximal number of degrees of freedom

ςopt =
1

2
min (M, N) =

M

2

if M = N .

✓ Short blocks decrease ςopt whereas the allocated number of degrees of freedom,
when H unknown, is

M ·
„

1−
M

T

«
when M = N and T ≥ 2M

✓ To increase the total number of degrees of freedom

↓

Non coherent detection
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Non Coherent Detection

✓ ML detection is equivalent to GLRT detection when

✗ Word XT×M is unitary
✗ Coefficients of matrix HM×N are uncorrelated

✓ GLRT decision is [WM02],

X̂ = arg min
X∈C

inf
H
‖Y − X ·H‖2

F (2)

which can be rewritten as

X̂ = arg max
X∈C

Trace
“
YY† · XX†

”
(3)

where † is for “transpose + conjugate”
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The Grassmann Manifold (I)

✓ Principle: Use a constructive method to find codes on the Grassmann manifold.
“Constructive counterpart” to the geometric interpretation of [ZT02].

✓ Change of coordinates: Codeword XT×M is a basis of the M dimensional
subspace ΩX.

✗ Transformation

X 7→ (FX, ΩX) (4)

where FX ∈ CM×M is a change of basis of ΩX

CT×M → CM×M ×GT,M (C)

where GT,M (C) is a Grassmann manifold, i.e. the set of all M dimensional
subspaces in CT

✗ H in eq. (1) only affects matrix FX.
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The Grassmann Manifold (I cont’d)

✓ GT,M (C) is the set of all M dimensional subspaces in CT

✗ It is a differentiable manifold with dimension M · (T −M)

✗ Some authors have already worked on packings for the Grassmann manifold
[CHS96, BN02] for some metrics (chordal distance, geodesic distance, ...)

✗ But as it is often the case in Rayleigh fading channels, our metric is related to a
so-called “product distance” and a packing in the Grassmann manifold remains
an open question (till yesterday [Slo03])
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The Grassmann Manifold (II)

✓ Packings on the Grassmann manifold with a distance criterion derived from the
pairwise error probability of the GLRT detector [BV01]

✗ If Xi and Xj are two distinct codewords (∈ CT×M) associated to subspaces
ΩXi

and ΩXj
, then construct the matrix

"
X†

i

X†
j

#
.
ˆ

Xi Xj

˜
=

"
I R†

ij

Rij I

#

✓ The expression of the asymptotic pairwise error probability is

P (Xi → Xj) '
Γ−MN

„
2MN − 1

MN

«
det
“

I − R†
ijRij

”N

where Γ is the average signal to noise ratio.
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Principle angles

✓ Matrix R†
ijRij has eigenvalues cos2

h
θk

“
ΩXi

, ΩXj

”i
, k = 1, . . . , M where

θk

“
ΩXi

, ΩXj

”
is the kth principal angle between subspaces ΩXi

and ΩXj
[CHS96].

✗ Minimization of P.E.P. is equivalent to the maximization of

det
“

I − R†
ijRij

”
=

MY
k=1

sin
2
θk (5)

which can be viewed as a kind of product distance [BVRB96]

✓ For high rate codes, construction of the code must take into account maximization
of

min
Xi, Xj ∈ C
Xi 6= Xj

MY
k=1

θk

“
ΩXi

, ΩXj

”
(6)
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Parameterization of the Grassmann Manifold (I)

✓ It is shown in [EAS98] that

GT,M (C) ∼= UT (C) /(UM (C)× UT−M (C)) (7)

where Un (C) is the group of n dimensional complex unitary matrices.

✗ That means that each subspace in GT,M (C) can be represented by a
unitary transform in UT (C) /(UM (C) × UT−M (C)) applied to a reference M -
dimensional subspace

✗ Hence (see [EAS98]) GT,M (C) can be represented by the T ×M matrix

G =

»
exp

„
0 B

−B† 0

«–
· IT,M (8)

where B is any M × (T −M) complex matrix.

✓ Dimension of GT,M (C) is M ·(T −M)⇒M ·
`
1− M

T

´
degrees of freedom p.c.u.

(see table 1)
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Parameterization of the Grassmann Manifold (II)

✓ Singular values decomposition of

B = UM×M · ΛM×(T−M) · V†
(T−M)×(T−M)

(9)

with

Λ =

0@ λ1 0 0 0 · · · 0

0 . . . 0 ... . . . ...
0 0 λM 0 · · · 0

1A
✓ In that case, by applying eq. (8), codeword X is

X =

„
U · C ·U†

V · S ·U†

«
T×M

(10)

with

C =

0@ cos λ1
. . .

cos λM

1A and S =

0@ sin λ1
. . . 0

sin λM

1AT
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Link with the Cayley codes of [ JH03]

✓ Parameterization is

X =

"„
I +

„
0 B

−B† 0

««−1

·
„

I−
„

0 B
−B† 0

««#
· IT,M (11)

✓ After some calculations,

X =

 
U · 1−Λ2

1+Λ2 ·U
†

V · 2Λ
1+Λ2 ·U

†

!
T×M

(12)

which is the parameterization of C and S with

Λ = tan
Θ
2
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One single antenna: Spherical codes

✓ GT,1 (C) is isomorphic to ST/ {exp iϕ} , ϕ ∈ [0, 2π[

✓ Cosine-Sine decomposition of eq. (10) gives the codeword

XT
=
“

cos ρ b1
sin ρ

ρ · · · bT−1
sin ρ

ρ

”
(13)

with B =
`

b1 b2 · · · bT−1

´
and ρ =

qPT−1
i=1 |bi|2.

✓ There is only one principal angle θ between two straight complex lines. Principal
angle between X and the reference line is ρ ≤ π

2 .

✗ So, some spherical shaping must be done on constellation of vectors of type B.

✓ This construction is very similar to that giving rise to “wrapped spherical codes”
[HZ97]. The difference is that in [HZ97], the sphere is a pure sphere and not
GT,1 (C).
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Spherical codes: An illustration

✓ An example: T = 3; on G3,1 (R), use an hexagonal constellation for vector B
(finite part of the A2 lattice)
✗ With hexagonal (Voronoï constellation [For89]) and spherical shaping [LFT94]

(a) Hexagonal Shaping (b) Spherical Shaping

Figure 1: Wrapped A2 lattice with hexagonal and spherical shaping
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Spherical Codes: An example

✓ Consider a code on G5,1 (C) constructed by wrapping the E8 Gosset lattice
✗ Shaping is the cubical one. Spectral efficiency: 2.4 bits p.c.u.
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Figure 2: Simulation results for the wrapped E8 lattice

✗ Exhaustive GLRT and suboptimal decoding (on the tangent subspace to
GT,1(C)) are compared
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The General Case: Choice of matrix B

✓ Subspace ΩX is generated by the orthonormal basis

X =

»
exp

„
0 B

−B† 0

«–
· IT,M

Proposition. Let βk be the kth principal angle between ΩX and the reference
subspace represented by IT,M . Then βk is the kthsingular value of B and

MY
k=1

sin
2
βk 6= 0, ∀X ∈ C

iff the coherent code defined by the B matrices is fully diverse (see [KB03a])

✓ With a coherent code, it is quite easy to construct a non coherent code. But the
diversity property of this code needs another result.
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Fully diverse non coherent code

✓ In order to complete the diversity proof,

MY
k=1

sin
2
θk (Xi, Xj) 6= 0, ∀Xi, Xj ∈ C, Xi 6= Xj

we need another property, namely,

M
max
k=1

max
X∈C

λk (BX) ≤
π

2
− ε (14)

with λk (BX) being singular values of matrix BX and ε is a properly chosen constant
related to the structure of the coherent code used to construct the Grassmann code.

Proposition. A Grassmann code defined by the exponential mapping on a fully
diverse coherent M × (T −M) code such that inequality (14) is satisfied is a fully
diverse non coherent code.
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Some results

✓ Simulation results are presented for Grassmann manifolds G4,2 (C) (with a
coherent 2 × 2 code [DTB02]), G6,2 (C) (with a coherent 2 × 4 code [KB03a])
and G6,3 (C) (with a coherent 3×3 code [ED03]). All these coherent codes can be
seen as finite subsets of cyclic algebras [BR03, SRS03]. QPSK symbols are used.

✓ B matrix must be a word of a full rate, fully diverse coherent code

✗ For G4,2(C), take for instance [DTB02],

B =

»
s1 + θs2 φ (s3 + θs4)

φ (s3 − θs4) s1 − θs2

–
with φ2 = θ = eiπ

4 and si, i = 1, · · · , 4 are the 4 information QPSK symbols.
✗ For G6,2(C), take for instance [KB03b]

B =

»
s1 + θs2 φ (s3 + θs4) φ2 (s5 + θs6) φ3 (s7 + θs8)

φ3 (s7 − θs8) s1 − θs2 φ (s3 − θs4) φ2 (s5 − θs6)

–
with φ2 = θ = eiπ

4 and and si, i = 1, · · · , 8 are the 8 information QPSK
symbols.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

✗ For G6,3(C), take for instance,

B =

26664
s1 + θs2 + θ2s3 φ

“
s4 + θs5 + θ2s6

”
φ2
“

s7 + θs8 + θ2s9

”
φ2
“

s7 + jθs8 + j2θ2s9

”
s1 + jθs2 + j2θ2s3 φ

“
s4 + jθs5 + j2θ2s6

”
φ
“

s4 + j2θs5 + jθ2s6

”
φ2
“

s7 + j2θs8 + jθ2s9

”
s1 + j2θs2 + jθ2s3

37775
with φ3 = θ = eiπ

9 and and si, i = 1, · · · , 9 are the 9 information QPSK
symbols. [ED03]
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Figure 3: G4,2: 2 bits p.c.u., G6,2: 2.66 bits p.c.u., G6,3: 3 bits p.c.u.
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