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Aim of this talk

[1 Consider a wireless system where very short packets as well as longer ones are
allowed
[J For example, wireless IP
[J Or any other system where transmission is packet-oriented with packet of any
size
[0 Consider a full rate MIMO system with 4 transmit antennas and using 16 QAM
symbols.
[1 The spectral efficiency of such a system would be 16 bits p.c.u.
[J A packet of length 128 bits would correspond to a space-time codeword of length
8 channel uses (very short!! )

We should be able to transmit very short codewords at any time, without knowing
channel coefficients.



Non Coherent reception and space-time coding

Definition. A non coherent communication system is a communication system where
Channel Side Information is not known at the receiver end.
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[0 We are interested in the pure non coherent case

[1 Zheng and Tse [ ] used the Grassmann manifold to adress the non coherent
case problem (Information Theory)

[1 We are able to construct full rate fully diverse non coherent codes as “packings”
in the Grassmann manifold
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System model

Channel Matrix
] N H =
= N
1 v A\ ‘@m-y
S K
Transmitted Codeword Received Codeword
X Y
[1 Received signal (quasi-static channel)
Yrun = Xy -Hyxnv + Wrsn (1)

with H

[J perfectly known at the receiver (coherent codes)
[1 completely unknown at the receiver end (differential or non coherent codes)

[ We are interested in non coherent space-time codes with M = N, T > 2M and
high spectral efficiency.



Design methodology

[1 Choose the number of degrees of freedom ¢ (symbols per channel use) as a
function of M, N, T and the type of code (coherent, differential or non coherent).

Table 1 gives ¢opt for each case.
[1 We construct a code which satisfies to the asymptotic design criterion

[ Diversity
[J Coding advantage based on a product “pseudo-distance”

[0 Aim: Find codes with large minimum product "pseudo-distance”

Coherent STC Differential STC Non Coherent STC
min (M, N)  Lmin (M, N) M*-( —MT*)

Table 1: Optimal number of degrees of freedom ¢yt per channel use
M* = min (M, N, |£])



Differential detection
[1 Differential codes are associated to a maximal number of degrees of freedom
= (M. N) M
— —1Inin 3 = —
Sopt 5 5

if M = N.
[0 Short blocks decrease <ot Whereas the allocated number of degrees of freedom,

when H unknown, is
M
WL (1 i’ _)
T
when M = N andT > 2M

[1 To increase the total number of degrees of freedom

Non coherent detection



Non Coherent Detection

[1 ML detection is equivalent to GLRT detection when

[1 Word X7 s IS unitary
[1 Coefficients of matrix H,,;« x are uncorrelated

[0 GLRT decision is | 1,
X = ininf ||Y — X - H||? 2
arg min.inf | i3 (2)
which can be rewritten as
X = arg max Trace(YYT - XXT> (3)
&

where f is for “transpose + conjugate”



The Grassmann Manifold (1)

[1 Principle: Use a constructive method to find codes on the Grassmann manifold.
“Constructive counterpart” to the geometric interpretation of [ ].

[0 Change of coordinates: Codeword Xt«s IS a basis of the M dimensional
subspace Qx.

[] Transformation
X =" (Fx, Qx) (4)
where Fx € CM*M js a change of basis of Q2x

(CTXM N (CMXM % GT,M (C)
where G (C) is a Grassmann manifold, i.e. the set of all M dimensional
subspaces in CT
[J H in eq. (1) only affects matrix Fx.



The Grassmann Manifold (I cont’d)

0 Gz (C) is the set of all M dimensional subspaces in ct

[1 It is a differentiable manifold with dimension M - (T — M)

[J Some authors have already worked on packings for the Grassmann manifold
[ , ] for some metrics (chordal distance, geodesic distance, ...)

[] But as it is often the case in Rayleigh fading channels, our metric is related to a
so-called “product distance” and a packing in the Grassmann manifold remains
an open question (till yesterday [ )



The Grassmann Manifold (1l)

[1 Packings on the Grassmann manifold with a distance criterion derived from the
pairwise error probability of the GLRT detector | ]

0 If X; and X, are two distinct codewords (¢ C*'*"
Qx. and ij, then construct the matrix

X! . R

[1 The expression of the asymptotic pairwise error probability is

oomy ( 2MN —1
MN

) associated to subspaces

N
det (I — R}R;;)

where I' is the average signal to noise ratio.



Principle angles

[1 Matrix Rijij has eigenvalues cos? [Hk (QXiv ﬂxj)] .k = 1,...,M where
O (QX@" ij) is the &' principal angle between subspaces Qx, and QXj[ IE

[1 Minimization of P.E.P. is equivalent to the maximization of

det (I — RJr ) H sin” 6}, (5)
which can be viewed as a kind of product distance | ]
[1 For high rate codes, construction of the code must take into account maximization
of
min H Qk (QX ,QX ) (6)

XMX EC k=1
==



Parameterization of the Grassmann Manifold (1)

[I Itis shown in [ ] that

Gr,u (C) = Ur (C) /(Unm (C) X Ur_y (C)) (7)

where U, (C) is the group of n dimensional complex unitary matrices.

[0 That means that each subspace in Gr (C) can be represented by a
unitary transform in Ur (C) /(Uns (C) X Up—_p (C)) applied to a reference M -
dimensional subspace

[0 Hence (see [ ) G (C) can be represented by the T' x M matrix

0 B
G=lexp( B o )| Inw ®
where B is any M x (T — M) complex matrix.

O Dimension of Gy, (C)is M -(T' — M) = M- (1 — ) degrees of freedom p.c.u.
(see table 1)



Parameterization of the Grassmann Manifold (1l)

[1 Singular values decomposition of

with

— T
B=Upuyx«xnm-" AM><(T—M) ) V(T_M)x(T—M)

A1
= 0
0

0 N
: 0 :
Owe )y 0

[ In that case, by applying eq. (8), codeword X is

with

COS \1

<=

COS A\ )\

Uu.c.-ut
V.S.U'

and S =

>T><M

sin A\q

(9)

(10)

sin >\M



Link with the Cayley codes of | ]

[1 Parameterization is

-1
0 B 0 B
[J After some calculations,
< U s 1—A§ . UT )
N 1+A (12)
N
\ 1+A2 U Tx M



One single antenna: Spherical codes

Gr.1 (C) isisomorphicto Sy /{expip},p € [0, 27|
Cosine-Sine decomposition of eq. (10) gives the codeword

= ( cosp b2 ... pp T2 ) (13)

WithB = (b1 by - br_y )andp= /S0 bl

There is only one principal angle 6 between two straight complex lines. Principal
angle between X and the reference line is p < 7.

[1 So, some spherical shaping must be done on constellation of vectors of type B.

This construction is very similar to that giving rise to “wrapped spherical codes”
[ ]. The difference is that in | ], the sphere is a pure sphere and not
Gr1 (C).



Spherical codes: An illustration

[0 An example: T" = 3; on G3; (R), use an hexagonal constellation for vector B
(finite part of the A, lattice)

[J With hexagonal (Voronoi constellation [For89]) and spherical shaping [LFT94]

(a) Hexagonal Shaping (b) Spherical Shaping

Figure 1. Wrapped A- lattice with hexagonal and spherical shaping



Spherical Codes: An example

[J Consider a code on G5 ; (C) constructed by wrapping the Es Gosset lattice
[1 Shaping is the cubical one. Spectral efficiency: 2.4 bits p.c.u.

—+—  E8 spherical constellation,exhaustive search
- —+- E8 spherical constellation,simplified search
107k --—--  lower bound

- Union upper bound

_2 \\ \\\
o 107 ~ <
] RS *o

L L L L
9 10 11 12 13 1
Eb/NO (dB)

Figure 2: Simulation results for the wrapped FE lattice

[J Exhaustive GLRT and suboptimal decoding (on the tangent subspace to
Gr.1(C)) are compared



The General Case: Choice of matrix B

[1 Subspace (2x is generated by the orthonormal basis

0 B
= [exp( SN )] N LN

Proposition.  Let 3, be the k' principal angle between Qx and the reference
subspace represented by Ir ;. Then 3 is the k™ singular value of B and

M
HsinQBk #*0,VX € C

DR

iff the coherent code defined by the B matrices is fully diverse (see | )

[0 With a coherent code, it is quite easy to construct a non coherent code. But the
diversity property of this code needs another result.



Fully diverse non coherent code

[1 In order to complete the diversity proof,

M
[ [sin® 6 (Xi, X)) # 0,¥X;, X; € C, X, # X,
=

we need another property, namely,

M /s
AL (Bx ) £ == 14
N it

with A\ (Bx) being singular values of matrix Bx and e is a properly chosen constant
related to the structure of the coherent code used to construct the Grassmann code.

Proposition. A Grassmann code defined by the exponential mapping on a fully
diverse coherent M x (1T — M) code such that inequality (14) is satisfied is a fully
diverse non coherent code.



Some results

[0 Simulation results are presented for Grassmann manifolds G4, (C) (with a
coherent 2 x 2 code [DTB02]), Gg2 (C) (with a coherent 2 x 4 code [KB03a])
and Gg 3 (C) (with a coherent 3 x 3 code [EDO3]). All these coherent codes can be
seen as finite subsets of cyclic algebras [BR03, SRS03]. QPSK symbols are used.

[0 B matrix must be a word of a full rate, fully diverse coherent code

[0 For G4»(C), take for instance [DTB02],

B:[ sy + Os, gb(33—|—984)]
gb (83 — 084) A= 982

NN

with ¢ = § = e‘'4 and s;,7 = 1, - - - , 4 are the 4 information QPSK symbols.
[ For G 2(C), take for instance [KB03b]

B _ [ s1 + 0so ¢ (s3+ 0sy) &> (s5+ Osg) &> (s7 + Osg) ]
\ ¢3 (87 =~ 988) SEE— 982 qb (83 — 984) ¢2 (85 — 986)

with ¢> = 0 = ¢'f and and s;,i = 1,---,8 are the 8 information QPSK
symbols.



[0 For G 3(C), take for instance,

s1 + 982 + (9283 o) (84 + 985 -+ 9286) ¢2 (87 —+ 988 - 9289)
B = ¢2 <s7 + jOsg +j29289> 51 + j0s9 —l—j29283 ¢ (84 + j0s5 + j20236)
¢ (54 —l—j2955 + j9256) q52 (87 + j2938 -+ j9259) A\ j2982 —I—j9283
with > = 6 = ¢'9 and and s;,¢2 = 1,---,9 are the 9 information QPSK
symbols. [ ]
10”
%10'2 : = i
5 =
:%10’3
10 E -
10750‘”””HEZHHH‘H;H‘HHHE6‘HHHH28‘HHHHIEO‘H“““122‘”HHH124‘HHHH16
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Figure 3: G4 2: 2 bits p.c.u., G 2. 2.66 bits p.c.u., G 3: 3 bits p.c.u.
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