Leveraging Heterogeneity to Reduce the Cost of Data Center Upgrades

Andy Curtis

joint work with: S. Keshav Alejandro López-Ortiz Tommy Carpenter Mustafa Elsheikh

University of Waterloo

Data centers change over time

20 H and an

10 Jun 100

200

(HANT)

1 and 1 and 1

ant fine

3331

R.

ATT.

Data centers constantly evolve

- 63% of Data Center Knowledge readers are either in the midst of data center expansion projects or have just completed a new facility
- 59% continue to build and manage their data centers inhouse

http://www.datacenterknowledge.com/archives/2010/08/16/data-center-industry-expansion-in-full-swing/

Network upgrade motivation

Network upgrade motivation

- Several prior solutions for greenfield data centers
 - VL2, flattened butterfly, HyperX, BCube, DCell, Al-Fares *et al.*, MDCube

Network upgrade motivation

- Several prior solutions for greenfield data centers
 - VL2, flattened butterfly, HyperX, BCube, DCell,
 Al-Fares *et al.*, MDCube
- What about legacy data centers?

Existing topologies are not flexible enough

Existing topologies are not flexible enough

Existing topologies are not flexible enough

It should be easy and cost-effective to add capacity to a data center network

Challenging problem

- Designing a data center expansion or upgrade isn't easy
 - Huge design space
 - Many constraints

• It's hard to analyze and understand heterogeneous topologies

Problem 2

• How to design an upgraded topology?

- High performance network topologies are based on rigid constructions
 - Homogeneous switches
 - Prescribed switch radix
 - Single link rate

- High performance network topologies are based on rigid constructions
 - Homogeneous switches
 - Prescribed switch radix
 - Single link rate

Solutions:

1. develop theory of heterogeneous Clos networks

2. explore unstructured data center network topologies

Two solutions:

LEGUP: output is a heterogeneous Clos network

[Curtis, Keshav, López-Ortiz; CoNEXT 2010]

REWIRE: designs unstructured DCN topologies

[Curtis et al.; INFOCOM 2012]

Two solutions:

LEGUP: output is a heterogeneous Clos network

[Curtis, Keshav, López-Ortiz; CoNEXT 2010]

REWIRE: designs unstructured DCN topologies [Curtis et al.; INFOCOM 2012]

LEGUP designs upgraded/expanded networks for legacy data center networks

LEGUP designs upgraded/expanded networks for legacy data center networks

Input

- Budget
- Existing network topology
- List of switches & line cards
- Optional: data center model

LEGUP designs upgraded/expanded networks for legacy data center networks

Input

Output

LEGUP designs upgraded/expanded networks for legacy data center networks

Input

Output

LEGUP designs upgraded/expanded networks for legacy data center networks

Input

Output

Difficult optimization problem

Difficult optimization problem

First pass: limit solution space by finding only *heterogeneous Clos networks*

This is a physical realization of a Clos network

We can find a *logical topology* for this network

Heterogeneous Clos networks

Logical topology is a forest

Lemma 1: How to construct all optimal logical forests for a set of switches

Lemma 1: How to construct all optimal logical forests for a set of switches

Lemma 2: How to build a physical realization from a logical forest

Lemma 1: How to construct all optimal logical forests for a set of switches

Lemma 2: How to build a physical realization from a logical forest

Theorem: A characterization of heterogeneous Clos networks

Lemma 1: How to construct all optimal logical forests for a set of switches

Lemma 2: How to build a physical realization from a logical forest

Theorem: A characterization of heterogeneous Clos networks

This is the first optimal heterogeneous topology

• It's hard to analyze and understand heterogeneous topologies *more later*...

Problem 2

• How to design an upgraded topology?

• It's hard to analyze and understand heterogeneous topologies

Problem 2

• How to design an upgraded topology? *heterogeneous Clos*

Upgraded network should:

- Maximize performance, minimize cost
- Be realized in the target data center
- Incorporate existing network equipment if it makes sense

Approach: use optimization

LEGUP algorithm

- Branch and bound search of solution space
 - Heuristics to map switches to a rack
- See paper for details
- Time is bottleneck in algorithm
 - Exponential in number of switch types and (worst-case) in number ToRs
 - 760 server data center: 5–10 minutes to run algorithm
 - 7600 server data center: 1–2 days
 - But can be parallelized

LEGUP summary

- Developed theory of heterogeneous Clos networks
- Implemented LEGUP design algorithm
- On our data center, we see substantial cost savings: spend less than half as much money as a fat-tree for same performance

Two solutions:

LEGUP: output is a heterogeneous Clos network

[Curtis, Keshav, López-Ortiz; CoNEXT 2010]

REWIRE: designs unstructured DCN topologies

[Curtis et al.; INFOCOM 2012]
Can we do better with unstructured networks?

Problem

• Now we have an even harder network design problem

Problem

• Now we have an even harder network design problem

Approach

 Use local search heuristics to find a "good enough" solution

REWIRE

Uses simulated annealing to find a network that:

- Maximizes performance

Subject to:

- The budget
- Physical constraints of the data center model (thermal, power, space)
- No topology restrictions

REWIRE

Uses simulated annealing to find a network that:

Maximizes performance

Bisection bandwidth - Diameter

Subject to:

- The budget
- Physical constraints of the data center model (thermal, power, space)
- No topology restrictions

REWIRE

Uses simulated annealing to find a network that:

- Maximizes performance

Subject to:

- The budget

Costs = new cables + moved cables + new switches

- Physical constraints of the data center model (thermal, power, space)
- No topology restrictions

Simulated annealing algorithm

- At each iteration, computes
 - Performance of candidate solution
 - If accept this solution, then
 - Compute next neighbor to consider

Simulated annealing algorithm

- At each iteration, computes
 - Performance of candidate solution

No known algorithm to find the bisection bandwidth of an arbitrary network!

Easy for a single cut

bw(S,S') =

link cap(S,S')

min { server rates(S), server rates(S') }

Bisection bandwidth computation bw(S,S') =4 min { 2, 6 }

Then bisection bandwidth is the min over all cuts

Exponentially many cuts on arbitrary topologies

Exponentially many cuts on arbitrary topologies

Need: A min-cut, max-flow type theorem for multicommodity flow

Need: A min-cut, max-flow type theorem for multicommodity flow

Theorem [Curtis and López-Ortiz, INFOCOM 2009]:

A network can feasibly route all traffic matrices feasible under the server NIC rates using multipath routing iff all its cuts have bandwidth \geq a sum dependent on α_i for all nodes i

Theorem [Curtis and López-Ortiz, INFOCOM 2009]:

A network can feasibly route all traffic matrices feasible under the server NIC rates using multipath routing iff all its cuts have bandwidth \geq a sum dependent on α_i for all nodes i

We can compute the α_i values using linear programming [Kodialam et al. INFOCOM 2006]

Theorem [Curtis and López-Ortiz, INFOCOM 2009]:

A network can feasibly route all traffic matrices feasible under the server NIC rates using multipath routing iff all its cuts have bandwidth \geq a sum dependent on α_i for all nodes i

We can compute the α_i values using linear programming [Kodialam et al. INFOCOM 2006]

These two theoretical results give us a polynomial-time algorithm to find the bisection bandwidth of an arbitrary network

Evaluation

How much performance do we gain with heterogeneous network equipment?

Evaluation

- U of Waterloo School of Computer Science data center as input
- Three scenarios:
 - Upgrading the network (see paper)
 - Expansion by adding servers
 - Greenfield data center

Evaluation: input

- SCS data center topology
 - 19 edge switches, 760 servers
 - Heterogeneous edge switches
 - All aggregation switches are HP 5406 models

Evaluation: input

The data center handles air poorly.
So, we add thermal constraints modeling this

Evaluation: cost model

1 Gb ports	10 Gb ports	Watts	Cost (\$)
24		100	250
48		150	1,500
48	4	235	5,000
	24	300	6,000
	48	600	10,000
	144	5000	75,000

Rate	Short (\$)	Medium (\$)	Long (\$)
1 Gb	5	10	20
10 Gb	50	100	200
Install cost	10	20	50

Evaluation: comparison methods

- Generalized fat-tree
 - Bounded best-case performance
- Greedy algorithm
 - Finds link addition that improves performance the most, adds it, and repeats
- Random graph
 - Proposed by Singla et al., HotCloud 2011 as data center network topology

Expanding the Waterloo SCS data center

Starting servers = 760

Expanding the Waterloo SCS data center

Expanding the Waterloo SCS data center

Greenfield network design

- 1920 servers
- Edges switches have 48 gigabit ports
 - Assume 24 servers per rack

Greenfield network design

0.4

Budget = \$125/rack
Greenfield network design

Greenfield network design

- Expanding a greenfield network
- 1600 servers initially
 - Grow by increments of 400 servers (10 racks)
 - \$6000/rack budget

Expanding a greenfield network

Total servers in data center

Expanding a greenfield network

Total servers in data center

Expanding a greenfield network

Are unstructured topologies worth it?

- Higher performance
 - Up to 10x more bisection bandwidth than heterogeneous
 Clos for same cost
 - Lower latency
 (can get 2 hops between racks instead of 4)
- But difficult to manage
 - Cost to build/manage is unclear
 - Need to use Multipath TCP [Raiciu et al. SIGCOMM 2011] or SPAIN [Mudigonda et al., NSDI 2010] to effectively use available bandwidth

REWIRE future work

- Structural constraints on topology
 - Generalize greenfield topology design framework of Mudigonda et al.,USENIX ATC 2011
- Bisection bandwidth computation algorithm numerically unstable
- Scale local search approach to larger networks
- Relationship between spectral gap and bisection bandwidth?

Conclusions

- Best practices are not enough for data center upgrades
- Need theory to understand and effectively build heterogeneous networks
- Implemented LEGUP and REWIRE, optimization algorithms to design heterogeneous DCNs

