
Dealing with Dependent
Failures in Distributed Systems

Ranjita Bhagwan, Henri Casanova,
Alejandro Hevia, Flavio Junqueira, Yanhua
Mao, Keith Marzullo, Geoff Voelker,
Xianan Zhang
University California San Diego
Dept. of Computer Science & Engineering

May 2006 Dealing with Dependent Failures 2

Research Interests

Work in the formal/practical boundary of
distributed systems.

Basic strategy:
 Identify a practical issue
 Develop an abstraction of the problem
 Work at abstract level
 Bring back down to practical issue

May 2006 Dealing with Dependent Failures 3

Being Abstract About Failures

When designing or analyzing a protocol, it is
usually done in the context of a failure model
 What are the base components? (processes, networks,

processors, controllers, ...)
 How can components deviate from correct behavior?

(crash, produce the wrong output, drop input, ...)
 How many of them can fail? (it is highly unlikely that

more than this set can fail)

May 2006 Dealing with Dependent Failures 4

Threshold Failure Models

 Consider only processes.
 Out of n processes, no more than t can be faulty.

 Easy to reason about.
 Useful for expressing bounds.
 In practice, compute t and n offline

Some examples of lower bounds
 n > 2t for crash consensus
 n > 3t for arbitrary consensus
 n > 4t for Byzantine quorum systems
 n > 3t/2 for receive-omission primary-backup

May 2006 Dealing with Dependent Failures 5

Implication of using Threshold Model

Threshold model is an outgrowth of an early,
influential project in fly-by-wire (SIFT).

Any lower bounds derived on it are based on an
implicit assumption of independent and
identically distributed failures (IID).
 Any subset of t or fewer processes can be faulty
 Attained by careful design of the system

May 2006 Dealing with Dependent Failures 6

Dealing with Dependent Failures

Nonidentically distributed and dependent failures
are now the common case.
 Heterogeneous components.
 Clusters with shared components.
 Networks of hosts with shared vulnerabilities under

attack by malware.
To use a protocol designed with the threshold

model, choose t large enough to cover all failure
situations.

May 2006 Dealing with Dependent Failures 7

Generalizing thresholds

Definition
 A core is a minimal set of processes such that in

all executions, at least one of them will be
nonfaulty.
 It isn't known a priori which are faulty.
 With threshold model, any subset of t + 1 processes.

May 2006 Dealing with Dependent Failures 8

An example

n = 12

May 2006 Dealing with Dependent Failures 9

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 10

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 11

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 12

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 13

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 14

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 15

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 16

An example

n = 12

cores

May 2006 Dealing with Dependent Failures 17

An example

n = 12, t=5 n ≤ 3t

cores

May 2006 Dealing with Dependent Failures 18

An example
cores

n = 12, t=5 n ≤ 3t

May 2006 Dealing with Dependent Failures 19

Protocols for Dependent Failures

Wish a simple abstraction different from the
threshold model that can represent non-IID
failures.
 Rather than being a source of despair, can exploit

knowledge about dependent failures.
 Understand the limitations (eg, lower bounds) when

failures are not IID.

May 2006 Dealing with Dependent Failures 20

Modeling dependent failures

Dual representations
 core c: a minimal set of processes such that, in every run,

there is some process in c that does not fail.
 survivor set s: a minimal set of processes such that there

is a run in which no processes in s fails.
 Each survivor set has a non-empty intersection with each core.

Can be formally defined either probabilistically or in terms
of admissible runs.

... using cores is useful for lower bound proofs while using
survivor sets is useful for protocol design.

May 2006 Dealing with Dependent Failures 21

Modeling dependent failures

Let R be the set of runs, π be the set of processes
and up(r) be the set of processes that do not fail
during the run r.

Cπ = {c ⊆ π | (∀ r ∈ R: c ∩ up(r) ≠ ∅) ∧
 (∀ c' ⊂ c: ¬ ∀ r ∈ R: c' ∩ up(r) ≠ ∅)}

Sπ = {s ⊆ π | (∃ r ∈ R: s = up(r)) ∧
 (∀ s' ⊂ s: ¬ ∃ r ∈ R: s' = up(r))}

May 2006 Dealing with Dependent Failures 22

Modeling dependent failures

Under the threshold model:
 any set of t + 1 processes is a core;
 any set of n − t processes is a survivor set.

Cores and survivor sets are duals of each other.
Eg, cores {a, b}, {a, d}

x ≡ process x does not crash
(a ∨ b) ∧ (a ∨ d) vs. a ∨ (b ∧ d)

survivor sets {a}, {b, d}

May 2006 Dealing with Dependent Failures 23

An example
cores

survivor sets

May 2006 Dealing with Dependent Failures 24

Replication Requirements

 Replication requirements of the form n > k t
becomes
 Any partition of the processes into k subsets results in

one of the subsets containing a core.
 The intersection of any k survivor sets is not empty.

 The intersection of any k − 1 survivor sets contains a core.

May 2006 Dealing with Dependent Failures 25

An Example
cores

survivor sets

n = 12, t=5

May 2006 Dealing with Dependent Failures 26

Fractional Replication Requirements

n > a t / b
 There are some surprising consequences

 (a = 4, b = 2) is not the same as (a = 2, b = 1)
 The survivor set properties aren't easily expressed

in a general way
 (n, n − 1) and (3, 2)

May 2006 Dealing with Dependent Failures 27

Consensus and Dependent Failures

 We have re-examined consensus protocols in this model.
 The protocols are often easily derived from existing protocols

 Synchronous crash consensus: decide in smallest core, with last
round delivering result to all.

 Asynchronous crash consensus: Paxos over quorum system with
survivor sets as coterie rather than majority coterie system (which
has optimal availability in IID)

 The lower bound proofs are similar, but occasionally surprising
 Time to decide in synchronous consensus.

 Same in IID, but arbitrary slower than crash in general.

May 2006 Dealing with Dependent Failures 28

Generalizing

 We have translated, by hand, many protocols.
 For a restricted class of protocols, this can be

automated.
 Can a generalized technique be developed?

May 2006 Dealing with Dependent Failures 29

Practical Use: Grid Systems

 In grid systems (GriPhyN, BIRN, Geon) the
application for non-IID failures reduces to
construction of coteries in a wide-area network.
 Individual machines can fail
 Whole sites can fail or can be disconnected
... in such an environment, simple majority quorums do

not have optimal availability.

May 2006 Dealing with Dependent Failures 30

Multisite Failure Model
Consider case where failures within sites is IID and failures

of sites is IID
 At most ts unavailable sites, and at most t unavailable within a site
 For example, ts = 1

 One site can be unavailable
 Two sites: at least n - t working properly
 Survivor sets: n - t processes from two different sites

n processes
t failures max.

n processes
t failures max.

n processes
t failures max.

Site A Site B Site C

May 2006 Dealing with Dependent Failures 31

Quorums on PlanetLab
 Toy application: quorums of

acceptors (Paxos)
 Client: issues requests

 Two access for each request
(ballot)

 Sites used
 Three sites for the acceptors
 Three acceptors from each site
 One UCSD host: client

 Two ways of constructing
quorums
 SimpleMaj

 Quorum: any five processes
 3SitesMaj

 Quorum: four hosts, majority
from each of two sites

UC Davis

UT Austin

DukeUC San
Diego

May 2006 Dealing with Dependent Failures 32

Practical Use: Internet Catastrophes

 Vulnerabilities
shared among
many hosts allow
an Internet
pathogen to
quickly spread.

 Can replication
be used to
preserve
function in the
face of such an
attack?

May 2006 Dealing with Dependent Failures 33

Replicating for Internet Catastrophes

Phoenix: Cooperative Backup

 Informed replication
 Replica sets based on attributes
 Different attributes indicate disjoint vulnerabilities

 Attributes
 Common software systems

 Challenges
 Is there sufficient diversity in an Internet setting?
 Can we select small replica sets?

May 2006 Dealing with Dependent Failures 34

Host diversity

 Study of the UCSD
network

 Vulnerability represented
by open port

 nmap utility
 Port scans
 OS fingerprinting

 2,963 general-purpose
hosts (port data + OS)

 Host configuration
 OS + Applications

May 2006 Dealing with Dependent Failures 35

Cores H
os

ts

{ , , }

{ , , }

{ , , }

{ , , }

C
on

fig
ur

at
io

ns

Replica sets

 A set S of hosts is a core
 No attribute in all the hosts
 S is minimal

May 2006 Dealing with Dependent Failures 36

Heuristics for Selecting Cores

 Random selection
 Greedy selection
... with limits on how many cores a given host

participates in.

May 2006 Dealing with Dependent Failures 37

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 3 4 5 6 7 8 9 10
A

v
e
ra

g
e
 c

o
v
e
ra

g
e

Load limit

Random
Uniform

Core size and Coverage

Uniform: most hosts require a
single extra replica

Three times more
storage for random

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 c

o
re

 s
iz

e

Load limit

Random
Uniform

May 2006 Dealing with Dependent Failures 38

Phoenix Recovery System

 Data backup
 On cores using Uniform

 Implement on a DHT
 Pastry
 Macedon framework

 Advertising
configurations
 Container → Zone
 Sub-container → Sub-zone

 To get a core
 Request messages

 To recover
 Periodic announcement

messages
 Core members only

May 2006 Dealing with Dependent Failures 39

Prototype evaluation (USENIX '05)

1.01.02.222.107
1.01.02.232.105

1.01.02.222.123

Sim
.

Imp
.

Sim
.

Imp.
CoverageCore sizeL

 On PlanetLab
 Total number of hosts: 63

 62 PlanetLab hosts
 1 UCSD host

 Configurations manually set
 63 randomly chosen out of

the 2,963

 Simulating a catastrophe
 Failed Windows hosts
 Recovery time

 Announcement period: 120s
 For 35: ~ 100s
 One site: order of minutes

May 2006 Dealing with Dependent Failures 40

Wrap up

Designing for non-IID failures is possible and worth doing.
 On the formal side, working on automated methods for

transforming protocols from IID to non-IID.
 For grid computing, empirical study to see what failures

occur in Geon and how replication can be done to
increase availability.

 For Internet catastrophes, empirical study on the nature of
actual vulnerabilities in an enterprise network.

