
Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

The COIN-OR Open Solver Interface

Matthew Saltzman

Clemson University

DIMACS COIN-OR Workshop 7/17/2006

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Outline

1 Introduction
What is OSI?

2 Example of Use: The Uncapacitated Facility Location Problem
Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

3 Future Directions for Development

4 Additional Resources

5 Acknowledgements

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

What is OSI?

What is OSI?

The COIN-OR Open Solver Interface (OSI) attempts to provide a uniform API
for math programming solvers embedded in applications.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

What is OSI?

History

First released in 2000.

Supported OSL, Volume, and XPRESS.

Designed to embed LP solver in BCP, but BCP didn’t work with it at first.
Quickly became popular development target.

CPLEX, SoPlex, CLP, DyLP, GLPK followed quickly.
CBC, FortMP, Mosek, SYMPHONY more recent.
All except OSL, Volume, CLP contributed by non-IBM developers.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

What is OSI?

Capabilities

Read and write LP or MIP from MPS or CPLEX LP file or construct in
memory (cf CoinUtils).

Invoke presolver.

Load problem in embedded solver.

Set solver parameters.

Call embedded solver on LP (relaxation).

Modify problem representation stored in solver.

Interact with CGL to generate cutting planes that cut off given solution.

Resolve LP using hot start.

Call embedded MIP solver using LP solution at root node.

Extract solution data.

Extract raw problem pointer to bypass OSI.

Manage multiple problem instances.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Input Data

The following are the input data needed to describe an instance of the
uncapacitated facility location problem (UFL):

Data

a set of depots N = {1, ..., n}, a set of clients M = {1, ..., m},

the transportation cost cij to service client i from j ,

the fixed cost fj for using depot j

Variables

xij is the amount of the demand for client i satisfied from depot j

yj is 1 if the depot is used, 0 otherwise

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Mathematical Programming Formulation

The following is a mathematical programming formulation of the UFL

UFL Formulation

Minimize
X
i∈M

X
j∈N

cijxij +
X
j∈N

fjyj (1)

subject to
X
j∈N

xij = di ∀i ∈ M, (2)

X
i∈M

xij ≤ (
X
i∈M

di)yj ∀j ∈ N, (3)

yj ∈ {0, 1} ∀j ∈ N (4)

0 ≤ xij ≤ di ∀i ∈ M, j ∈ N (5)

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Dynamically Generated Valid Inequalities

Given the current LP solution, x∗, y∗, this method searches for violated
logical constraints of the form

xij − djyj ≤ 0.

To generate such inequalities dynamically, get the current solution.
Then check if

x∗ij − djy∗j > ε, ∀i ∈ M, j ∈ N.

Also generate inequalities valid for generic MILPs.
If a violation is found, add the constraint to the current LP relaxation.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Tightening the Initial Formulation

Here is the basic loop for tightening the initial formulation using the
dynamically generated inequalities from the previous slide.

Solving the LP relaxation

1 Form the initial LP relaxation and solve it to obtain (x̂ , ŷ).
2 Iterate

1 Try to generate a valid inequality violated by (x̂ , ŷ).

2 Optionally, try to generate an improved feasible solution by rounding
ŷ .

3 Solve the current LP relaxation of the initial formulation to obtain
(x̂ , ŷ).

4 If (x̂ , ŷ) is feasible, STOP. Otherwise, go to Step 1.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Data Members

C++ Class
class UFL {
private:
OsiSolverInterface * si;
double * trans_cost; //c[i][j] -> c[xindex(i,j)]
double * fixed_cost; //f[j]
double * demand; //d[j]
int M; //number of clients (index on i)
int N; //number of depots (index in j)
double total_demand; //sum{j in N} d[j]
int *integer_vars;

int xindex(int i, int j) {return i*N + j;}
int yindex(int j) {return M*N + j;}

};

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Methods

C++ Class
class UFL {
public:
UFL(const char* datafile);
~UFL();
void create_initial_model();
double tighten_initial_model(ostream *os = &cout);
void solve_model(ostream *os = &cout);

};

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

Cut Generator Library

A collection of cutting-plane generators and management utilities.

Interacts with OSI to inspect problem instance and solution information
and get cuts added to the problem.
Cuts include:

Combinatorial cuts: AllDifferent, Clique, KnapsackCover, OddHole
Flow cover cuts
Lift-and-project cuts
Mixed integer rounding cuts
General strengthening: DuplicateRows, Preprocessing, Probing,
SimpleRounding

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

COIN LP Solver

High-quality, efficient LP solver.

Simplex and barrier algorithms. QP with barrier algorithm.

Fine control through OSI or direct calls.

Tight integration with CBC (COIN-OR Branch and Cut MIP solver).

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

COIN Branch and Cut Solver

High-quality, efficient branch-and-cut solver.

LP-based relaxations.

Calls LP solver via OSI or uses CLP directly.

Uses CGL to generate cuts.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The initialize_solver() Method

Intializing the LP solver

#if defined(COIN_USE_CBC)
#include "OsiCbcSolverInterface.hpp"
typedef OsiCbcSolverInterface OsiXxxSolverInterface;
% #include "CbcModel.hpp"
#elif defined(COIN_USE_CPX)
#include "OsiCpxSolverInterface.hpp"
typedef OsiCpxSolverInterface OsiXxxSolverInterface;
#endif

OsiSolverInterface* UFL::initialize_solver() {
OsiXxxSolverInterface* si =
new OsiXxxSolverInterface();

return si;
}

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The create_initial_model() Method

Creating Rim Vectors

CoinIotaN(integer_vars, N, M * N);
CoinFillN(col_lb, n_cols, 0.0);

int i, j, index;

for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
index = xindex(i,j);
objective[index] = trans_cost[index];
col_ub[index] = demand[i];

}
}
CoinFillN(col_ub + (M*N), N, 1.0);
CoinDisjointCopyN(fixed_cost, N, objective + (M * N));

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The create_initial_model() Method

Creating the Constraint Matrix

CoinPackedMatrix * matrix =
new CoinPackedMatrix(false,0,0);

matrix->setDimensions(0, n_cols);
for (i = 0; i < M; i++) { //demand constraints:
CoinPackedVector row;
for (j = 0; j < N; j++) row.insert(xindex(i,j), 1.0);
matrix->appendRow(row);

}

for (j = 0; j < N; j++) { //linking constraints:
CoinPackedVector row;
row.insert(yindex(j), -1.0 * total_demand);
for (i = 0; i < M; i++) row.insert(xindex(i,j), 1.0);
matrix->appendRow(row);

}

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The create_initial_model() Method

Loading the Problem and Solving the LP Relaxation

si->loadProblem(*matrix, col_lb, col_ub,
objective, row_lb, row_ub);

si->initialSolve();

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The tighten_initial_model() Method

Tightening the Relaxation—Custom Cuts

const double* sol = si->getColSolution();
int newcuts = 0, i, j, xind, yind;
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
xind = xindex(i,j); yind = yindex(j);

if (sol[xind] - (demand[i] * sol[yind]) >
tolerance) { // violated constraint

CoinPackedVector cut;
cut.insert(xind, 1.0);
cut.insert(yind, -1.0 * demand[i]);
si->addRow(cut, -1.0 * si->getInfinity(), 0.0);
newcuts++;

}
}

}

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The tighten_initial_model() Method

Tightening the Relaxation—CGL Cuts

OsiCuts cutlist;
si->setInteger(integer_vars, N);
CglGomory * gomory = new CglGomory;
gomory->setLimit(100);
gomory->generateCuts(*si, cutlist);
CglKnapsackCover * knapsack = new CglKnapsackCover;
knapsack->generateCuts(*si, cutlist);
CglSimpleRounding * rounding = new CglSimpleRounding;
rounding->generateCuts(*si, cutlist);
CglOddHole * oddhole = new CglOddHole;
oddhole->generateCuts(*si, cutlist);
CglProbing * probe = new CglProbing;
probe->generateCuts(*si, cutlist);
si->applyCuts(cutlist);

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Formulation
Cutting Planes
Developing a Solver: Th e ufl Class
COIN-OR Solver Components
Putting It All Together

The solve_model() Method

Calling the MIP Solver

si->setInteger(integer_vars, N);

si->branchAndBound();
if (si->isProvenOptimal()) {
const double * solution = si->getColSolution();
const double * objCoeff = si->getObjCoefficients();
print_solution(solution, objCoeff, os);

}
else
cerr << "B&B failed to find optimal" << endl;

return;

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Current OSI

Does basic things well, but. . .

Doing many incremental updates can be inefficient.

More complex operations require non-portable direct solver interaction.
Feature creep has caused several SIs to lose synch with base class.

CLP interface is most feature compete, but even there, direct access is
sometimes needed.
CLP—CBC interaction.
Parameter setting and messaging.

Model representation is tied to solver.

SI layer is responsible for efficiency (e.g., caching).

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

What to do?

OSI Version 2

Lots of design work, but

not much code yet.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

One Challenge for Open Source

Developers with day jobs. . .

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Some Ideas for OSI2

Separate model maintenance from solver configuration and direction.

C++ “best practices”

C-callable layer (autogenerated?).

Keep most of the computational load in the base class.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Possible Partial Solution

The Optimization Services project proposes to provide some of what is
needed:

XML representation.

Model construction/modification API and internal data structures.

Solver management API.

Solution extraction API.

These features may form the basis of the “user-facing” side of the API.

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Where to go for More Information

<project> is one of Osi, Cgl, Clp, Cbc, etc.

Project home pages:
https://projects.coin-or.org/<project> (Trac pages).

Documentation: http://www.coin-or.org/Doxygen/<project>
(Doxygen), http://www.coin-or.org/Clp/userguide/,
http://www.coin-or.org/Cbc/userguide/

Mailing lists: http://list.coin-or.org (see coin-discuss,
coin-osi-devel, cgl, coin-lpsolver—note lists will be
reorganized soon).

Matthew Saltzman The COIN-OR Open Solver Interface



Introduction
Example of Use: The Uncapacitated Facility Location Problem

Future Directions for Development
Additional Resources

Acknowledgements

Thanks to Matt Galati (SAS) and Ted Ralphs (Lehigh) for the example code.

Matthew Saltzman The COIN-OR Open Solver Interface


	Introduction
	What is OSI?

	Example of Use: The Uncapacitated Facility Location Problem
	Formulation
	Cutting Planes
	Developing a Solver: Th e ufl Class
	COIN-OR Solver Components
	Putting It All Together

	Future Directions for Development
	Additional Resources
	Acknowledgements

