
Tightening ‘Big M’ Constraints

Lou Hafer

DIMACS Workshop on COIN-OR

July 17 – 20, 2006

1

Various portions joint with Mikhail Bilenky, Alexander Kononov,
Cheryl Petreman, and Ken Collins.

1-1

Time-Expanded Models

Suppose we have jobs j = 1, . . . , J with duration

d j that use the same machine. The machine can

handle one job at a time.

A time-expanded model breaks time into discrete

steps t = 1, . . . , T . A binary variable x jt encodes

job j starting at time t.

To express that at most one job can use the ma-

chine in a given time step τ, I can write

J∑

j =1

τ∑

t = τ−d j+1

x jt = 1

for every time slot t.

2

What’s my motivation?

A long time ago, when I was a bright-eyed Ph.D. student,
I was working on digital hardware design automation. Es-
sentially, it’s a resource-constrained scheduling problem: I
have a bunch of tasks with precedence, and a box of parts,
and I want to assign tasks to parts so as to minimise an
objective that balances makespan and cost of parts.

When the execution time of a task is known in advance,
you can write a time-expanded model. A constraint that
says “one task at a time” looks like this. I have to look
over a range of time indices, in order to see if a job started
earlier is still active. The duration of the activity has to be
a known constant to write this constraint.

2-1

Continuous Time Models

Suppose I use continuous variables si , fi to en-

code the start and finish times of jobs. To ex-

press that at most one job can use the machine

at a given time, I can write

sq − fp + αpqM ≥ 0

sp − fq + (1 − αpq)M ≥ 0

for all pairs p, q which could overlap.

3

My problem was that I didn’t know the duration in advance.
One of the decisions in digital hardware design affects the
duration of a task.

So I tried using continuous variables, and ended up writing
‘big M’ constraints. M has to be big enough to satisfy the
‘wrong way’ constraint, once I’ve picked an order for p and
q.

In my defense, I’d only just learned about MIP, and had no
idea what a bad model this was.

After a while, I learned that researchers using the time-
expanded model for digital hardware synthesis were get-
ting much better computational results. And I found poly-
hedral theory.

Ever since, I’ve been interested in answering the question
“What is it about the structure of the continuous time poly-
hedron that makes this model behave so badly, while the
time-expanded model behaves so well?” Finally, I can offer
a partial answer.

3-1

A Simple Example

A scheduling problem: Two activities, with no

precedence, constant duration, upper and lower

bounds on start times.

The constraint system is:

s2 − (s1 + d1) + α((ŝ1 + d1) − š2) ≥ 0

s1 − (s2 + d2) + (1 − α)((ŝ2 + d2) − š1) ≥ 0

š1 ≤ s1 ≤ ŝ1

š2 ≤ s2 ≤ ŝ2

0 ≤ α ≤ 1

4

Here’s a simple example. I’ve reverted to constant duration
so I can stay in three dimensions.

The first constraint says that if the execution order is x1 →
x2 (α = 0), then the start time of x2 (s2) must come after the
finish time of x1 (s1 + d1).

But what about when x2 goes first? Then α = 1, and the
value (ŝ1 + d1) − š2 is always larger than s2 − (s1 + d1).

4-1

s1

s2

α

A

C

H

D

G

B

F

I

J

E

5

Here’s the polytope. On the bottom, s1 goes first. On the
top, s2 goes first. The ramps represent intermediate values
of α. The dashed lines are the upper and lower bounds on
the start times.

The ramp BCD is s2 − (s1 + d1) + α((ŝ1 + d1) − š2) ≥ 0.

The ramp EFA is s1 − (s2 + d2) + (1 − α)((ŝ2 + d2) − š1) ≥ 0.

We need to cut off the non-integral points, leaving only
the integral points. By inspection, we can see the cutting
planes which are necessary. ABE and BDE together will
cut off G and J, for example.

5-1

s1

s2

α

A

C

H

D

G

B

F

I

J

E

6

The cutting planes are shown with dark lines. In effect,
they will tighten the bound on a variable as we move from
one feasible region to the other.

6-1

Non-Constant Duration

Given activities x1 and x2, to be serialised in
some order.

Minimum durations d1 and d2.

Continuous variables s1, s2, for activity start times
and f1, f2, for activity finish times, each with up-
per and lower bounds.

The minimum durations, and the upper and lower
bounds on start and finish times, are assumed to
be known constants.

The constraint system is

s2 ≥ f1 ∨ s1 ≥ f2

f1 ≥ s1 + d1

f2 ≥ s2 + d2

ši ≤ si ≤ ŝi

f̌i ≤ fi ≤ f̂i

7

Now, let’s look at the case where we don’t know execution
time in advance.

Here’s the constraint system: Two activities, x1 and x2,
with minimum durations di. For each activity, the start
time si and finish time fi is represented as a continuous
variable, with upper and lower bounds. The minimum du-
ration and bounds on the start and finish times are as-
sumed to be known a priori. For brevity, I’ll refer to the 10
values as the parameters of the polytope.

We want to serialise the activities, in either order, and this
gives the disjunctive constraint s2 ≥ f1 ∨ s1 ≥ f2.

7-1

Linear Constraints

Rewritten in ‘big M’ form, the constraints are

s2 − f1 + (1 − α)(f̂1 − š2) ≥ 0

s1 − f2 + α(f̂2 − š1) ≥ 0

f1 ≥ s1 + d1

f2 ≥ s2 + d2

ši ≤ si ≤ ŝi

f̌i ≤ fi ≤ f̂i

8

One common transformation for linearising disjunctions is
the ‘big M’ form. Here, if the variable α = 1, activity x1

should execute first; if α = 0, activity x2 should execute first.
When α is equal to 0 or 1, one of the ordering constraints
is enforced and the other is trivially satisfied.

As mentioned a moment ago, it’s well known that this
model has lousy computational behaviour.

One oft-stated reason relates to the value of M . Many peo-
ple have observed that it’s critically important that M be
as small as possible — here we can see that it’s explicitly
related to the upper and lower bounds on the variables.

The other reason is that the constraints shown here in-
clude only four of the 20 possible facets of this polytope.

8-1

Constraints for a Fixed Execution Order

Suppose x1 precedes x2. The fixed order polytope

P1 is described by this system of 11 constraints:

s2 − f1 ≥ 0

f1 − s1 ≥ d1

f2 − s2 ≥ d2

s1 ≥ š1

−s1 ≥ −min{ ŝ1, ŝ2 − d1 }

f1 ≥ f̌1

− f1 ≥ −min{ f̂1, ŝ2 }

s2 ≥ max{ š2, f̌1 }

−s2 ≥ −ŝ2

f2 ≥ max{ f̌2, f̌1 + d2 }

− f2 ≥ − f̂2

9

The lower and upper bound constraints make use of min{•}

and max{•} because the values of the parameters ši, ŝi, f̌i,

f̂i, and di determine the tighter bound. In effect, each max
or min represents two constraints.

All constraints are facets of P1 for some combination of
values of the upper and lower bounds and minimum dura-
tions.

We can construct a similar set of constraints for the P0

polytope where x2 precedes x1.

9-1

Regions of the parameter space for P
1

f
∨

1+d2 ≤ s
∧

2-d1

s
∨

1 f
∨

1-d1 s
∧

2-d1 s
∧

2+d2 f
∧

2 f
∧

1-d1

s
∨

2+d2

s
∨

1

f
∨

1-d1

f
∨

1+d2

s
∧

2+d2

f
∧

2

1A 1B

11 6 3A 3B

9 5 2A 2B

7A 8A 4A 10A 10B

7B 8B 4B 10C 10D

s
∧

1

f
∨

2

f
∨

1+d2 > s
∧

2-d1

s
∨

1 f
∨

1-d1 s
∧

2-d1 s
∧

2+d2 f
∧

2 f
∧

1-d1

s
∨

2+d2

s
∨

1

f
∨

1-d1

f
∨

1+d2

s
∧

2+d2

f
∧

2

1A 1B

11 6 3A 3B

9 5 2A 2B

7A 8A 4A 10A 10B

7B 8B 4B 10C 10D

10

This figure illustrates the many different shapes the fixed

order polytope can assume, plotted as a function of f̌2 and
ŝ1. The parameter space can be divided into 20 regions,
corresponding to 20 different sets of supporting constraints
for the P1 polytope

The facial structure of the polytope changes with the values
of the minimum durations and upper and lower bounds on
the variables.

The dividing lines show where there are changes in the
supporting constraints. The max and min terms in the
constraints define most of the boundaries. A few other
necessary relationships between the parameters produce
the remainder.

The P0 polytope is similar, as you’d expect from the sym-
metry of the constraint system.

10-1

Incorporating Order of Execution

Add a dimension with a binary variable α.

Embed P0 and P1 at α = 0 and α = 1, respectively.

Form the convex hull

P = conv(P0 ∪ P1)

11

To generate a polytope that incorporates both execution or-
ders, we embed the fixed order polytopes in a larger space,
using a binary variable to specify the execution order.

Then it’s a matter of lifting the facets and faces of the fixed
order polytopes to find the facets of the full polytope.

11-1

Facets of the Scheduling Polytope

s1 − α ⋅ š1 − (1 − α) ⋅ max{ š1, f̌2 } ≥ 0 (C-1)

− s1 + α ⋅ min{ ŝ1, ŝ2 − d1 } + (1 − α) ⋅ ŝ1 ≥ 0 (C-2)

f1 − α ⋅ f̌1 − (1 − α) ⋅ max{ f̌2 + d1, f̌1 } ≥ 0 (C-3)

− f1 + α ⋅ min{ f̂1, ŝ2 } + (1 − α) ⋅ f̂1 ≥ 0 (C-4)

s2 − α ⋅ max{ š2, f̌1 } − (1 − α) ⋅ š2 ≥ 0 (C-5)

− s2 + α ⋅ ŝ2 + (1 − α) ⋅ min{ ŝ2, ŝ1 − d2 } ≥ 0 (C-6)

f2 − α ⋅ max{ f̌2, f̌1 + d2 } − (1 − α) ⋅ f̌2 ≥ 0 (C-7)

− f2 + α ⋅ f̂2 + (1 − α) ⋅ min{ f̂2, ŝ1 } ≥ 0 (C-8)

f1 − s1 − d1 ≥ 0 (C-9)

f2 − s2 − d2 ≥ 0 (C-10)

s2 − f1 + (1 − α) ⋅ (f̂1 − š2) ≥ 0 (C-11)

s1 − f2 + α ⋅ (f̂2 − š1) ≥ 0 (C-12)

s2 − s1 − α ⋅ d1 + (1 − α) ⋅ (ŝ1 − š2) ≥ 0 (C-13)

s1 − s2 + α ⋅ (ŝ2 − š1) + (1 − α) ⋅ d2 ≥ 0 (C-14)

f2 − f1 − α ⋅ d2 + (1 − α) ⋅ (f̂1 − f̌2) ≥ 0 (C-15)

f1 − f2 + α ⋅ (f̂2 − f̌1) − (1 − α) ⋅ d1 ≥ 0 (C-16)

f2 − s1 − α ⋅ (d1 + d2) + (1 − α) ⋅ (ŝ1 − f̌2) ≥ 0 (C-17)

f1 − s2 + α ⋅ (ŝ2 − f̌1) − (1 − α) ⋅ (d1 + d2) ≥ 0 (C-18)

α ≥ 0 (C-19)

(1 − α) ≥ 0 (C-20)

12

The fixed order polytopes are four-dimensional, and the
full polytope is five-dimensional. We know if we lift any
facet of a fixed order polytope, it will form a facet of the full
polytope. This gives us facets (C-1) – (C-12).

Facets (C-1) – (C-8) are essentially upper and lower bound
constraints, augmented with the relevant bound due to se-
rialisation. For example, (C-1) always enforces s1 ≥ š1, and,

when x2 executes first (α = 0), also enforces s1 ≥ f̌2.

Facets (C-9) and (C-10) are the minimum duration con-
straints. Since they apply in any ordering, they have no α
term.

Facets (C-11) and (C-12) are the ‘big M’ constraints used to
linearise the disjunction.

Facets (C-19) and (C-20) are the bounds on α.

12-1

Unfortunately, we have a problem: It’s theoretically possible
to form a facet of the full polytope using faces of the fixed
order polytopes. Specifically, a face of dimension 2 (three
afifine independent points) from one polytope and a face
of dimension 1 (two afifine independent points) from the
other. For this polytope, that theoretical possibility is a
reality, resulting in facets (C-13) – (C-18).

12-2

Relationships Among Constraints

s2 ≥ f1
f1 ≤ s2

s2 - f1 ≥ 0

s2 ≥ s1 + d1
s1 + d1 ≤ s2

s2 - (s1 + d1) ≥ 0

f2 - d2 ≥ f1
f1 ≤ f2 - d2

(f2 - d2) - f1 ≥ 0

f2 - d2 ≥ s1 + d1
s1 + d1 ≤ f2 - d2

(f2 - d2) - (s1 + d1) ≥ 0

13

One way of seeing these facets is to notice that they are, in
a sense, derived from transitivity relationships. The tighter
bound will depend on the values of the parameters and
variables.

More mechanistically, we used the following procedure:

❅ Taking combinations of facets, we determined the con-
straints that defined all faces of dimension 2 and di-
mension 1. (Roughly C15

2 + C15
3 = 2730 small LPs.)

❅ Choose a face of dimension 2 from one fixed order
polytope, and a face of dimension 1 from the other,
and see if they can form a facet. (Another few thou-
sand tests, each a feasibility problem plus an LP.)

Since all the problems are trivially small, the computation
is not a problem.

13-1

How to Use These Facets?

The constraints are facets only if the upper and

lower bounds on the continuous variables are

tight.

To be effective, the facets must be continually up-

dated.

The details of the analysis tell which constraints

are actually facets for a given set of duration and

upper and lower bound values.

The facets reduce nicely for the more common

case where the duration of an activity is fixed in

advance.

14

These facets can only be used effectively in an environment
where the upper and lower bounds on the continuous vari-
ables are regularly tightened. Each time the bounds are
tightened, the facet must be rewritten.

These facets would be ideally suited for use in a branch &
cut algorithm that incorporated bound tightening and co-
efificient strengthening. An environment that allowed algo-
rithmic cut specifications to be placed in a cut pool would
help, so that the appropriate facet(s) could be generated on
demand.

The analysis collapses nicely to the case where the duration
of an activity is fixed (so that independent finish times are
not required).

14-1

Implementation

What’s required is to keep the upper and lower

bounds on start and finish times tight, and rewrite

the constraints as those bounds change.

COIN has much of the necessary support ma-

chinery:

❅ Two implementations of bound propagation

(probing and integer presolve).

❅ Tracked cuts (Osi)

The cut generator will need to recognise the ap-

propriate constraint patterns and generate and

update the facets.

15

Both CglProbing and CglPreProcess now incorporate sim-
ple constraint propagation routines. One of the first tasks
will be to try and pull them out and write a general Cgl-
Propagate class. No sense creating a third implementation.

OsiRowCut2 may already provide the necessary hooks to
track constraints in the constraint matrix, which will make
it easy to update the facets as the bounds are tightened.

With the support machinery in place, writing the cut gen-
erator will be a matter of recognising the appropriate form
and installing the cuts.

15-1

