
NLPAPI - an API for Nonlinear Programming Problems
Michael E. Henderson

IBM Research

This started as part of a project to optimize circuit designs

 EINSTIMER - given a circuit, finds delays and signal props.
 LANCELOT - Nonlinear Optimizer (Trust Region).

so use LANCELOT to minimize delay (or power, or ...) and use
EINSTIMER to evaluate the objective.

What's so hard about that?
1. EINSTIMER evaluates constraint values (limits on signal properties) and
 objective (e.g. delay through the circuit) algorithmically.
 No analytic statement of problem!

 LANCELOT uses a file based input (SIF).
 Requires an analytic statement of problem!

2. LANCELOT uses "Group Partially Separable" structure.
 Requires a particular form of input (complicated).

 EINSTIMER developers didn't know about "Group Partial Separability". (And
 even if they did...)
 Problem not stated in "correct" format.

3. LANCELOT has to be in charge (main program)

 EINSTIMER has to be in charge.

What was done.
LANCELOT has "external functions" that can be coded in FORTRAN
 at the bottom of the SIF file -- and --

A LANCELOT developer was "in-house".

So...

 Code a dummy FORTRAN routine in the SIF file which calls
 EINSTIMER.
 Have initialization code (EINSTUNER)
 -read the circuit description.
 -write a SIF file
 -run the SIF decoder
 -compile the output (four routines elfuns,...)
 -link EINSTIMER and LANCELOT.
 -invoke LANCELOT, which calls the dummy routine which
 calls EINSTIMER.

Yuck.

What to do?

1. Keep your mouth shut. (Recommended).

2. Go around telling everyone that this is a crummy design.

Created a subroutine interface to LANCELOT.

 Insulate the user (EINSTUNER) from the input file format.

 Provide an API - application programming interface, so the
 problem can be supplied as a subroutine, without an
 analytic form.

What did we do?

NLPAPI "Nonlinear Programming API"

 Two "phases" -

 Define the problem.

 Invoke the optimizer.

What did we do?

LANCELOT's input format:
Group Partially Separable Functions

G(x) = g (w f (R x) + ... + w f (R x) + <a ,x>-b) + ... 1
s0

0 00 00 00 0n 0n 0n0 0 0

 + g (w f (R x) + ... + w f (R x) + <a ,x>-b) 1
sm

m m m0 m0 mn mn mnm m m

0n
0

0

mn
m

m

x in IR g:IR IR R mxN matrices
 m<<N
G in IR f:IR IR
 a N-vectors
 b, w , s scalars

N

m

Problem
 variables

Group
 functions

Element
 functionsInternal

 variables

Range
 xfrms

Linear elements

Constant elements,
 element weights,
 group scales

G(x) = g (w f (R x) + ... + w f (R x) + <a ,x>-b) + ... 1
s0

0 00 00 00 0n 0n 0n0 0 0

 + g (w f (R x) + ... + w f (R x) + <a ,x>-b) 1
sm

m m m0 m0 mn mn mnm m m

0n
0

0

mn
m

m

Element functions f depend on only a "few" variables.

Derivatives of G can be expressed in terms of
 derivatives of g's ("Group Functions") and f's

Can reuse f and g's.

Makes linear dependancies (a's, b's -- "Linear Elements") explicit.

Drives users crazy

LANCELOT's input format:
Group Partially Separable Functions

x in IR g:IR IR R mxN matrices
 m<<N
G in IR f:IR IR
 a N-vectors
 b, w , s scalars

N

m

Problem
 variables

Group
 functions

Element
 functionsInternal

 variables

Range
 xfrms

Linear elements

Constant elements,
 element weights,
 group scales

Why?

minimize O(x) Objective

l < x < u Simple Bounds

E (x) = 0 Equality Constraints

L < I (x)<U Inequality Constraints

i i

i

ii

i i

O, E's, I's are all these "Group Partially Separable functions"

i

LANCELOT's "Nonlinear Programming Problem"

G(x) = g (w f (R x) + ... + w f (R x) + <a ,x>-b)1
s 0 0 0 n n n n

minimize O(x) + mS(E (x))

l < x < u Simple Bounds

L < I (x)<U Inequality Constraints

i i

i

ii

i i

O, E's, I's are all these "Group Partially Separable functions"

LANCELOT's "Nonlinear Programming Problem"

G(x) = g (w f (R x) + ... + w f (R x) + <a ,x>-b)1
s 0 0 0 n n n n

except, LANCELOT requires that for E's and I's, g(x)=x

i
2

NLPAPI
A set of C routines for defining NLP's and solving them.

Basic design:
 Create "things".
 Use them, modify them.
 Free them.

NLPAPI
A set of C routines for defining NLP's and solving them.

Basic design:
 Create "things".
 Use them, modify them.
 Free them.

"things" are

Problems, which consists of lists of

 Objective(s?) Simple Bounds
 Equality Constraints Inequality Constraints
 Element Functions Group Functions
 Nonlinear Elements Groups

NLPAPI

Solvers (LANCELOT, IPOPT)
 Set/Get parameters
 "minimize", "maximize"

A set of C routines for defining NLP's and solving them.

Basic design:
 Create "things".
 Use them, modify them.
 Free them.

"things" are

Problems,

NLPAPI
A set of C routines for defining NLP's and solving them.

 Create "things".
 Use them, modify them.
 Free them.

"things" are

Problems, Solvers

Managing "things"

Shallow copies/Deep copies a,b,c are e.g. groups and
 A is a nonlinear element
 "A" is the name of a pointer

a b c

A B

"A"
"A" "A"

Original Shallow copy Deep copy

Reuse things: make shallow copies, not deep.

What happens to the shallow copy when the original disappears?

Original Shallow copy Deep copy

b c

???? B

"A"
"A"

Managing "things"

Shallow copies/Deep copies a,b,c are e.g. groups and
 A is a nonlinear element
 "A" is the name of a pointer

Solution: reference counting

Original Shallow copy Deep copy

b c

???? B

"A"
"A"

Managing "things"

Shallow copies/Deep copies a,b,c are e.g. groups and
 A is a nonlinear element
 "A" is the name of a pointer

Reference counting

Add a "reference count" to all objects

a b c

A B

"A"
"A" "A"

ref count 1

ref count 1

ref count 1

ref count 1ref count 1

When "a" creates "A" its ref count is 1 .
 Instead of deleting "A", free it (decrement ref count), if the count is
less than 1, delete it.

Reference counting

When a shallow copy is made increment the original's ref count.

a b

A

"A"
"A"

ref count 2

ref count 1 ref count 1

Reference counting

When a is deleted, "A" sticks around, but looses a count.

a b c

A B

"A"
"A" "A"

ref count 2 1

ref count 1 0

ref count 1

ref count 1ref count 1

Reference counting

When the shallow copy is "free"ed, the original is deleted.

b c

A B

"A"
"A"

ref count 1 0 ref count 1

ref count 1ref count 1 0

Reference counting

a b c

A A"A"
ref count 2 1 ref count 1

ref count 1 ref count 0 ref count 1

Original Shallow copy Deep copy

P=LNPCreateProblem("HS65",3);

 bunch of stuff

NLPFreeProblem(P);

 P doesn't necessarily disappear here

HS 65
Min (x-y)**2+(x+y-10)**2/9+(z-5)**2

x<4.5x>-4.5

y>-4.5

y<4.5

z>-5

z<5
-4.5<x<4.5
-4.5<y<4.5
-5 <z< 5

x**2+y**2+z**2<=48

(5,5,5)

Example

Code -- not using groups

#include <NLPAPI.h>
#include <stdio.h>

int main(int argc,char *argv[])
 {
 LNProblem P;
 int nv=3;
 int v[3]={0,1,2};

 P=LNPCreateProblem("HS65",3);
 NLPSetSimpleBounds(P,0,-4.5,4.5);
 NLPSetSimpleBounds(P,1,-4.5,4.5);
 NLPSetSimpleBounds(P,2,-5,5);

 NLPSetObjectiveByString(P,"obj",
 nv,v, "[x,y,z]",
 "(x-y)**2+(x+y-10)**2/9+(z-5)**2");

 NLPAddInequalityConstraintByString(P,"ineq0",
 -1.e30,0.,
 nv,v, "[x,y,z]",
 "x**2+y**2+z**2-48");

 NLPrintProblemShort(stdout,P);
 NLPFreeProblem(P);
 }

HS65

Simple Bounds:

 -4.5000000 <=X1 <= 4.5000000
 -4.5000000 <=X2 <= 4.5000000
 -5.0000000 <=X3 <= 5.0000000

Objective Function:

 (x-y)**2+(x+y-10)**2+(z-5)**2

 Inequality Constraints:

 0 ineq0
 x**2+y**2+z**2-48<0.000000

Min (x-y)**2 + (x+y-10)**2/9 + (z-5)**2

-4.5<x<4.5
-4.5<y<4.5
-5 <z< 5

x**2 + y**2 + z**2 <=48

Simple Bounds on Variables

Objective

Inequality Constraint (for LANCELOT group function must be identity and single group)

1 Group, 3 Nonlinear Elements

3 Groups, no Nonlinear Elements

g (<a,x>)

g (w f (Rx) + w f (Rx) + w f (Rx) - b) < 0

1
s

1
s

g (<a,x> - b)1
s g (<a,x> - b)1

s
+ +

Groups

HS65

Simple Bounds:

 -4.5000000 <=X1 <= 4.5000000
 -4.5000000 <=X2 <= 4.5000000
 -5.0000000 <=X3 <= 5.0000000

Objective Function:

 "gsq"(X1-X2)+"gsq"(X1+X2-10)+"gsq"(X3-5)

 Inequality Constraints:

 0 ineq0
 x**2+x**2+x**2-48<0.000000

NLGroupFunction g;
NLElementFunction f;

g=NLCreateGroupFunctionByString(P,"gsq","[x]","x**2");

NLPAddGroupToObjective(P,"obj0");
NLPAddGroupToObjective(P,"obj1");
NLPAddGroupToObjective(P,"obj2");

NLPSetObjectiveGroupFunction(P,0,g);
NLPSetObjectiveGroupFunction(P,1,g);
NLPSetObjectiveGroupFunction(P,2,g);

a=NLCreateVector(3);NLVSetC(a,0,1);NLVSetC(a,1,-1);
NLPSetObjectiveGroupA(P,0,a);
NLFreeVector(a);

a=NLCreateVector(3);NLVSetC(a,0,1);NLVSetC(a,1,1);
NLPSetObjectiveGroupA(P,1,a);
NLFreeVector(a);
NLPSetObjectiveGroupB(P,1,10);

 ...

constraint=NLPAddNonlinearInequalityConstraint(P,"ineq0");
NLPSetInequalityConstraintUpperBound(P,constraint,0.);
NLPUnSetInequalityConstraintLowerBound(P,constraint);
NLPSetInequalityConstraintGroupB(P,constraint,0,48.);

f=NLCreateElementFunctionByString(P,"esq",1,(NLMatrix)NULL,"[x]","x**2");
v[0]=0;
ne=NLCreateNonlinearElement(P,"Sq1",f,v);
element=NLPAddNonlinearElementToInequalityConstraintGroup(P,constraint,0,1.,ne);
NLFreeNonlinearElement(P,ne);

Code -- for those who like groups

Min (x-y)**2 + (x+y-10)**2/9 + (z-5)**2

-4.5<x<4.5
-4.5<y<4.5
-5 <z< 5

x**2 + y**2 + z**2 <=48

Simple Bounds on Variables

Objective

Inequality Constraint

g (<a,x>)

g (w f (Rx) + w f (Rx) + w f (Rx) - b) < 0

1
s

1
s

g (<a,x> - b)1
s g (<a,x> - b)1

s
+ +

Groups
Nonlinear Elements

Where are EINSTIMER's subroutines?

double gSq(double x,void *d){return(x*x);}
double dgSq(double x,void *d){return(2*x);}
double ddgSq(double x,void *d){return(2);}

double fSq(int n,double *x,void *d){return(x[0]*x[0]);}
double dfSq(int i,int n,double *x,void *d){return(2*x[0]);}
double ddfSq(int i,int j,int n,double *x,void *d){return(2);}

g=NLCreateGroupFunction(P,"gsq",gSq,dgSq,ddgSq,
 (void*)NULL,(void (*)(void*))NULL);

f=NLCreateElementFunction(P,"esq",1,(NLMatrix)NULL,
 fSq,dfSq,ddfSq,
 (void*)NULL,(void (*)(void*))NULL);

HS65

Simple Bounds:

 -4.5000000 <=X1 <= 4.5000000
 -4.5000000 <=X2 <= 4.5000000
 -5.0000000 <=X3 <= 5.0000000

Objective Function:

 "gsq"(X1-X2)+0.111111*"gsq"(X1+X2-10)+"gsq"(X3-5)

 Inequality Constraints:

 0 C1
 "esq"(X1)+"esq"(X2)+"esq"(X3)-48<0.000000

(Was g=NLCreateGroupFunctionByString(P,"gsq","[x]","x**2");)

(Was f=NLCreateElementFunctionByString(P,"esq",1,(NLMatrix)NULL,"[x]","x**2");)

Solvers

NLLancelot Lan;

x0[0]=-5.;
x0[1]=5.;
x0[2]=0.;

Lan=NLCreateLancelot();
rc=LNSetPrintLevel(Lan,1);
rc=LNSetInitialPenalty(Lan,1.e-4);
rc=LNSetPenaltyBound(Lan,1.e-4);

rc=LNMinimize(Lan,P,x0, initial guess
 (double*)NULL, initial slacks
 (double*)NULL, initial l's
 x); solution

NLFreeLancelot(Lan);

NLIpopt Ip;

x0[0]=-5.;
x0[1]=5.;
x0[2]=0.;

Ip=NLCreateIpopt();
IPAddOption(Ip,"ioutput",1.);
IPAddOption(Ip,"dtol",1e-12);

rc=IPMinimize(Ip,P,x0,
 (double*)NULL,
 (double*)NULL,
 x);

NLFreeIpopt(Ip);

(3.650460,3.650460,4.620420) (3.650462,3.650462,4.620418)

Basics of NLPAPI

- a subroutine interface for stating and solving nonlinear optimization problems.
- a " for invoking NLP solvers
- a " for NLP solvers to access the NLP.

NLPAPI was built as an interface to LANCELOT, for tuning circuits.
 Now also works with IPOPT.

Based on, not a general algebraic expression, but a particular "simple"
 representation ~ "automatic differentiation"

-Insulates the user from data structure/file format. (like a modeling lang.)
-Subroutines can be used to define the problem.
-When the optimizer is changed the "problem" doesn't have to change.

In the future

 1. Something better more general than Group Partial Sep.

 Create "scalar functions" instead of group functions,
 "vector valued functions" instead of nonlinear elements

 Add, Mult., Compose, etc these functions.

 Can still find the sparsity structure and evaluate derivatives.

 2. Interfaces via SWIG (http://sourceforge.net/projects/swig)

 generates wrappers for interfaces, and can be extended.

 comes with Python, Perl and other interpretive langs.
 I'm working on extensions for Matlab, Excel, DX.

