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Outline

1. General remarks on modeling bounded rationality in games

2. General remarks on modeling players as serial or parallel RAMs.

3. Some examples.
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Bounded rationality in games

(Def’n: Bounded rationality = any deviation from the standard fully rational
“consistent and infinitely smart” model.)

Starting point:

• a model of bounded rationality for single-agent decision problems.

Then

• extend to multi-player games.

Typically requires a modification of, or at least careful thought about,
“standard” game theory equilibrium and non-equilibrium tools.
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Three approaches to bounded rationality

1. Simple behavioral rules + dynamic model of adaptation or evolution

Examples: Evolutionary game theory, multi-agent systems.

2. Optimization with non-standard preferences.

Examples: Intertemporal inconsistency; game theory with non-additive
priors.

3. Complexity + Constrained optimal

Examples: Modeling players as finite automata; requiring computability
of strategies.
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Complexity approach for single-agent decision problems

What it means to model complexity:

1. Specify the procedures by which decisions are made;

2. model the capabilities and resources of the agent in making the
decisions.

What this introduces:

1. restricts the set of feasible decision rules or strategies;

2. overall performance of a decision procedure reflects both “material
payoff” of the decision rule and a “complexity cost”.
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What is gained by modeling complexity

Less ad hoc than other approaches; tries to model why people are not fully
rational (because it is too hard!). Can see how complexity affects behavior.
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Closing the model: which decision procedure?

Ways to specify which decision procedure the player uses:

1. Ad hoc: pick one based on e.g. empirical evidence.

2. Evolution and adaptation.

3. Constrained-optimal.

4. Deciding how to decide … (but doesn’t close model).
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Why are economists averse to constrained-optimal approach?

Reduces the problem to constrained-optimization which is solved correctly.
What happened to the bounded rationality?
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Why is this aversion misguided?

There is no logical contradiction: The modeler is solving the optimization
problem, not the agent.

The bounded rationality is present in the restrictions on the set of feasible
procedures, no matter how the model is closed.

Advantages to constrained optimality:

1. Characterizing constrained-optimal procedures delineates the constraint
set and hence shows the effects of the complexity constraints.

2. Useful normative exercise.

3. Constrained optimality may have empirical relevance for stationary
environments where selection of decision procedure is on much longer
time scale than the daily use of the decision procedure.
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4. Most importantly: A good way to capture fact that decision makes are
goal oriented and do try to make the best use of their limited
information processing capabilities and this affects the patters of
behavior and the functioning of organizations.

And this aversion has distorted researchers away from explicitly modeling
complexity.

(Behavior economics may be the fastest way to see empirical implications of
some observed behavior, but is not a good theory about why people behave
the way they do and how complexity tradeoffs affect behavior.)
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Complexity in static Bayesian games

(Note: From now on, limiting attention to computation complexity rather
than communication complexity.)

In a static Bayesian game (N , (Ai , Ti , ui )i∈N , µ ), we can model complexity
of computing a strategy σ i : Ti → Ai .

(Or in mechanism design, model the complexity of computing the outcome
function.)

This uses standard “batch” or “off-line” complexity theory.

Serial complexity: mainly how long the computation takes; measures both
delay (costly because?) and time as a resource.

Parallel complexity (particularly useful if “player” is an organization):
resources and delay become separate.
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Complexity in dynamic games

Each player faces a “real-time” or “on-line” control problem.

Captures essential feature of real life: the problem is to keep up with a
changing environment, with flows of new information all the time; flows of
new decisions all the time.

“Computability” takes on a new meaning. E.g., even some linear policies are
not computable.

Dynamic games are inherently data rich even if there is no information
about the environment: players observe and react to each others’ actions.
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Some pitfalls (for both static and dynamic games)

Theorems?

How does classic asymptotic complexity theory mesh with game theory?
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Finite automata

The first(?) formal model of complexity in dynamic games had two features:

1. Class of games: infinite repetition of finite stage games.

2. Computation model for each player: finite automoton.

A beautiful marriage:

• Representation of a strategy as a finite automoton ended up useful for
classic “who-cares-about-complexity” study of repeated games.

• Repeated games are “just complicated enough” to make the finite
automoton model interesting.
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Turing machines

A strategy in an infinitely repeated game with a finite stage game turns
sequences from a finite alphabet into sequences.

That is exactly what a Turing machine does (one tape in; another tape out).

Can impose Turing computability as a constraint.
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Random Access Machines

But Turing machines are good for off-line computability, but awkward for
real-time computation, especially with data-rich environments.
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An example of a single-agent decision problem

Stochastic enviroment n i.i.d. stochastic processes, each following
stationary AR(1):

xi t = βxi ,t−1 + ε i t .

Normalize variance of xi t to 1. Then 0 < β < 1 measures inversely the
speed at which the environment is changing.

Reduced form decision problem:

• Let Xt = ∑n
i=1 xi t .

• Action is At ∈ R.

• Payoff: u (At , Xt ) = n − (At − Xt )2.

Thus, problem is to estimate Xt in order to minimize MSE. Available data are
past observations of processes.
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Statistical optimality

Complexity restricts information on which decisions depend and also the
functions that are computed from this information.

Can be “OK” to restrict attention to decision procedures that are statistically
optimal: Maximize expected payoff conditional on information used.

In this case, given information set Φ:

• Given quadratic loss, set At = E
[
Xt | Φt

]
.

• Since processes are i.i.d. E[Xt |Φt ] = ∑n
i=1 E[xi t |Φt ].

• Since processes are Markovian, E[xi t |Φt ] = βd xi ,t−Li , where xi ,t−d is
most recent observation of process i in Φt .

• u (Xt , At ) = ∑n
i=1 bd , where b ≡ β2
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Possible parallel procedures

Use PRAM model. Elementary operations: Add and Mul. Each takes on
period.

Even if the information processing is free, there are interesting trade-offs.

An example of a procedure that uses one observation of each process for
each decision.
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t

Period

t − 1

t − 2

t − 3

t − 4

ADD

ADD

ADD

MUL

β4 x1,t−4

MUL

β4 x2,t−4

MUL

β3 x3,t−3

ADD

MUL

β3 x4,t−3

MUL

β3 x5,t−3
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Heterogeneous lags

If T is “aggregation tree” (binary tree with leaves {1, . . . , n} isomorphic to
subgraph of DAG corresponding to aggregation), then Li = 1 + δ (i , T ),
where δ (i , T ) is depth of leaf i in tree T.

U = b
n

∑
i=1

bδ (i ,T ) .

Which is the best aggregation tree?

Abstractly, if Θ is a finite set and T is the set of binary trees with leaves Θ,
what kind of trees solve

max
T∈T

∑
k∈Θ

bδ (k ,T ) ?
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Two aggregation trees for four data.

If b < 1/2, then serial trees; if b > 1/2, then balanced tree.

0

Depth

1

2

3

4

ADD

Balanced

ADD

ADD

1 2

3

ADD

4 5

ADD

Serial

ADD

ADD

ADD

1 2

3

4

5
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A simple Cournot duopoly game

Linear demand with stochastic intercept: p(q ) = z − q.

Zero marginal cost; zero computation cost.

Firm i maximizes E[(z − q j − qi )qi ].

Needs to predict z − q j .

Suppose z = x + y, where x and y are AR(1) stochastic processes.

Linear computation in which multiplication by constants is free and addition
takes one period (so that it takes one period to aggregate two data as
opposed to just using one datum): elementary operation is to compute
α1w1 + α2w2, where α1 , α2 are constants and w1 , w2 are data.
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Processes are Markovian; no need to use more than one observation of each
process.

Leaves three possible information sets:

← xt ← yt ← ADD

xt−1 yt−1
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Fixing information sets, equilibria are linear.

Classic result for such Cournot competition: firms prefer to have same
information in order to track each others actions.

Nash equilibria:

• firms always choose same information sets; perhaps multiple equilibria.

• if environment is changing very quickly, only equilibria are that firms
use one datum;

• if environment is changing very slowly, only equilibrium is that firms use
two data.

Introduce a costly ability to speed up information processing. Such decisions
are strategic complements. If one firm’s cost function decreases, equilibrium
investments in speed-up of information processing increase for both firms.
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A filtering problem (single-agent)

Stochastic environment: scalar process {xt }∞t=0.

Filtering problem: calculate an estimate x̂t of xt for all t.

Performance inversely measured by MSE: Lt ≡ E
[
( x̂t − xt )2

]
.

Decision procedures: Estimate calculated from data about the environment
by a managerial staff whose cost in period t is denoted Wt .

The total cost Ct ≡ Lt + Wt .



Timothy Van Zandt • Players as Serial or Parallel Random Access Machines • DIMACS 31 January 2005 27

Stochastic environment

Random walk:

xt+1 = xt + vt

Innovation vt : mean 0 and variance σ 2
v (=“volatility”).

Data: Samples of imperfect observations:

yit = xt + ε i t

Measurement error ε i t : mean 0 and variance σ 2
ε .

(Uncorrelated with εks and {xt }.)

Limiting case: unconditional variance of xt → ∞.
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Decision procedures (the abstract overview)

Decision procedure: specificies policy and how it is computed.

Parameterized classes of cyclic procedures. Parameters:

• n = sample size

• d = delay between sample and when incorporated into decisions

• k = sampling frequency

Each decision procedure results in long-run average …

• loss L(n , d , k )

• managerial cost W (n , d , k )

• total cost C(n , d , k ) = L(n , d , k ) + W (n , d , k )
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Policies

Restrict attention to linear estimators x̂t = Ê
[
xt | Φt

]
because:

1. otherwise set of decision procedures is too vast and complicated

2. computation may then have recognizable structure

3. nice formulae for estimates (eg Kalman filter) and resulting MSE.

Sampling policies:

• Gather sample φt = {y1t , y2t , . . . , ynt } of size n every k periods

• Compute an estimate from each sample in d periods

• Use to update old estimate.

• Use estimate for k periods
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Benchmark of contemporaneous estimation

x̂t equals projection of xt on last sample from which computed and on all
preceding samples. Requires only a simple updating rule (Kalman filter).

Benchmark of contemporaneous estimation.

t = a period in which a sample is taken

φn
t = sample

φt = all previous samples

x̂n
t = Ê

[
xt | φt

]
and x̂ p

t = Ê
[
xt

∣∣φp
t

]
Σn and Σp = respective MSEs of these estimates.

Ê
[
xt

∣∣φt , φp
t

]
=

Σn

Σp + Σn x̂p
t +

Σp

Σp + Σn x̂n
t ,

MSE = (Σp Σn )/(Σp + Σn ).



Timothy Van Zandt • Players as Serial or Parallel Random Access Machines • DIMACS 31 January 2005 31

Rewrite as x̂t = (1 − α ) x̂t−k + αyt where α = Σp/(Σp + Σn ).

Let Σ∗ be steady-state value of MSE in period when sample is gathered.

Σ∗ = (−kσ 2
v +

√
(kσ 2

v )2 + 4kσ 2
v Σn )/2

This expresses the steady-state loss Σ∗ of the zero-delay policy with recall as
a function of the loss Σn of the zero-delay policy without recall

Adding in delay and time between samples:

Lr(n , d , k )

≡ 1
k

k−1

∑
j=0

((−kσ 2
v +

√
(kσ 2

v )2 + 4kσ 2
v σ 2

ε /n
)
/2 + (d + j )σ 2

v

)

=
(√

(k2/4 + kσ 2
ε /(nσ 2

v ) + d − 1/2
)

σ 2
v .



Timothy Van Zandt • Players as Serial or Parallel Random Access Machines • DIMACS 31 January 2005 32

Some results

Proposition Properties of Cnr(n , k ) without recall (updating):

• submodular in (n , k )

• decreasing differences in (n , k ) and σ 2
ε

• increasing differences in (n , k ) and σ 2
v .

⇒ optimal (n , k ) is increasing in σ 2
ε and decreasing in σ 2

v .

Similar properties with recall and w = 0.

An in all cases: mapping from environmental volatility to managerial size
n/k has inverted U shape.
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An example of a game with filtering

1. Same statistical filtering problem.

2. But xt is the intercept of inverse demand curve in a Cournot duopoly.

Once again, all Nash equilibria are symmetric. Comparative statics for the
previous single-agent problem (which is similar to but not same as the
monopoly problem) hold for the equilibria of this game. E.g., beyond a
threshold, as environment changes more quickly, in equilibrium both firms
sample more frequently and use smaller samples.

Numerical tests indicate: If one firm’s processing speed improves, then it
processes more data but with smaller managerial size; other firm processes
less data and also ends up with smaller managerial size.
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Big picture

“Classic” computation models + dynamic games =⇒ interesting real-time
learning in games.

Simplest (but interesting) game: stationary ergodic stochastic environment;
stationary or cyclic decision procedures. Problem of keeping up with a
changing environment.

Theorems?

1. Probably some interesting asymptotic results for abstract game theory;

2. Immediate results for applied games using reduced forms.


