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General Introduction

The classical paradigm of game theory assumes full
rationality of the interactive agents.

In particular, it often assumes unlimited computational
power.

However, there are many decision problems and games for
which it is impossible to assume that the agents (players)
can either compute or implement an optimal (or best
response or approximate optimal) strategy.
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Design and Implementation

It is often argued that evolutionary self selection leaves us
with agents that act optimally.

Therefore, the complexity of finding an optimal (or
approximate optimal) strategy is conceptually less
disturbing.

However, the computational feasibility and the
computational cost of implementing various strategies
should be taken into account.
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Design and Implementation

One can imagine scenarios where the design and choice of
strategies is by rational agents with (essentially) unlimited
computation power and the selected strategies need be
implemented by players with restricted computational
resources.

A corporation

The USA Navy

A soccer team

A chess player

A computer network
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Pure Mixed and Behavioral

In theory, mixed and behavioral strategies are
equivalent (in games of perfect recall).

In practice, mixed and behavioral strategies are not
equivalent.

Recall that

A mixed strategy reflects uncertainty regarding the
chosen pure strategy, and

A behavioral strategies randomizes actions at the
decision nodes.
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Strategies in the Repeated Game

The number of pure strategies of the repeated game
grows at a double exponential rate in the number of
repetitions.

Many of the strategies are not implementable by
reasonable sized computing agents.
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General Objective

The impact on

strategic interactions
the value and equilibrium payoffs

of variations of the game where players are restricted to
employ

Simple Strategies
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Simple Strategies

Computable Strategies
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Simple Strategies

Finite Automata
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Simple Strategies Recall

Bounded Recall
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Simple Strategies

Bounded Strategic Entropy
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Simple Strategies

Kolmogorov’s Complexity
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Simple Strategies

Computable Strategies

Finite Automata

Bounded Recall

Bounded Strategic Entropy

Kolmogorov’s Complexity
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Notation-Finite Automata

M := max
a∈A

min
b∈B

g(a, b)

V := min
y∈∆(B)

max
a∈A

g(a, y)

= max
x∈∆(A)

min
b∈B

g(x, b)

mm(k1, k2) := min
τ∈Σ2(k2)

max
σ∈Σ1(k1)

G(σ, τ)

:= min max(k1, k2) ≥

Mn(k1, k2) := min
τ∈∆(Σ2(k2))

max
σ∈Σ1(k1)

G(σ, τ)

:= Min max(k1, k2)
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2-P 0-sum FA: The Questions

Assume k2 ≥ k1 → ∞
What are the asymptotic relations between the size of k1

and k2 of the automata of P1 and P2 so that

Mm(k1, k2) = V

Mm(k1, k2) = M

Mm(k1, k2) = x where M < x < V

mm(k1, k2) = V

mm(k1, k2) = M
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Table-Finite Automata

mm(k1, k2) ≥ Mm(k1, k2)

k2 ≥ k1 → ∞

log k2 = o(k1) ? V

Ben-Porath (86, 93)
k2 ≥ kCk1

1 ∃C s.t. M =⇒ M

Ben-Porath (86, 93)
k2 ≥ 2Ck1 ∃C s.t. M

Neyman (97)
k2 >> k1 log k1 ≤ V =⇒ ≤ V

Neyman (97)
θ > 0 fixed k2 = 2θk1 f(θ)
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2-P 0-sum Finitely Repeated FA

Let Mm(T ; k1, k2) be the minmax the T -stage game when
P2 minimizes over all mixtures of automata of size k2 and
P1 maximizes over all automata of size k1. Similarly
mm(T ; k1, k2)

The Questions
What are the asymptotic relations between the size of k1

and k2 of the automata of P1 and P2 and the number of
repetitions T so that

Mm(T ; k1, k2) = V

Mm(T ; k1, k2) = M

Mm(T ; k1, k2) = x where M < x < V

mm(T ; k1, k2) = V

mm(T ; k1, k2) = M
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2-P nonzerosum Finitely Repeated FA

Let G(T ; k1, k2) be the T -stage game when P2 uses
machines of size k2 and P1 uses machines of size k1.

The Questions
What are the asymptotic relations between the sizes k1 and
k2 and the number of repetitions T so that

The set of equilibrium payoffs of G(T ; k1, k2) converge to
the equilibrium payoffs of the infinitely repeated game
G∗.

4C: Correlation, Communication, Complexity, and Competition – p. 27/81



2-P nonzerosum Finitely Repeated FA

Let G(T ; k1, k2) be the T -stage game when P2 uses
machines of size k2 and P1 uses machines of size k1.

The Questions

What are the asymptotic relations between the sizes k1 and
k2 and the number of repetitions T so that

The set of equilibrium payoffs of G(T ; k1, k2) converge to
the equilibrium payoffs of the infinitely repeated game
G∗.

4C: Correlation, Communication, Complexity, and Competition – p. 27/81



2-P nonzerosum Finitely Repeated FA

Let G(T ; k1, k2) be the T -stage game when P2 uses
machines of size k2 and P1 uses machines of size k1.

The Questions
What are the asymptotic relations between the sizes k1 and
k2 and the number of repetitions T so that

The set of equilibrium payoffs of G(T ; k1, k2) converge to
the equilibrium payoffs of the infinitely repeated game
G∗.

4C: Correlation, Communication, Complexity, and Competition – p. 27/81



2-P nonzerosum Finitely Repeated FA

Let G(T ; k1, k2) be the T -stage game when P2 uses
machines of size k2 and P1 uses machines of size k1.

The Questions
What are the asymptotic relations between the sizes k1 and
k2 and the number of repetitions T so that

The set of equilibrium payoffs of G(T ; k1, k2) converge to
the equilibrium payoffs of the infinitely repeated game
G∗.

4C: Correlation, Communication, Complexity, and Competition – p. 27/81



n-person Finitely Repeated FA n > 2

The objective is the study of the equilibrium of

G(k1, . . . , kn)

and of
G(T ; k1, . . . , kn).

It requires the analysis of the individual rational payoff of
say player 1, namely of

Min Max G(σ−1, σ1)

where the min is over all strategy profiles σ−1 = (σj)j 6=1

where σj is a mixture of automata of Pj of size kj and the
max is over all automata of P1 of size k1.
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Notation-Bounded Recall

M = max
a∈A

min
b∈B

g(a, b)

V = min
y∈∆(B)

max
a∈A

g(a, y)

= max
x∈∆(A)

min
b∈B

g(x, b)

mm(k1, k2) = min max(k1, k2)

= min
τ∈BR2(k2)

max
σ∈BR1(k1)

G(σ, τ)

Mn(k1, k2) = Min max(k1, k2)

= min
τ∈∆(BR2(k2))

max
σ∈BR1(k1)

G(σ, τ)
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Table-Bounded Recall

mm(k1, k2) Mn(k1, k2)

k2 ≥ k1 → ∞

log k2 = o(k1) ? V

Lehrer
k2 >> |A × B|k1 M M

Neyman and Okada
k2 > Ck1 ∃C such that ≤ V ≤ V

4C: Correlation, Communication, Complexity, and Competition – p. 30/81



Table-Bounded Recall

mm(k1, k2) Mn(k1, k2)

k2 ≥ k1 → ∞

log k2 = o(k1) ? V

Lehrer
k2 >> |A × B|k1 M M

Neyman and Okada
k2 > Ck1 ∃C such that ≤ V ≤ V

4C: Correlation, Communication, Complexity, and Competition – p. 30/81



Table-Bounded Recall

mm(k1, k2) Mn(k1, k2)

k2 ≥ k1 → ∞

log k2 = o(k1) ? V

Lehrer

k2 >> |A × B|k1 M M

Neyman and Okada
k2 > Ck1 ∃C such that ≤ V ≤ V

4C: Correlation, Communication, Complexity, and Competition – p. 30/81



Table-Bounded Recall

mm(k1, k2) Mn(k1, k2)

k2 ≥ k1 → ∞

log k2 = o(k1) ? V

Lehrer
k2 >> |A × B|k1 M M

Neyman and Okada

k2 > Ck1 ∃C such that ≤ V ≤ V

4C: Correlation, Communication, Complexity, and Competition – p. 30/81



Table-Bounded Recall

mm(k1, k2) Mn(k1, k2)

k2 ≥ k1 → ∞

log k2 = o(k1) ? V

Lehrer
k2 >> |A × B|k1 M M

Neyman and Okada
k2 > Ck1 ∃C such that ≤ V ≤ V

4C: Correlation, Communication, Complexity, and Competition – p. 30/81



Complexity and Competition

Ben-Porath 85

Lehrer 88

Neyman 97

Stearns 97

Neyman and Okada
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Complexity and Cooperation

2-person finitely repeated games

Meggido and Wigderson 86

Neyman 85,98

Papadimitriou and Yanakakis 94

Zemel 89

...

2-person infinitely repeated games
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Complexity and Cooperation

n-person games (n > 2)

Ben-Porath 92

Lehrer 94

Neyman 97...

Gossner Hernandez and Neyman
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Complexity and Concealed Correlation

Gossner (Polynomial time Turing Machines)

2 weak players conceal correlation from a stronger
one)

Lehrer 93 (Bounded Recall)

Neyman 97 (Bounded Recall and Finite Automata)
1 weak and 1 or many strong conceal correlation
from a median one

Neyman and Bavly 03 (Bounded Recall and FA)
n ≥ 2 weak and 1 strong conceal correlation from a
median one
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Concealed Correlation

Gossner and Tomala

Gossner Tomala and Laraki

Goldberg
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Online Concealed Correlation

by Boundedly Rational Players

Gilad Bavly and Abraham Neyman
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Distributions on Cartesian Products

Consider a stochastic process with values in A∞

where A is a product set, e.g., A = A1 × A2 × A3

i.e., a probability distribution P over streams a1, a2, . . . , at, . . .
with

at = (a1
t , a

2
t , a

3
t ) ∈ A = A1 × A2 × A3

The law P of the process is governed by a list of
independent rules, σ1, σ2, and σ3, each governing its own
factor A1, A2, and A3, respectively.
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The independent rules = strategies

The rule σi specifies, for each t, the coordinate ai
t as a

function of a1, . . . , at−1.

A deterministic rule: σi(a1, . . . , at−1) an element of Ai

A behavioral rule: σi(a1, . . . , at−1) a probability over Ai

A mixed rule is a mixture of deterministic rules

A mixed behavioral rule is a mixture of behavioral rules

k-recall rules

A deterministic k-recall rule σi specifies ai
t as a function

of the last k stages, i.e as a function of ai
t−k, . . . , a

i
t−1.

A behavioral k-recall rule

A mixed k-recall rule
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Product marginals

In what follows we assume that the mixtures σ1, σ2, and σ3

are independent

Kuhn 1953: If σ1, σ2, and σ3 are independent, then the

distribution of at = (a1
t , a

2
t , a

3
t ) given a1, . . . , at−1 is a product

distribution

Early 1990s: If σ1, σ2, and σ3 are independent mixtures of
ki-recall strategies, and k1, k2 ≤ m, then

the distribution of at = (a1
t , a

2
t , a

3
t ) given at−m, . . . , at−1 is

essentially a product distribution

when m → ∞ (ki = ki(m)).
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The distribution of at = (a1
t , a

2
t , a

3
t )

given at−m, . . . , at−1

If σ = (σ1, σ2, σ3), has (k1, k2, k3)-recall

,

then for every
(b1, . . . , bm, bm+1) the empirical probability

1

n

n
∑

t=m+1

Pσ((at−m, . . . , at−1, at) = (b1, . . . , bm, bm+1))

converges as n → ∞

Thus inducing a probability Pσ on Bm+1 where B = A.

We study the distribution of bm+1 conditional on b1, . . . , bm
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The Questions

What are the asymptotic relation between m and
k1, k2, k3, such that

any distributions Q on A can be “realized” as the
distribution of bm+1 given b1, . . . , bm w.r.t. some Pσ

where σ has (k1, k2, k3)-recall
the marginal on A1 × A2 of the distribution of bm+1

given b1, . . . , bm is a product distribution w.r.t. any Pσ

with σ having (k1, k2, k3)-recall.

For a given asymptotic relation between m and
k1, k2, k3, what are the distributions Q on A that can be
“realized” as the distribution of bm+1 given b1, . . . , bm

w.r.t. some Pσ where σ has (k1, k2, k3)-recall
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Answers A

If m is subexponential in k1 (i.e., log m = o(k1)) and
m � k2, k3 then any distributions Q on A can be
“realized” as the distribution of bm+1 given b1, . . . , bm.

(Bavley-N) If m is superexponential in k1 and k2 (∃C s.t.
m ≥ eCk1+Ck2) then the marginal on A1 × A2 of the
distribution of bm+1 given b1, . . . , bm is a product
distribution.

(Early 90s) If m ≥ k1, k2 then the marginal on A1 × A2 of
the distribution of bm+1 given b1, . . . , bm is a product
distribution
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Answers B

(Bavly-N) If m is subexponential in k1 and k2 and
m � k3 then there is a distribution Q on A such that the
marginal of Q on A1 × A2 is not a product distribution
and the distribution of bm+1 given b1, . . . , bm is Q.

(Bavly-N) If m is subexponential in k1 and k2 and
m � k3 then any distribution Q on A such that

HQ(a1, a2, a3) ≥ HQ(a1) + HQ(a2)

can be realized as the distribution of bm+1 given
b1, . . . , bm is Q.
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Gossner and Hernandez

Part of the talk will focus on a joint project of Gossner,
Hernandez, and Neyman

Online Matching Pennies

Optimal Use of Communication Resources

More to come
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The n-stage game

Sequence of temporal states of nature

x = (x1, . . . , xn) ∈ In

Pure strategies of player 2:

either y = (y1, . . . , yn) where yt : In → J

or y = (y1, . . . , yn) where yt : In × Kt−1 → J

Pure strategies of player 3:

z = (z1, . . . , zn)

zt : It−1 × J t−1 → K
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Payoffs

Players 2 and 3 form a team, against Player 1.

Stage payoff function to the team:

g(i, j, k)

n-stage payoff to the team:

G(x, y, z) =
1

n

n
∑

t=1

g(xt, yt, zt)
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Example

I = J = K = {0, 1} and

g(i, j, k) =

{

1 if i = j = k

0 otherwise

1 0

0 0

0 0

0 1
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The team problem

What are good strategies for the team?

The forecaster can play the sequence y = x and the
follower can play a sequence of (1

2 , 1
2) i.i.d.:

securing a payoff of 1
2 against all sequences.

Can they do better?
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In pure strategies

The forecaster can play on odd stages the next action of
Player 1 and on even stages the follower and the forecaster
play the previous action of the the forecaster. The follower
plays an arbitrary sequence of actions on the odd stages.

Resulting sequences of actions:

x = (x1, x2, x3, x4, . . . , x80)

y = (x2, x2, x4, x4, . . . , x80)

z = (z1, x2, z3, x4, . . . , x80)
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Payoffs for these strategies

Against a sequence distributed (1/2,1/2) i.i.d.:
Payoff of 1 at even stages.
Expected payoff of 1

4 at odd stages.
Average expected payoff of 0.625.

Against the worst possible case:
Payoff of 1 at even stages.
Payoff of zero at odd stages.
Average payoff of 0.5.
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Question

How much can the team get?

In expected payoffs?

In the worst case?

Can mixed strategies do better for the latter?
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What is your answer?
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Answer

There exists .809 < v∗ < .81 such that:

There exist pure strategies for the team that guarantee
v∗ − o(1) against all sequences.

Against an i.d.d. sequence (1
2 , 1

2), no strategy of the
team can obtain more than v∗.

v∗ is defined by

H(v∗) + (1 − v∗) log 3 = 1

where H is the entropy function.
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For general games: iid sequences

∀µ ∈ ∆(I) ∃v∗(µ) s.t.:

If the sequence of states of nature is i.i.d. according to
µ, then ∀ strategies of the forecaster and the follower,
their payoff in the n-stage version of the game does not
exceed v∗(µ).

∀ n, ∃ pure strategies for the team in the n-stage version
that achieves a payoff of at least v∗(µ)− o(1) against a µ
iid sequence.

∃ pure strategies for the team in the ∞-stage game with
expected average payoff in the n-stages converging as
n → ∞ to v∗(µ) against a µ iid sequence.
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General games: worst case

Set v∗ = minµ∈∆(I) v∗(µ):

∀ n, ∃ pure strategies for the team in the n-stage game
that achieves a payoff of at least v∗ − o(1) against all
sequences of actions of player 1.

∃ a sequence v∗n = v∗ − o(1) and pure strategies for the
team in the ∞-stage game that achieve an average
payoff in the n-stages ≥ v∗n = v∗ − o(1) against any
sequence.

∃µ ∈ ∆(I) s.t. when player 1’s sequence of actions is
i.i.d. according to µ, ∀ strategies of the forecaster and
the follower, their payoff in the n-stage version of the
game does not exceed v∗.
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Remarks

an ε-optimal strategy for player one is given by an i.i.d.
sequence according to some distribution µ independent
of n.

the existence of ε-optimal
pure strategies for the team.
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Characterization of v∗(µ)

For µ ∈ ∆(I), let Q(µ) be the class of distributions Q on
I × J × K such that:
The marginal of Q on I is µ, and

H(i | k) + H(j | i, k) = H(i)

Then
v∗(µ) = max

Q∈Q(µ)
EQ(g(i, j, k))

and
v∗ = min

µ
v∗(µ) = min

µ
max

Q∈Q(µ)
EQ(g(i, j, k))
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More forecasters and/or followers?

Existence of ε-optimal pure strategies for the team enables
the extension of the result to 1 + s + f = n - person games
where there are s forecasters and f followers.
Replace the set of s forecasters by a single forecaster with
an action set equal to the cartesian product of the action
sets of the forecasters, and the f followers by a single
follower with an action set equal to the product of the action
sets of the followers.
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Near term plan

Proof in the special case of the example.

1. Reminder on entropy.

2. Prove that no strategy of the team can achieve more
than v∗(µ).

Use of additivity of entropies.

3. Prove there exists strategies for the team that achieve
v∗(µ) against a µ iid sequence:

Use of coding theory.

4. Prove there exists strategies for the team that achieve
v∗ against all sequences:

Use of coding theory.
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Reminder on entropy

X, Y pair of random variables.

H(X) = −
∑

x P (x) log P (x),
with log = log2 and 0 log 0 = 0.

h(X | y) = −
∑

x P (x | y) log P (x | y).

H(X | Y ) = −
∑

y P (y)h(X | y).

Additivity of entropies: H(X, Y ) = H(X | Y ) + H(Y ).
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First part

Assume that the distribution of X = (X1, . . . , Xn) has
entropy nh (0 ≤ h ≤ 1).
Let Y and Z be pure strategies of P2 and P3.

H(X1, Y1, . . . , Xn, Yn) = H(X1, . . . , Xn) = nh

Let Ft be the algebra of events spanned by the random
variables X1, Y1, . . . , Xt, Yt.

gt = Eµ (I(Xt = Zt = Yt) | Ft−1)

is Ft−1-measurable.
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Where does the log 3 come from?

Conditional on Ft−1 (and also to Zt):

•

• •Xt = Yt = Zt

1 − gt gt
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Where does the log 3 come from?

Conditional on Ft−1 (and also to Zt):
•

• •Xt = Yt = Zt

1 − gt gt

• • •
both
wrong

follower
wrong
only

forecaster
wrong
only

h(Xt, Yt | X1 . . . Yt−1) ≤ H(gt) + (1 − gt) log 3
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Adding entropies up

Therefore,

h(Xt, Yt | X1 . . . Yt−1) ≤ H(gt) + (1 − gt) log 3

H(Xt, Yt | X1 . . . Yt−1) ≤ Eµ(H(gt) + (1 − gt) log 3)

nh≤

n
∑

1

Eµ (H(gt) + (1 − gt) log 3)
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Conclusion of the first part

With g = Eµ

(

1
n

∑n
t=1 gt

)

, (g, h) is in the convex hull of
V = {(x, y) ≤ (x, H(x) + (1 − x) log 3)}

0 0.25 0.50 0.75 1.00
0

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

y = H(x) + (1 − x) log 3

V

(g, h) �

(1, v∗)
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Second part: idea

Strategies are defined over blocks of length n.

In a block, the forecaster tells the follower what to play
in the next block.

Two possibilities for transmitting information:
Sending information to the follower when the follower
makes a mistake. (1 bit)
Make a mistake when the follower is “right”.
Is the second a good idea?

We look for an “optimal” codification scheme.
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Search for best codification

Remember the log 3?

In order to have a “tight” inequality, conditional on the
fact that one of the team members is wrong, all three
possibilities should have equal probabilities:

Both are wrong.
Only the follower is wrong.
Only the forecaster is wrong.
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Tuning

Let 0 < x < 1 s.t. H(x) + (1 − x) log 3 = 1.
Define q = 2

3(1 − x) and p = 1 − x/q.

x: % of stages during which both are right.

q: % of stages at which the follower is wrong.

p is the % of stages at which the forecaster is wrong,
conditional on the follower right.
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How many messages?

The follower is wrong for nq stages
=⇒ 2nq messages.

When the follower is right, the forecaster makes a mistake a
proportion p of the time
=⇒

( n(1−q)
n(1−q)p

)

∼ 2n(1−q)H(p) messages.

2n(q+(1−q)H(p)) messages can be sent.
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Both trees are equivalent:

•

• •

• • • •

both
wrong

follower
only

forecaster
only

both

right

q 1 − q

1
2

1
2 p 1 − p

•

• •both right

1 − x x

• • •

both
wrong

follower
only

forecaster
only

1
3 1

3

1
3

H(q) + q + (1 − q)H(p) = H(x) + (1 − x) log 3 = 1.

Therefore q + (1 − q)H(p) = 1 − H(q) and thus
2n(q+(1−q)H(p)) = 2n(1−H(q)) messages can be sent.
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Question

Does there exist a set A ⊂ 2n such that

|A| = 2(1−H(q)+o(1))n

and s.t.: ∀x ∈ 2n ∃y ∈ A s.t.

dH(x, y) = (1 − q)n.

where dH is the Hamming distance?
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Existence of A

Probabilistic proof:

Take a set A = {ai} of 2(1−H(q))n points taken randomly i.i.d.
uniformly in 2n.

For every fixed x ∈ 2n the probability that there is no z ∈ 2n

so that dH(x, y) = [qn] is

≤ (1 −

(

n

[qn]

)

/2n)2
(1−H(q))n

≤ exp−2n(H(q)+1−H(q)

We prove that the probablity that A feeds our needs is
positive.

Hence, such A exists.
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Example 1

Consider, for instance, I = {E, W}, J = {T, B}, and
K = {L, R}, and the correlated distribution Q on I × J × K
described in the Figure below, P2 chooses the rows (Top or
Bottom), P3 chooses the columns (Left or Right), Temporal
state of nature is East or West iid 1/2,1/2. The matrix
entries are the desired probabilities of the action profile.

L R

T .2 .1

B .1 .1

E

L R

T .1 .1

B .1 .2

W

H(i) = 1 = H(k) and H(i, j,k) = 1 + H(.4, .6) + .6 log 3 > 2
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Example 2

Q is described in the Figure below, P2 chooses the rows (T
or B), P3 chooses the columns (L or R), Temporal state of
Nature is E or W iid 1/2,1/2. The matrix entries are the
desired probabilities of the action profile.

L R

T .35 .05

B .05 .05

E

L R

T .05 .05

B .05 .35

W

H(i) = 1 = H(k) and H(i, j,k) = 1 + H(.7, .3) + .3 log 3 > 2
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Example 3

Q described in the Figure below, P2 chooses the rows (T or
B), P3 chooses the columns (L or R), Temporal state of
nature is E or W iid 1/2,1/2. The matrix entries are the
desired probabilities of the action profile.

L R

T .41 x1

B x2 x3

E

L R

T x3 x2

B x1 .41

W

x1 + x2 + x3 = .09

H(i) = 1 = H(k) and H(i, j,k) ≤ 1 + H(.41, .59) + .18 log 3 < 2
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Basic model with a Markov law

i1, i2, . . . follow a Markov chain

The Markov chain is irreducible

Result: Q ∈ ∆(I × I × J × K) is implementableiff QI×I = µ̂
and

HQ(j, i | k, i′) ≥ HQ(i | i′)

An implicit conclusion that appears “between the lines” of
this inequality is that the optimization of the forecaster and
the agent needs ‘banking’ with entropy
Information/entropy banking appears also in Neyman and
Okada 98 and Gossner and Tomala
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Resuls for Finite State Machines

We study repeated games where players strategies are
implementable by finite state machines like finite automata
or bounded recall strategies. We are interested in the
analysis of such interaction where the power of the
machines are differentiated.

In particular, we wish to study to what extent can a powerful
machine that breaks a complicated code of a simple
machine share its codes with a simple machine.
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Repeated game strategies

Σi all pure strategies of player i

Σi(m) all pure strategies of player i that are
implementable by an automaton of size m

Σ∗
i (m) all non-interactive pure strategies of player i that

are implementable by an automaton of size m.

Xi(m) := ∆(Σi(m))

X∗
i (m) := ∆(Σ∗

i (m))
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remark

If µ, σ, and τ are strategies of players 1, 2, and 3
respectively that are implementable by finite automata then
the play of a repeated game enters a cycle and thus the
expectation of the limiting average payoff is well defined
and denoted by g(µ, σ, τ).
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Main result: Finite state machines

V̄ (m1, m2, m3) = min
µ∈X∗

1 (m1))
max

σ∈X2(m2)
τ∈X3(m3)

G(µ, σ, τ) (1)

V (m1, m2, m3) = max
σ∈X2(m2)
τ∈X3(m3)

min
µ∈X∗

1 (m1)
G(µ, σ, τ) (2)

where G(µ, σ, τ) = g2(µ, σ, τ). Note that
V̄ (m1, m2, m3) ≥ V (m1, m2, m3). The main result specifies
asymptotic conditions on m1, m2, m3 for which the limits of
V̄ (m1, m2, m3) and V (m1, m2, m3) exist and are equal.
Moreover, we characterize the limit.
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Formula

Given x ∈ ∆(I) we denote by Q(x) the set of all probability
measures Q on I × J × K such that

HQ(i, j, k) ≥ HQ(i) + HQ(k).

v∗ = min
x∈∆(I)

max
Q∈Q(x)

g2(Q).
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Theorem

Theorem 1

lim sup
log m3=o(m1)→∞

V̄ (m1, m2, m3) ≤ v∗ (3)

and
lim inf

m2>|I|2m12m1→∞
m3→∞

V (m1, m2, m3) ≥ v∗ (4)

Special cases of the result are of interest and generalize
earlier know results. Consider for example the case where
|J | = 1. It follows that Q(x) consists of product distributions
and thus v∗ = minx∈∆(I) maxz∈∆(K) g(x, z) and thus the
result implies the result of Ben-Porath.
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