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Repeated games played by FA

Non zero-sum
n players: Aumann (81), Kalai and Standford (88);

2 players: Neyman (85), Rubinstein (86), Abreu and
Rubinstein (88), Papadimitriou and Yannakakis (94),
Piccione and Rubinstein (93)...

Zero-sum
n players: Bavly and Neyman (04), Gossner
Hernández and Neyman (05).
2 players: Ben-Porath (93), Neyman (97), Neyman
and Okada (99, 00, 00).

pure correlation – p. 2/24



n players zero-sum

pure correlation – p. 3/24



n players zero-sum

Bavly and Neyman (04):

pure correlation – p. 3/24



n players zero-sum

Bavly and Neyman (04):
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weak members of a team against strong players.
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Bavly and Neyman (04):
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weak members of a team against strong players.
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A superstrong player decodes the strong opponents’
strategies and informs weak players of their future
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n players zero-sum

Bavly and Neyman (04):

A superstrong player secretly coordinates the actions of
weak members of a team against strong players.

Gossner Hernández and Neyman (05):

A superstrong player decodes the strong opponents’
strategies and informs weak players of their future

action plans.

What can a team achieve without superstrong players?
(with players of comparable complexities)
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Model: game G, n = 3

Action spaces X1, X2, X3. |Xi| ≥ 2.
X−i = Πj 6=iX

j , X = ΠiX
i.

g : X → R payoff to players 1, 2.

pure correlation – p. 4/24



Model: game G, n = 3

Action spaces X1, X2, X3. |Xi| ≥ 2.
X−i = Πj 6=iX

j , X = ΠiX
i.

g : X → R payoff to players 1, 2.

vp = V p(G) = max
x−3

min
x3

g

vm = V m(G) = max
δ∈∆(X1)×∆(X2)

min
x3

Eδg

vc = V c(G) = max
δ∈∆(X−3)

min
x3

Eδg = min
s3∈∆(X3)

max
x−3

Es3g
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Model: game G, n = 3

Action spaces X1, X2, X3. |Xi| ≥ 2.
X−i = Πj 6=iX

j , X = ΠiX
i.

g : X → R payoff to players 1, 2.

vp = V p(G) = max
x−3

min
x3

g

vm = V m(G) = max
δ∈∆(X1)×∆(X2)

min
x3

Eδg

vc = V c(G) = max
δ∈∆(X−3)

min
x3

Eδg = min
s3∈∆(X3)

max
x−3

Es3g

vc ≥ vm ≥ vp
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Model: repeated game

An automaton of size mi for player i, Ai ∈ Σmi consists of:

A set of states Qi of size mi, with initial state q̂i ∈ Qi

An action function f i : Qi → Xi.

A transition function gi : Qi × X−i → Qi
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A transition function gi : Qi × X−i → Qi

It is oblivious if its transitions do not depend on other
player’s actions.
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A transition function gi : Qi × X−i → Qi
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periodic sequence. The average of g over a period is
denoted γ(A1, A2, A3).
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Model: repeated game

An automaton of size mi for player i, Ai ∈ Σmi consists of:

A set of states Qi of size mi, with initial state q̂i ∈ Qi

An action function f i : Qi → Xi.

A transition function gi : Qi × X−i → Qi

It is oblivious if its transitions do not depend on other
player’s actions.
A triple of automata A1, A2, A3 induces an eventually
periodic sequence. The average of g over a period is
denoted γ(A1, A2, A3).
G(m1, m2, m3) is the game with strategy spaces Σmi and
payoff function γ to players 1 and 2.
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Questions

We are concerned by the relation between the asymptotic
sizes m1, m2, m3 and the limits of

V p(m1, m2, m3) = V p(G(m1, m2, m3))

V m(m1, m2, m3) = V m(G(m1, m2, m3))

V c(m1, m2, m3) = V c(G(m1, m2, m3))
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Play against sequences

A pair of automata of players 1 and 2 of sizes m1 and m2

that do not observe player 3’s actions induce an eventually
periodic sequence of actions.
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Play against sequences

A pair of automata of players 1 and 2 of sizes m1 and m2

that do not observe player 3’s actions induce an eventually
periodic sequence of actions.
A periodic sequence x̃ of actions of 1, 2 and A3 induce an
eventually periodic play, γ(x̃, A3) denotes the average of g

over a period.
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Play against sequences

Let δ ∈ ∆(X−3), and x̃ be a random n-periodic sequence
with n first elements i.i.d.∼ δ.
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Play against sequences

Let δ ∈ ∆(X−3), and x̃ be a random n-periodic sequence
with n first elements i.i.d.∼ δ.

Neyman (97): If n ≫ m3 ln m3 then ∀ε > 0

P (min
A3

γ(x̃, A3) < min
x3

Eδg − ε) → 0
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Play against sequences

Let δ ∈ ∆(X−3), and x̃ be a random n-periodic sequence
with n first elements i.i.d.∼ δ.

Neyman (97): If n ≫ m3 ln m3 then ∀ε > 0

P (min
A3

γ(x̃, A3) < min
x3

Eδg − ε) → 0

Probabilistic argument: Over a period, each automaton of
player 3 can force a set of bounded probability of
sequences to a significantly smaller payoff than Eδg − ε.
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Moreover, the same holds if players 1 and 2 are restricted
to oblivious automata.
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Moreover, the same holds if players 1 and 2 are restricted
to oblivious automata.
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Consequence on pure max min

If min(m1, m2) ≫ m3 ln m3 then

V p(m1, m2, m3) → vc

Moreover, the same holds if players 1 and 2 are restricted
to oblivious automata.

On the other hand:

If m3 ≥ m1m2 then V p(m1, m2, m3) = vp

If m3 ≥ m1 then
V p(m1, m2, m3) ≤ maxx1,s2 minx3 Es2g
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Our main result

If min(m1, m2) ≫ m3 then

V p(m1, m2, m3) → vc
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Implementation of periodic sequences

Call a periodic sequence x̃ of actions of players 1 and 2

(m1, m2)-implementable if ∃A1, A2 ∈ Σm1 × Σm2 that do
not observe player 3’s actions and generate x̃.
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Implementation of periodic sequences

Call a periodic sequence x̃ of actions of players 1 and 2

(m1, m2)-implementable if ∃A1, A2 ∈ Σm1 × Σm2 that do
not observe player 3’s actions and generate x̃.

Thus, all m-periodic sequences are (m, m)-implementable,
and that an (m1, m2)-implementable sequence is at most
m1m2-periodic.
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Periods of implementable sequences

Proposition: Let δ ∈ ∆(X−3) be rational with full support.
Let x̃ be random n-periodic with n first elements i.i.d.∼ δ.
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Periods of implementable sequences

Proposition: Let δ ∈ ∆(X−3) be rational with full support.
Let x̃ be random n-periodic with n first elements i.i.d.∼ δ.
Then ∃C such that n ≤ Cm ln m implies

P (x̃ is (m, m)-implementable) → 1
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Periods of implementable sequences

Proposition: Let δ ∈ ∆(X−3) be rational with full support.
Let x̃ be random n-periodic with n first elements i.i.d.∼ δ.
Then ∃C such that n ≤ Cm ln m implies

P (x̃ is (m, m)-implementable) → 1

Hence, a pair of automata of size m can jointly implement
almost every Cm ln m periodic sequences.
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3. Draw x̃ n-periodic, with n first coordinates i.i.d.∼ δ.
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1. Choose n such that m ln m ≫ n ≫ m3 ln m3.

2. Approximate an optimal correlated strategy of players 1
and 2 in G by δ rational with full support.

3. Draw x̃ n-periodic, with n first coordinates i.i.d.∼ δ.
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Proof of the main result from the prop.

Let m = min(m1, m2).

1. Choose n such that m ln m ≫ n ≫ m3 ln m3.

2. Approximate an optimal correlated strategy of players 1
and 2 in G by δ rational with full support.

3. Draw x̃ n-periodic, with n first coordinates i.i.d.∼ δ.

Then for ε > 0

P (min
A3

γ(x̃, A3) < min
x3

Eδg − ε) → 0

P (x̃ is (m, m)-implementable) → 1

In particular, there exist (m, m)-implementable sequences
that guarantee minx3 Eδg − ε.
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Implementation of sequences

Let x̃ be n-periodic. We construct an automaton of player 1
that follows x̃ as long as the other player does.
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Implementation of sequences

Let x̃ be n-periodic. We construct an automaton of player 1
that follows x̃ as long as the other player does. For
1 ≤ l ≤ n, let φ be a permutation of X2, and let ỹ

n-periodic such that for 1 ≤ t ≤ n.
{

ỹt = x̃t, if l does not divide t;
ỹt = (x̃1

t , φ(x̃2
t )) if l divides t.
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ỹt = x̃t, if l does not divide t;
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ỹ1
t is player 1’s action at stage t.

pure correlation – p. 14/24



Implementation of sequences
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n-periodic such that for 1 ≤ t ≤ n.
{
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played action x̃2
t of player 2 every l stages.
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Implementation of sequences

Let x̃ be n-periodic. We construct an automaton of player 1
that follows x̃ as long as the other player does. For
1 ≤ l ≤ n, let φ be a permutation of X2, and let ỹ

n-periodic such that for 1 ≤ t ≤ n.
{

ỹt = x̃t, if l does not divide t;
ỹt = (x̃1

t , φ(x̃2
t )) if l divides t.

ỹ1
t is player 1’s action at stage t.

ỹ2
t is player 1’s anticipation at stage t, it differs from the

played action x̃2
t of player 2 every l stages.

We write the first period of ỹ as the concatenation of words
r1 . . . rn

l
in (X−3)l.
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Implementation of sequences

Let x̃ be n-periodic. We construct an automaton of player 1
that follows x̃ as long as the other player does. For
1 ≤ l ≤ n, let φ be a permutation of X2, and let ỹ

n-periodic such that for 1 ≤ t ≤ n.
{

ỹt = x̃t, if l does not divide t;
ỹt = (x̃1

t , φ(x̃2
t )) if l divides t.

ỹ1
t is player 1’s action at stage t.

ỹ2
t is player 1’s anticipation at stage t, it differs from the

played action x̃2
t of player 2 every l stages.

We write the first period of ỹ as the concatenation of words
r1 . . . rn

l
in (X−3)l. All words are i.i.d.∼ ρ.
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Set of states

Let α > 1. The set of states is a cycle z1, . . . , zm of
elements of X−3 such that for every r,

N(r) = #{i, (zi, . . . zi+l) = r} ≥ αρ(r)
n

l
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Set of states

Let α > 1. The set of states is a cycle z1, . . . , zm of
elements of X−3 such that for every r,

N(r) = #{i, (zi, . . . zi+l) = r} ≥ αρ(r)
n

l

Relying on DeBruijn sequences, we can construct such a
cycle if m ≥ βn

l
for some β > 0.
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Programmation

If the anticipation is correct, go to the next state in the cycle.
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Start at q̂1 = i1 such that (zi1, zi1+1, . . . , zi1+l−1) = r1
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Programmation

If the anticipation is correct, go to the next state in the cycle.

Start at q̂1 = i1 such that (zi1, zi1+1, . . . , zi1+l−1) = r1

At zi1+l−1, if the action of 2 does not match the
anticipation, go to i2 such that
(zi2, zi2+1, . . . , zi2+l−1) = r2
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Programmation
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At zi1+l−1, if the action of 2 does not match the
anticipation, go to i2 such that
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Programmation

If the anticipation is correct, go to the next state in the cycle.

Start at q̂1 = i1 such that (zi1, zi1+1, . . . , zi1+l−1) = r1

At zi1+l−1, if the action of 2 does not match the
anticipation, go to i2 such that
(zi2, zi2+1, . . . , zi2+l−1) = r2

At zi2+l−1, if the action of 2 does not match the
anticipation, go to i3 such that
(zi3, zi3+1, . . . , zi3+l−1) = r3

. . .
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Size

When can we apply the construction? Two different
transitions after after two incorrect anticipations must lead
to two different states. We thus need

∀r, #{j, rj = r} ≤ N(r)

This holds if

∀r, #{j, rj = r} ≤ αρ(r)
n

l
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Size

When can we apply the construction? Two different
transitions after after two incorrect anticipations must lead
to two different states. We thus need

∀r, #{j, rj = r} ≤ N(r)

This holds if

∀r, #{j, rj = r} ≤ αρ(r)
n

l

Computation shows that this has probability close to one if
l = γ(α) ln n.
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Size

When can we apply the construction? Two different
transitions after after two incorrect anticipations must lead
to two different states. We thus need

∀r, #{j, rj = r} ≤ N(r)

This holds if

∀r, #{j, rj = r} ≤ αρ(r)
n

l

Computation shows that this has probability close to one if
l = γ(α) ln n.
Hence m ≥ βn

l
= β

γ(α)
n

ln n
, or for some C:

n ≤ Cm ln m
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Length of implementable sequences

What is the order of magnitude of n(m) such that the set of
n(m) periodic (m, m)-implementable sequences has large
probability?
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Length of implementable sequences

What is the order of magnitude of n(m) such that the set of
n(m) periodic (m, m)-implementable sequences has large
probability?
We have proven the existence of C such that

n(m) ≥ Cm ln m
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Length of implementable sequences

What is the order of magnitude of n(m) such that the set of
n(m) periodic (m, m)-implementable sequences has large
probability?
We have proven the existence of C such that

n(m) ≥ Cm ln m

We also know that if n(m) ≫ m3 ln m3 then
V p(m, m, m3) → vc.
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Length of implementable sequences

What is the order of magnitude of n(m) such that the set of
n(m) periodic (m, m)-implementable sequences has large
probability?
We have proven the existence of C such that

n(m) ≥ Cm ln m

We also know that if n(m) ≫ m3 ln m3 then
V p(m, m, m3) → vc.
Thus we do not have

n(m) ≫ m ln m
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Any number of players

Players {1, . . . , I} against player I + 1. If
min(m1 . . . mI) ≫ mI+1 and at least 2 players {1, . . . , I}
have at least two actions, then {1, . . . , I} possess pure
strategies that guarantee the correlated max min against
I + 1.
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On the power of a team

One player of size m can implement all m-periodic
sequences.
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On the power of a team

One player of size m can implement all m-periodic
sequences.

Two players of size m can implement almost all
Cm ln m-periodic sequences.
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On the power of a team

One player of size m can implement all m-periodic
sequences.

Two players of size m can implement almost all
Cm ln m-periodic sequences.

More than two players cannot implement a large set of
sequences of significantly larger period (or they could
obtain vc against a player of the same size as theirs).
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Correlated strategies 1
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Correlated strategies 1

We derive results from two player games.
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We derive results from two player games.

From Ben Porath (93): If ln m3 ≪ m then

V c(m, m, m3) → vc
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We derive results from two player games.

From Ben Porath (93): If ln m3 ≪ m then

V c(m, m, m3) → vc

Furthermore, the same limit obtains when players 1, 2 use
oblivious strategies only.
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Correlated strategies 1

We derive results from two player games.

From Ben Porath (93): If ln m3 ≪ m then

V c(m, m, m3) → vc

Furthermore, the same limit obtains when players 1, 2 use
oblivious strategies only.
Over a period, each initial state of an automaton of player 3
can force a set of bounded probability of sequences to a
significantly smaller payoff than Eδg − ε.
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Correlated strategies 1

We derive results from two player games.

From Ben Porath (93): If ln m3 ≪ m then

V c(m, m, m3) → vc

Furthermore, the same limit obtains when players 1, 2 use
oblivious strategies only.
Over a period, each initial state of an automaton of player 3
can force a set of bounded probability of sequences to a
significantly smaller payoff than Eδg − ε. The asymptotic
condition on m3 and n is that this probability times the
number m3 of states for 3 goes to 0.
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Correlated strategies improved
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Correlated strategies improved

Since two players of size m can implement a large set of
sequences of size m ln m, applying the same method
shows.
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Correlated strategies improved

Since two players of size m can implement a large set of
sequences of size m ln m, applying the same method
shows.

If ln m3 ≪ m ln m then

V c(m, m, m3) → vc
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Correlated strategies 2

From Neyman (97): With K = ln |X1 × X2|, if
ln m3 ≥ Km1m2 then

V c(m1, m2, m3) → vp
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Correlated strategies 2

From Neyman (97): With K = ln |X1 × X2|, if
ln m3 ≥ Km1m2 then

V c(m1, m2, m3) → vp

There is a (mixed) strategy of player 3 that eventually plays
a best response to almost all sequences of actions of
players 1 and 2.
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Correlated strategies 2

From Neyman (97): With K = ln |X1 × X2|, if
ln m3 ≥ Km1m2 then

V c(m1, m2, m3) → vp

There is a (mixed) strategy of player 3 that eventually plays
a best response to almost all sequences of actions of
players 1 and 2. This automaton is capable of finding which
sequence of actions is implemented by players 1 and 2 with
high probability.
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Conjecture

There exists K such that, if ln m3 ≥ Km ln m then

V c(m, m, m3) → vp
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Conjecture

There exists K such that, if ln m3 ≥ Km ln m then

V c(m, m, m3) → vp

Indeed, this size of m3 is sufficient for beating all
sequences of period m ln m.

pure correlation – p. 24/24
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