Deterministic Calibration with Simple

Rules

Dean Foster
University of Pennsylvania

and

Sham Kakade
University of Pennsylvania

January 31, 2005

The problem: Learning Nash equilib

Current methods are slow and involve exhaustive seal

Can a fast method be found??

How about for special form games?

Measuring complexity

Two definitions of speed of convergence:

e total CPU used

e number of rounds of play

History

Forecast probability Forecas

Blackwell CE CI
Calibration NO re

(F. and Vohra, '97) (F. and V

(Hart and Mz

Exhaustive NE NE
search Hypothesis testing Regret
(F. and Young '03) (F. and Y«

(Germano &

Public NE NE
methods Weak calibration Weak utility
yesterday’s talk today’

(Kakade and F. '04) (Kakade al

Forecast probability Forecas
Blackwell (1/€)*" (a/
(— CE)
Exhaustive
search > (1/€)®" > (1,
(— Nash)
Public
methods (1/€)*" (1/¢
(— Nash)
2lZ] 1Z|'°9109 7] (wit
n — number of players
a = hnumber of actions per play
e — desired accuracy
I| =a"™ = input size (a is fixed)

(CE: Blackwell gives fast
results known.)

approx algo. NE: slow, few

e X; sequence to be forecast by p¢

e \Weak calibration, means
T

> (Xt —pt) w(p) = O
t=1

— w() is any smooth function.

— What Sham talked about yesterday.

e Today’'s twist: Use other testing functions. Eg

T
> (Xt —p) w(p, X¢—1) = O
t=1

Would test for Markov patterns.

a1 1Uiviududl vo rm uwviic ualiviauivlii

e Game setting for calibration
— X, is the observable that player ¢ cares about

— p;¢ IS a forecast of X ;

e Individual calibration:

T
(V1) Y (Xit—pig) wpig) = C
=1

e Public calibration:

T

(Vi) Y (Xit—pig) w(@) =0
=1

The game model

e Player i uses p;; to predict the round ¢

e Player ¢ then use smooth decision rule s;(p; ;) to |
probability of their play in round ¢.

e Player ¢ then randomly action S; from this distrib

Vol vavlilcTo

e Game setup:
— Take X; = S_; (i.e. all actions but player %)

— p;¢ IS forecast of X,

e Individual calibration:

T
(V1) Y (Xit—pig) wpig) = C
=1

e Public calibration:

T

(Vi) Y (Xit—pig) w(@) =0
=1

e Suppose players play a smooth best reply to forec
— Traditional calibration — correlated equilibria
— Public calibration — Nash equilibria

e Speed of convergence is related to dimension of t
space’ of the testing functions
— For individual: dimension (1/€)%"
— For public: dimension is (1/¢)™"

— Hence convergence is slow in both cases.

e Need lower dimensional space, but what can be C

Truth =~ prediction

— via calibration

Truth is independent

— Given p each player is in fact playing independ

e-rationality
— e-BR to prediction

— p; includes information about what all other pl

Independence + e-rationality = e-NE.

What can be changed?

e Take X;; to be the vector of potential payoffs
— §_i is the vector of everyone else’s play
— u; (k) = u;(k, g—i,t)
- Xi,t — (ui,t(1)7 R 7ui,t(a’))

e Utility model

— p;¢ IS an estimate of X;; made at time ¢ —1

— For CE we need
T
(V1) Y (Xit—pig) wpig) —
t=1
— For NE we need

T
(Vi) > (Xit—pig) w(Bt) —
t=1

Speed Oof convergence or utiity estimge
e For CE: number of rounds is O((n/e)%)
e For NE: number of rounds is O((n/e)?™)

e Looks almost polynomial in length of input
— |I| = a™ = input size (a is fixed)
— number of rounds is O(|Z|'°9!°9IZ])

— “pseudo Poly".

e Although exp in a, little known computationally.

Graphical Models for Game Theon
e Undirected graph capturing local (strategic) inter
(Kearns, Littman, & Singh)
— Each “player” represented by a vertex
— Payoff to ¢, is only a function of neighbors act
— Compact (yet general) representation of game
— Assume max degree is d, then representation i

of O(a™).

e Can graphical games be learned faster than genet

e X, need only capture plays of neighbors
— N(3) is the set of neighbors of i (assume |N(3)
— Sn(i)—i is actions of all neighbors excluding sel
— uit = ui(Sit, SN (i)—i)

— p;¢ IS forecast of X,

e Same proof as before shows that for a NE we ne

T
(Vi) Y (Xit—pig) w(p) =0
t=1

e But we desire to to better for structured games.

(This is (1/e)”ad, while the representation of a gr
d
na?.)

We don't need to check w(py)

Instead we can check only

T
(V4) > (Xt —pit) wBn(ye) =
t=1

where py ;) 1S a vector of all the p’s of all the ng

Since this is all that matters in u;(), rationality ac
rationality against the entire p.

Complexity: n(l/e)azd
The complexity is |Z|.

NOTE TO SELF: No matter how excited you ar
complexity, never, write it as |Z|!

A even smaller observable set
X; = personal utility
p; = forecast of personal utility
w() is local:
T
(V7) > (Xig — i) wBnys) —
t=1
Converges to NE.

Complexity: n(l/e)ad

X; = action taken
p; = forecast of own action
decisions are made based on other peoples foreca:
w() is local:
T
(V7) > (Xip —pig) wBnys) —
t=1
Converges to NE.
Complexity: n(l/e)ad

Violations can cause the system to crumble

Speed of convergence:

e Complexity: n(l/e)dad

e Recall, game representation is na®

e Hence, the max degree is the bottleneck!

e Can get better results with utility forecasts: n(1/
CPU time:

e For tree games, fast per round computation

e Total CPU time comparable to NashProp

e For general graphs, could be hard to make foreca

Future directions

e Analyze the CPU complexity

— Have we just pushed the difficulty back to the
step?

e Look at other games with simple structure

e Look at linear weightings rather than local weigh

See reverse side of handout for related re

