Deterministic Calibration with Simple Rules

Dean Foster

University of Pennsylvania

and

Sham Kakade

University of Pennsylvania

January 31, 2005

The problem: Learning Nash equilib

Current methods are slow and involve exhaustive sear

Can a fast method be found?

How about for special form games?

Measuring complexity

Two definitions of speed of convergence:

- total CPU used
- number of rounds of play

History

	Forecast probability	Forecas
Blackwell	CE	CE
	Calibration (F. and Vohra, '97)	No re (F. and V (Hart and Ma
Exhaustive	NE	NE
search	Hypothesis testing (F. and Young '03)	Regret (F. and Yo (Germano &
Public	NE	NE
methods	Weak calibration yesterday's talk (Kakade and F. '04)	Weak utility today' (Kakade ar

	Forecast probability	Forecas
Blackwell $(\rightarrow CE)$	$(1/\epsilon)^{a^n}$	$(a/\epsilon$
Exhaustive search (→ Nash)	$\gg (1/\epsilon)^{a^n}$	» (1,
Public methods $(\rightarrow Nash)$	$(1/\epsilon)^{a^n}$	$(1/\epsilon$
(, 140311)	$2^{ \mathcal{I} }$	$ \mathcal{I} ^{loglog \mathcal{I} }$ (wit

n = number of players

a = number of actions per play

 ϵ = desired accuracy

 $|I| = a^n$ = input size (a is fixed)

(CE: Blackwell gives fast approx algo. NE: slow, few results known.)

- ullet X_t sequence to be forecast by p_t
- Weak calibration, means

$$\sum_{t=1}^{T} (X_t - p_t) \ w(p_t) \to 0$$

- -w() is any smooth function.
- What Sham talked about yesterday.
- Today's twist: Use other testing functions. Eg

$$\sum_{t=1}^{T} (X_t - p_t) \ w(p_t, X_{t-1}) \to 0$$

Would test for Markov patterns.

Illulvidual vs Public Calibration

- Game setting for calibration
 - $-\ X_{i,t}$ is the observable that player i cares about
 - $p_{i,t}$ is a forecast of $X_{i,t}$
- Individual calibration:

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \to 0$$

• Public calibration:

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$$

The game model

- ullet Player i uses $p_{i,t}$ to predict the round t
- Player i then use smooth decision rule $s_i(p_{i,t})$ to probability of their play in round t.
- ullet Player i then randomly action S_i from this distrib

Observables

• Game setup:

- Take $X_i = S_{-i}$ (i.e. all actions but player i)
- $p_{i,t}$ is forecast of $X_{i,t}$
- Individual calibration:

$$(orall i)$$

$$\sum_{t=1}^T (X_{i,t} - p_{i,t}) \ w(p_{i,t})
ightarrow 0$$

• Public calibration:

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$$

- Suppose players play a smooth best reply to fored
 - Traditional calibration \rightarrow correlated equilibria
 - Public calibration → Nash equilibria
- Speed of convergence is related to dimension of t space" of the testing functions
 - For individual: dimension $(1/\epsilon)^{a^n}$
 - For public: dimension is $(1/\epsilon)^{na^n}$
 - Hence convergence is slow in both cases.
- Need lower dimensional space, but what can be c

- Truth \approx prediction
 - via calibration
- Truth is independent
 - Given \vec{p} each player is in fact playing independ
- \bullet ϵ -rationality
 - $-\epsilon$ -BR to prediction
 - p_i includes information about what all other pl
- Independence $+ \epsilon$ -rationality $= \epsilon$ -NE.

What can be changed?

- ullet Take $X_{i,t}$ to be the vector of potential payoffs
 - \vec{S}_{-i} is the vector of everyone else's play

$$-u_{i,t}(k) = u_i(k, \vec{S}_{-i,t})$$

$$-X_{i,t} = (u_{i,t}(1), \dots, u_{i,t}(a))$$

- Utility model
 - $p_{i,t}$ is an estimate of $X_{i,t}$ made at time t-1
 - For CE we need

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(p_{i,t}) \rightarrow$$

- For NE we need

$$(\forall i)$$

$$\sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \rightarrow$$

Speed of convergence of utility estimate

- For CE: number of rounds is $O((n/\epsilon)^a)$
- For NE: number of rounds is $O((n/\epsilon)^{an})$
- Looks almost polynomial in length of input
 - $-|I|=a^n=$ input size (a is fixed)
 - number of rounds is $O(|\mathcal{I}|^{\log \log |\mathcal{I}|})$
 - "pseudo Poly".
- Although exp in a, little known computationally.

Graphical Models for Game Theory

- Undirected graph capturing local (strategic) inter (Kearns, Littman, & Singh)
 - Each "player" represented by a vertex
 - Payoff to i, is only a function of neighbors act
 - Compact (yet general) representation of game
 - Assume max degree is d, then representation is of $O(a^n)$.
- Can graphical games be learned faster than gener

- ullet $X_{i,t}$ need only capture plays of neighbors
 - -N(i) is the set of neighbors of i (assume |N(i)|
 - $-S_{N(i)-i}$ is actions of all neighbors excluding sel

$$-u_{i,t} = u_i(S_{i,t}, S_{N(i)-i})$$

- $p_{i,t}$ is forecast of $X_{i,t}$
- Same proof as before shows that for a NE we need

$$(\forall i)$$
 $\sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p_t}) \to 0$

ullet But we desire to to better for structured games. (This is $(1/\epsilon)^{na^d}$, while the representation of a gr na^d .)

- ullet We don't need to check $w(ec{p_t})$
- Instead we can check only

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_{N(i),t}) \rightarrow$$

where $\vec{p}_{N(i),t}$ is a vector of all the p's of all the ne

- Since this is all that matters in $u_i()$, rationality against the entire \vec{p} .
- Complexity: $n(1/\epsilon)^{a^{2d}}$
- The complexity is $|\mathcal{I}|$.
- NOTE TO SELF: No matter how excited you are complexity, never, write it as $|\mathcal{I}|!$

A even smaller observable set

- $X_i = personal utility$
- $p_i =$ forecast of personal utility
- w() is local:

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_{N(i),t}) \rightarrow$$

- Converges to NE.
- Complexity: $n(1/\epsilon)^{a^d}$

- $X_i = action taken$
- p_i = forecast of own action
- decisions are made based on other peoples foreca
- w() is local:

$$(\forall i) \qquad \sum_{t=1}^{T} (X_{i,t} - p_{i,t}) \ w(\vec{p}_{N(i),t}) \rightarrow$$

- Converges to NE.
- Complexity: $n(1/\epsilon)^{a^d}$
- Violations can cause the system to crumble

Speed of convergence:

- Complexity: $n(1/\epsilon)^{da^d}$
- ullet Recall, game representation is na^d
- Hence, the max degree is the bottleneck!
- ullet Can get better results with utility forecasts: n(1/

CPU time:

- For tree games, fast per round computation
- Total CPU time comparable to NashProp
- For general graphs, could be hard to make foreca

Future directions

- Analyze the CPU complexity
 - Have we just pushed the difficulty back to the step?
- Look at other games with simple structure
- Look at linear weightings rather than local weigh

See reverse side of handout for related re