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polyhedral set de�ned by the inequality

system:

Ax ≤ b, (1)

where A is an m × n matrix, b and x are

vectors of m and n dimensions, respectively.
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+. Assume that ATλ ∈ ZZn.
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b is non-integer then
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It can be proven that:

1 there are only �nite many signi�cantly

di�erent Chvátal cuts of type (2) and

2 if the Chvátal cuts added to the set of

inequalities (1) and in this way a new the

polyhedral set is de�ned, and the whole

procedure is repeated, then after �nite

many iterations the polyhedral set

becomes equal to the integer hull.
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De�nition.
The number of iterations is called Chvátal

rank.



2 Notations

a1x1 + a2x2 + · · · + anxn ≤ b, (3)

xj ≥ 0 j = 1, ..., n

xj ≤ 1 j = 1, ..., n

where a1, a2, . . . , an and b are positive

integers. Furthermore

a1 ≤ a2 ≤ · · · ≤ an. (4)
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2.1 Indexing of Constraints

index Right-Hand Side Left-Hand Side

0 a1x1 + a2x2 + · · · + anxn ≤ b

1 x1 ≤ 1

2 x2 ≤ 1
...

n xn ≤ 1

n + 1 −x1 ≤ 0

n + 2 −x2 ≤ 0
...

2n −xn ≤ 0



Using the same index set the multipliers of

the inequalities of this original constraint set

are denoted by λ0, . . . , λ2n.



3 The Case of Dimensions 1, 2, and 3

The case of n = 1.

The set of integer feasible solutions:

{0, 1} The Chvátal rank is zero.

{0} The Chvátal rank is one:

λ0 = 1/a1, λ1 = λ2 = 0 implies x1 ≤ 0.
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The case of n = 2.

The left-hand side of (3) is decreasing for the

following sequence of binary vectors:

(1, 1), (0, 1), (1, 0), (0, 0).

The Chvátal rank is again either 0 or 1.

The case of n = 3.

The maximal elements of the feasible

solutions belong to one of the cases of the

table below:
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case maximal vectors inequalities of the feasible set

1 (0, 0, 0) yi ≤ 0

2 (1, 0, 0) y2 ≤ 0, y3 ≤ 0

3 (1, 0, 0), (0, 1, 0) y1 + y2 ≤ 1, y3 ≤ 0

4 (1, 1, 0) y3 ≤ 0

5 (1, 0, 0), (0, 1, 0), (0, 0, 1) y1 + y2 + y3 ≤ 1

6 (0, 0, 1), (1, 1, 0) y1 + y3 ≤ 1, y2 + y3 ≤ 1

7 (1, 1, 0), (1, 0, 1) y2 + y3 ≤ 1

8 (1, 1, 0), (1, 0, 1), (0, 1, 1) y1 + y2 + y3 ≤ 2

9 (1, 1, 1) empty



The knapsack problem has a Chvátal rank at

most 1 in all of the cases.

The statement can be shown in a trivial way
for cases 1, 2, 4, 9. E. g. in case 4

case maximal vector inequality of the feasible set

4 (1, 1, 0) y3 ≤ 0

the multipliers are:

λ0 = 1
a3
, λ1 = 0, λ2 = 0, λ3 = 0,

λ4 = a1
a3
, λ5 = a2

a3
, λ6 = 0.
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The other cases can be solved as follows.

Case 3:

case maximal vectors inequalities of the feasible set

3 (1, 0, 0), (0, 1, 0) y1 + y2 ≤ 1, y3 ≤ 0

The inequality of y3 ≤ 0 as generated for

case 4 and another cut with

λ0 = 1
b
, λ1 = 1− a1

b
, λ2 = 1− a2

b
, λ3 = 0,

λ4 = 0, λ5 = 0, λ6 = a3
b
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4 A Counterexample in Dimension 4

12x1 + 12x2 + 14x3 + 30x4 ≤ 53

The set of maximal feasible solutions:
(1, 1, 1, 0), (0, 0, 1, 1), (0, 1, 0, 1), (1, 0, 0, 1)

The hyperplane y1 + y2 + y3 + 2y4 = 3

contains all of these maximal feasible points.

Therefore
y1 + y2 + y3 + 2y4 ≤ 3

is a valid cut of the integer hull.
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4.1 Linear constraints for the generation of the cut

12λ0 + λ1 − λ5 = 1

12λ0 + λ2 − λ6 = 1

14λ0 + λ3 − λ7 = 1

30λ0 + λ4 − λ8 = 2

53λ0 + λ1 + λ2 + λ3 + λ4 < 4



4.2 LP formulation

min 53λ0 + λ1 + λ2 + λ3 + λ4

12λ0 + λ1 − λ5 = 1

12λ0 + λ2 − λ6 = 1

14λ0 + λ3 − λ7 = 1

30λ0 + λ4 − λ8 = 2

λ0, . . . λ8 ≥ 0



The optimal solution is:

λ0 = 1
15, λ1 = λ2 = 1

5, λ3 = 1
15,

λ4 = λ5 = λ6 = λ7 = λ8 = 0.

The optimal objective function value is 4.

Thus the cut does not exist in the �rst

Chvátal iteration.

In general there are 27 di�erent sets of

maximal feasible solutions in dimension 4 if

inequality (4) is satis�ed.
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10 (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) y1 + y2 + y3 + y4 ≤ 1

11 (0,0,1,0), (0,0,0,1), (1,1,0,0) y1 + y3 + y4 ≤ 1, y2 + y3 + y4 ≤ 1

12 (0,0,0,1), (1,1,0,0), (1,0,1,0) y1 + y2 + y3 + 2y4 ≤ 2, y2 + y3 + y4 ≤ 1

13 (0,0,0,1), (1,1,0,0), (1,0,1,0), (0,1,1,0) y1 + y2 + y3 + 2y4 ≤ 2

14 (0,0,0,1), (1,1,1,0) y1 + y4 ≤ 1, y2 + y4 ≤ 1, y3 + y4 ≤ 1

15 (1,1,0,0), (1,0,1,0), (1,0,0,1) y2 + y3 + y4 ≤ 1

16 (1,1,0,0), (1,0,1,0), (0,1,1,0), (1,0,0,1) y1 + y2 + y3 + y4 ≤ 2, y2 + y4 ≤ 1, y3 + y4 ≤ 1

17 (1,0,0,1), (1,1,1,0) y2 + y4 ≤ 1, y3 + y4 ≤ 1

18 (1,1,0,0), (1,0,1,0), (0,1,1,0), (1,0,0,1), (0,1,0,1) y1 + y2 + y3 + y4 ≤ 2, y3 + y4 ≤ 1

19 (1,0,0,1), (0,1,0,1), (1,1,1,0) y1 + y2 + y4 ≤ 2, y3 + y4 ≤ 1

20 (1,1,1,0), (1,1,0,1) y3 + y4 ≤ 1

21 (1,1,0,0), (1,0,1,0), (0,1,1,0) and y1 + y2 + y3 + y4 ≤ 2

(1,0,0,1), (0,1,0,1), (0,0,1,1)

22 (1,0,0,1), (0,1,0,1), (0,0,1,1), (1,1,1,0) y1 + y2 + y3 + 2y4 ≤ 3

23 (0,0,1,1), (1,1,0,1) y1 + y3 + y4 ≤ 2, y2 + y3 + y4 ≤ 2

24 (0,1,0,1), (1,1,1,0), (1,0,1,1) y1 + y2 + y4 ≤ 2, y2 + y3 + y4 ≤ 2

25 (1,1,1,0), (1,1,0,1), (1,0,1,1) y2 + y3 + y4 ≤ 2

26 (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) y1 + y2 + y3 + y4 ≤ 3

27 (1,1,1,1) 0 ≤ yi ≤ 1 ß = 1, 2, 3, 4



As it can be seen from Table the above

example belongs to case 22.

Maximal vectors:

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (1, 1, 1, 0).

Inequality of the feasible set:

y1 + y2 + y3 + 2y4 ≤ 3.

All other cases have Chvátal rank 1.
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Theorem
The Chvátal rank of case 22 is higher than 1

if and only if

a1 + a2 + a3 ≤ b

a3 + a4 ≤ b

a1 + a2 + a4 > b

a3 <
a4
2

a1 + a2 + a3 +
a4
2
≤ b



5 The [Dahl-Foldnes 2003] Knapsack Problem

Polytope

x1 + · · ·+ xm1
+ pxm1+1 + · · ·+ pxm1+m2

≤ b.

(5)

Let T = {m1 + 1, . . . ,m1 + m2} and
S ⊆ {1, 2, . . . ,m1} and s = |S |, and
1 ≤ q < p.
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Then

h(s, q) =df max{x(S) + qx(T ) : x ∈ F}

=


b if s ≥ b

max{s + qbb−s
p
c,

b − (p − q)db−s
p
e} if b > s
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Among the last m2 variables at most

lmax = min
{
m2,
⌊
b
p

⌋}
can have value 1 in

any feasible solution.



Theorem [Dahl-Foldnes 2003]

(A) The integer hull of the knapsack problem

is described by the following system of

inequalities:

(5),

x(T ) ≤ lmax,

x(S) + qx(T ) ≤ h(s, q), ∀ S : ∅ 6= S ⊆
{1, 2, . . . ,m1} and ∀ q : 1 ≤ q < p,

0 ≤ xi ≤ 1, i ∈ {1, 2, . . . ,m1 + m2}.



(B) The inequality x(S) + qx(T ) ≤ h(s, q)

de�nes a facet of the integer hull if and only

if (s > q or s = q = 1) and

s ∈ {q+b−p, q+b−2p, . . . , q+b−plmax}.



5.1 The case m2 = 1

Assumption p ≤ b =⇒ lmax = 1.

The above theorem implies that for each

q > 1 the only value of s giving a facet of

the integer hull is

s = q + b − p. (6)

Hence it follows that h(s, q) = s.

When has a facet with parameters satisfying

(6) a Chvátal rank 1?
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The LP model of the best cut of this type in
the �rst Chvátal iteration:

min bλ0 + λ1 + λ2 + . . .+ λm1+1

λ0 + λ1 − λm1+2 = 1

· · ·

λ0 + λs − λm1+s+1 = 1

λ0 + λs+1 − λm1+s+2 = 0

· · ·

λ0 + λm1
− λ2m1+1 = 0

pλ0 + λm1+1 − λ2m1+2 = q

λ0, . . . λ2m1+2 ≥ 0.



The Path of the Simplex Method

The variables λ1, . . . λm1+1 form a feasible

basis.

λ0 λ1 λs λm1+1 λm1+2 λ2m1+2 RHS

λ1 1 1 −1 1
... . . . . . .

λs 1 1 −1 1

λs+1 1 1 −1 0
... . . . . . .

λm1
1 1 −1 0

λm1+1 p 1 −1 q

OBF b −m1 − p 0 · · · 0 0 · · · 0 0 1 · · · 1 1 · · · 1 1 −q − s



Case b ≥ m1 + p.

The integer hull is the unit cube.

The inequalities x(S) + qx(T ) ≤ h(s, q) are

not facet de�ning.

The Chvátal rank is 0. The simplex tableau

is optimal.
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Case m1 + p > b and m1 > s.

Variable λ0 enters and any of the variables

λs+1, . . . , λm1
may leave the basis.

After the interchange λ0 ⇔ λs+1 the simplex

tableau is this:
λ0 λ1 λs λs+1 λm1+1 λm1+2 λ2m1+2 RHS

λ1 0 1 −1 −1 1 1
... . . . . . .

λs 0 1 −1 −1 1 1

λ0 1 1 −1 0

λs+2 0 −1 1 1 −1 0
... . . . . . .

λm1
0 −1 1 1 −1 0

λm1+1 0 −p 1 p −1 q

OBF 0 0 · · · 0 −b + m1 + p 0 · · · 0 0 1 · · · 1 b + 1−m1 − p 1 · · · 1 1 −q − s
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The current basis is optimal if and only if

m1 = s, q = 1.

It implies that b + 1 = m1 + p. Then this

case is a generalization of case 26 in

Dimension 4. Hence the only inequality what

must be generated to obtain the integer hull

is m1+1∑
j=1

xj ≤ m1.
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It can be generated by the following weights:

λ0 =
1

p
, λ1 = · · · = λm1

=
p − 1

p
,

λm1+1 = · · · = λ2m1+2 = 0.

The case of non-optimality.

The sequence of entering variables is

λm1+s+2, λm1+s+3, ..., λ2m1
, λ2m1+1.
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1

p
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=
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p
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The case of non-optimality.
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At this moment the simplex tableau is as

follows:

λ0 λ1 λs λm1+1 λ2m1+2 RHS

λ1 0 1 −1
p
−1 1

p
1− q

p
... . . . . . .

λs 0 1 −1
p

−1 1
p

1− q
p

λ0 1 1
p

−1
p

q
p

λm1+s+2 0 −1 1
p

1 −1
p

q
p

... . . . . . .

λ2m1
0 −1 1

p
1 −1

p
q
p

OBF 0 0 · · · 0 1 · · · 1 q
p

1 · · · 1 0 · · · 0 1− q
p

q2

p
− q − s

This is the optimal simplex tableau.
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The optimal objective function value is

−q2

p
+ q + s.

Thus the Chvátal rank of the facet de�ning

cut is 1 if and only if

−q2

p
+ q + s < h(s, q) + 1 = s + 1.

This is equivalent to the inequality

q2 − pq + p > 0. (7)
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If m1 + p > b and s = m1 then we obtain

the same inequality.

Lemma
Let m1, p, and b be positive integers such

that m1 + p > b + 1. Then the Chvátal rank

of the integer hull of the set{
x ∈ IR

m1+1 | x1 + · · · + xm1
+ pxm1+1 ≤ b;

0 ≤ xi ≤ 1, i = 1, . . . ,m1} (8)

is 1 if and only if no positive integer q with
q < p exists such that (7) is violated.
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Theorem
Let m1, p, and b be positive integers such

that m1 + p > b + 1 and p ≥ 4. Then the

Chvátal rank of the integer hull of the set (8)

is at least 2.

The main content of the theorem is that

although the set de�ned in (8) has one of

the simplest de�nitions among the sets of

binary vectors, its Chvátal rank is still large.



Theorem
Let m1, p, and b be positive integers such

that m1 + p > b + 1 and p ≥ 4. Then the

Chvátal rank of the integer hull of the set (8)

is at least 2.

The main content of the theorem is that

although the set de�ned in (8) has one of

the simplest de�nitions among the sets of

binary vectors, its Chvátal rank is still large.



An upper bound of the Chvátal rank

Iterative step:

Assumption: The facet de�ning cuts for

q = i and q = p− i , where i < p
2 , are exiting

and have been already generated.

Case q = i + 1.

We got a facet de�ning inequality if

s = b − p + i + 1. For the sake of simplicity

assume that S = {1, . . . , s}.
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The inequality for (s, q) =

u ·
∑

the inequalities for (s − 1, q − 1)+

+v · (the inequality for (b − i , p − i)+

+
b−i∑

j=s+1

(−xj ≤ 0)),

where

u =
p − 2i − 1

(s − 1)(p − 2i)− i
, v =

s − i − 1

(s − 1)(p − 2i)− i
.
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Case q = p − i − 1, s = b − i − 1.

Assume that S = {1, . . . , b − i − 1}.

The inequality for (s, q) =

u ·
∑

the inequalities for (b − p + i , i)+

+v · (the inequality for (b − i , p − i)+

+(−xb−i ≤ 0))
where

u =
1(

b−i−2
b−p+i−1

) (
p − i − b−i−1

b−p+i
i
) , v = 1− 1

p − i − b−i−1
b−p+i

i
.
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+v · (the inequality for (b − i , p − i)+

+(−xb−i ≤ 0))

where

u =
1(

b−i−2
b−p+i−1

) (
p − i − b−i−1

b−p+i
i
) , v = 1− 1

p − i − b−i−1
b−p+i

i
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Initial step.

The inequality of q = 1 and s = b − p + 1 is

x1 + · · · + xm1
+ (p − 1)xm1+1 ≤ b − 1. (9)

(9) can be generated by the following

multipliers:

λ0 =
p − 1

p
, λ1 = λ2 = · · · = λm1

=
1

p
,

λm1+1 = · · · = λ2m1+2 = 0.
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These results can be summarize in the

following statement.

Theorem
Let m1, p, and b be positive integers such

that m1 + p > b + 1 and p ≥ 4. Then the

Chvátal rank of the integer hull of the set (8)

is at most ⌊p
2

⌋
.
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