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1 Chvatal Cut and Complexity

Chvatal's theory on the integer hull of a
polyhedral set defined by the inequality

system:
Ax < b, (1)

where A is an m X n matrix, b and x are

vectors of m and n dimensions, respectively.
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Let A € RY. Assume that AT)\eZZ"
Then all integer vectors x of the polyhedral

set must satisfy the inequality
AMAx < [A'b]. (2)

In general (2) is a valid cut of the integer
hull. Furthermore if A" b is non-integer then

it will cut off a part of the polyhedral set.
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It can be proven that:

@ there are only finite many significantly

different Chvatal cuts of type (2) and

@ if the Chvatal cuts added to the set of
inequalities (1) and in this way a new the
polyhedral set is defined, and the whole
procedure is repeated, then after finite

many iterations the polyhedral set

becomes equal to the integer hull.




Definition.
The number of iterations is called Chvatal

rank.
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2 Notations

axy + axo + - + apx, < b, (3)

x>0 j=1..n

xi <1 j=1,..

where aq, as, ..., a, and b are positive

integers. Furthermore

a < a < --- < g, (4)



2.1 Indexing of Constraints

index Right-Hand Side Left-Hand Side
0 aixy + axxo + -+ apx, < b
1 xx < 1
2 X < 1
n Xn <
n+1 —x; <
n+2 —X <

IA
o

2n —Xp,



Using the same index set the multipliers of
the inequalities of this original constraint set

are denoted by Ag, ..., A,
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3 The Case of Dimensions 1, 2, and 3

The case of n = 1. )

The set of integer feasible solutions:
{0, 1} The Chvatal rank is zero.

{0} The Chvatal rank is one:

Ao = 1/a1, A1 = Ay = 0 implies x; < 0.



The case of n = 2. J

[m] [l = = = >



The case of n = 2. )

The left-hand side of (3) is decreasing for the

following sequence of binary vectors:



The case of n = 2. )

The left-hand side of (3) is decreasing for the

following sequence of binary vectors:
(1,1), (0,1), (1,0), (0,0).



The case of n = 2.

The left-hand side of (3) is decreasing for the

following sequence of binary vectors:

(1,1), (0,1), (1,0). (0,0).
The Chvatal rank is again either 0 or 1.



The case of n = 2.

The left-hand side of (3) is decreasing for the

following sequence of binary vectors:

(1,1), (0,1), (1,0). (0,0).
The Chvatal rank is again either 0 or 1.

The case of n = 3.




The case of n = 2. )

The left-hand side of (3) is decreasing for the

following sequence of binary vectors:

(1,1), (0,1), (1,0). (0,0).
The Chvatal rank is again either 0 or 1.

The case of n = 3. |

The maximal elements of the feasible
solutions belong to one of the cases of the

table below:



case maximal vectors inequalities of the feasible set
1 (0,0,0) yi <0
2 (1,0,0) 2<0,y3<0
3 (1,0,0), (0,1,0) n+y<1ly<0
4 (1,1,0) y3 <0
5 (1,0,0), (0,1,0), (0,0,1) n+y+y<l1
6 (0,0,1), (1,1,0) ntys<ly+y<l1
7 (1,1,0), (1,0,1) vty <1
8 |(1,1,0), (1,0,1), (0,1,1) nty+ty <2
9 (1,1,1) empty
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The knapsack problem has a Chvatal rank at

most 1 in all of the cases.

The statement can be shown in a trivial way
for cases 1, 2,4, 9. E. g. in case 4

case | maximal vector | inequality of the feasible set
4 (1a 17 O) y3 S 0

the multipliers are:
)\0 - al37>\1 — 07/\2 — 07/\3 - O)

_ 4a _ _
M=2 25 =2 2 =0.
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The other cases can be solved as follows.

Case 3:
case | maximal vectors | inequalities of the feasible set
3 1(1,0,0), (0,1,0) n+y<1 y3<0




The other cases can be solved as follows.

Case 3:

case

maximal vectors

inequalities of the feasible set

(1,0,0), (0,1,0)

ity <1 y3<0

The inequality of y3 < 0 as generated for

case 4 and another cut with




The other cases can be solved as follows.
Case 3:

case | maximal vectors | inequalities of the feasible set

3 1(1,0,0), (0,1,0) yi+y2 <1 y;<0

The inequality of y3 < 0 as generated for
case 4 and another cut with

=7 =1-F=1-2 =0,
A =0, =0, =3



case

maximal vectors

inequality of the feasible set

(1,1,0), (1,0,1)

y+y <1




case | maximal vectors | inequality of the feasible set

7 (17 1’0)' (1707 1) Y2 +}’3 S 1

)\1:0,)\2:1_8—57)\3:]_—3?3’




case | maximal vectors | inequality of the feasible set

7 (17 1a0)1 (1707 1) Yo +YS S 1
1 a a
M=pM=0=1-2\3=1-F,
a
A= Xs =0,X =0
case maximal vectors inequality of the feasible set
8 (17]-’0)1 (17071)1 (Oa]-)]-) n +Y2+Y3 Sz




maximal vectors

inequality of the feasible set

(1,1,0), (1,0,1)

y+y <1

_Q)\?w:]-_afa

maximal vectors

inequality of the feasible set

(1,1,0), (1,0,1), (0,1,1)

yi+ty+ys <2

)\1:1_3_[)17)\2:1_3_[)27>\3: 1_8_37
=0, = 0.

b
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case

maximal vectors

inequalities of the feasible set

6

(0,0,1), (1,1,0)

vity3<l yp+y3 <1

The cut of case 8 and another cut with

EA=1—33X=0X\=1-3,
0, = 2, = 0.

Ao
A4




case

maximal vectors

inequalities of the feasible set

(0,0,1), (1,1,0)

vity3<l yp+y3 <1

The cut of case 8 and another cut with

1 a
M=l A =1-3 %=0X\=1-2
a
M= 0, A = f,% —0.
case maximal vectors inequality of the feasible set
5 (17070)1 (07 170)1 (0707 1) n "‘}’2 +}’3 S 1




case | maximal vectors | inequalities of the feasible set
6 [(0,0,1),(1L,1,0)| yi+y<1ly+y;<1

The cut of case 8 and another cut with

=7 =1-F =0 =1-3
A4=o,A5=a—g,A6_o.

case maximal vectors inequality of the feasible set

5 1](1,0,0), (0,1,0), (0,0,1) yi+ty+ys<1

)\0:3—12,)\1:1——)\2:0 A3 =0,
A =0,25=0,=23—1
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4 A Counterexample in Dimension 4

12x7 + 12x9 4+ 14x3 4+ 30x4 < 53 J

The set of maximal feasible solutions:
(1,1,1,0),(0,0,1,1),(0,1,0,1),(1,0,0,1)

The hyperplane y1 + yo + y3 + 2y4 = 3

contains all of these maximal feasible points.

Therefore
yvi+ys+ys+2y <3

is a valid cut of the integer hull.



4.1 Linear constraints for the generation of the cut

1200 4+ A — As =1
1200 4+ Ao — Ag =1
1400 + A3 — A7 — 1
30M\0 + Aa — g = 2
B30+ A+ X+A3+ A < 4



4.2 LP formulation

min 53 g + A1 + Ao+ A3+ Ay
P2+ A1 — X5 =

12X 0+ Ao — X =
14hg + A3 — N7
300 + A\q — Ag

Ao, - .- Ag

I
(- NO — — =

1V



The optimal solution is:



The optimal solution is:

1 1 1
AO:E,)\lz)Q:g,)G:E,

M=X=X =X\ =X =0.



The optimal solution is:

M=% M=Xd=3 A= 1
M=X=X=A7=Xg=0.

The optimal objective function value is 4.



The optimal solution is:

M= M=X=% =1
M=X=X =N\ =X =0.

The optimal objective function value is 4.

U'III—‘

Thus the cut does not exist in the first

Chvatal iteration.




The optimal solution is:
Ao 15, A=\ =
>\4:)\5:)\6:/\7:)\8:O.

The optimal objective function value is 4.

U'III—‘

Thus the cut does not exist in the first

Chvatal iteration.

In general there are 27 different sets of
maximal feasible solutions in dimension 4 if

inequality (4) is satisfied.



10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)
(0,0,1,0), (0,0,0,1), (1,1,0,0)
(0,0,0,1), (1,1,0,0), (1,0,1,0)

(0,0,0,1), (1,1,0,0), (1,0,1,0), (0,1,1,0)

(0,0,0,1), (1,1,1,0)
(1,1,0,0), (1,0,1,0), (1,0,0,1)
(1,1,0,0), (1,0,1,0), (0,1,1,0), (1,0,0,1)
(1,0,0,1), (1,1,1,0)
(1,1,0,0), (1,0,1,0), (0,1,1,0), (1,0,0,1), (0,1,0,1)
(1,0,0,1), (0,1,0,1), (1,1,1,0)
(1,1,1,0), (1,1,0,1)
(1,1,0,0), (1,0,1,0), (0,1,1,0) and
(1,0,0,1), (0,1,0,1), (0,0,1,1)
(1,0,0,1), (0,1,0,1), (0,0,1,1), (1,1,1,0)
(0,0,1,1), (1,1,0,1)
(0,1,0,1), (1,1,1,0), (1,0,1,1)
(1,1,1,0), (1,1,0,1), (1,0,1,1)
(1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1)
(1,1,1,1)

y1+y2+ys+ya<1
yityst+ya<l ya+ys+ya<1
yit+ty2+y3s+2ya <2 y>+y3+ya<1
y1+y2+ys+2ya <2
y1+ya<1ly>s+tya<1lys+tya<1
y2+y3+ya <1
yity2+tyst+ya<2 y2+ya<1lys+tya<1
y2+ya <1l y3+ys <1
yi+y2+ys+ya <2 y3+ys<1
y1+y2+ya <2 y3+ys<1
y3+ya <1
y1+y2+y3s+ya <2

y1+y2+ys+2ya <3
yi+ys+ya<2y2+ty3+ya
yi+y2+ya<2y2+y3+ya
y2+ys+ya <2
yi+y2+ys+tya<3
0<y; <1 B8=1,2,3,4

INIA
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As it can be seen from Table the above
example belongs to case 22.

Maximal vectors:
(1,0,0,1),(0,1,0,1),(0,0,1,1),(1,1,1,0).
Inequality of the feasible set:
ntya+y3+2y <3

All other cases have Chvatal rank 1.



The Chvatal rank of case 22 is higher than 1
it and only if
ait+ax)+tay < b
aat+a < b
a1+ ay+ag > b
dq
a < E
a
31—}—32—1—334—?4 < b
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5 The [Dahl-Foldnes 2003] Knapsack Problem

Polytope

X1+ A Xy PXmypg1 0 PXimy ey < b
(5)

Let T={my+1,...,m + my} and

SC{1,2,....,m} and s =S|, and

1< g<p.



Then

h(s, q) =4r max{x(S)+ gx(T):x € F}



Then

h(s, q) =4r max{x(S)+ gx(T):x € F}

b if s> b




Then

h(s, q) =4r max{x(S)+ gx(T):x € F}
b if s > b
= ¢ max{s+ q{%J,

b—(p—q)[%°1} ifb>s

\



Among the last m, variables at most
lhax = min {mg, EJ} can have value 1 in

any feasible solution.



Theorem [Dahl-Foldnes 2003]
(A) The integer hull of the knapsack problem

is described by the following system of
inequalities:
° (5)
o X(T) < lnax,
o x(S)+ gx(T) < h(s,q), VS:0#S C
{1,2,....,m} andVq:1<qg<p,

oOSX;S1,i€{1,2,...,m1—|—m2}.




(B) The inequality x(S) + gx(T) < h(s, q)
defines a facet of the integer hull if and only
if(s>qors=q=1) and
se{qg+b—p,g+b—2p,...,q+b— phuax}

v
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Assumption p < b = [pax = 1.
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g > 1 the only value of s giving a facet of
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Hence it follows that h(s, q) = s.



51 The case my =1

Assumption p < b = [pax = 1.
The above theorem implies that for each

g > 1 the only value of s giving a facet of
the integer hull is

s=q+b—p. (6)
Hence it follows that h(s, q) = s.

When has a facet with parameters satisfying
(6) a Chvatal rank 17



The LP model of the best cut of this type in
the first Chvatal iteration:

min b>\o+)\1+)\2+...+>\m1+1

)\0+>\1 _>\m1+2 - 1

A() + As — )\m1+5+1 — 1
Ao+ Asp1 — Ampgsp2 = 0

)\0 "’ )\m1 - )\2m1+1 - O
PAo + Ami41 — Aomr2 = G
Aoy Aoz > 0



The Path of the Simplex Method

The variables A, ... Ay, 41 form a feasible

basis.
)\0 )\1 )\s )\m1+1 )\m1+2 )\2m1+2 RHS
A 1 1 -1 1
A 1 1 -1 1
Asi1 1 1 -1 0
Ay 1 1 -1 0
Am 41 P 1 -1 q
OBF |b—my—p| 0 --- 0[]0 --- 0] 0 1 - 1|1 - 1 1 |—q—s




Case b > my + p. ]

[m] [l = = = >



Case b > my + p.

The integer hull is the unit cube.



Case b > my + p.

The integer hull is the unit cube.
The inequalities x(S) + gx(T) < h(s, q) are

not facet defining.



Case b > my + p.

The integer hull is the unit cube.

The inequalities x(S) + gx(T) < h(s, q) are
not facet defining.

The Chvatal rank is 0. The simplex tableau

is optimal.



Case my +p > b and m; > s.
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Variable \g enters and any of the variables
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Case my +p > b and m; > s.

Variable \g enters and any of the variables
As41, - -+, Am; May leave the basis.
After the interchange \g < As;1 the simplex

tableau is this:

Ao | M As Ast1 Am1 | Amyt2 Aomy42 | RHS

At 01 -1 -1 1 1
0 1 -1 -1 1 1
o |1 1 1 0
Aeia | O 1 1 1 1 0
Amp || O -1 1 1 -1 0
Amyi1] 0 —-p 1 P -1 q

OBF | 0|0 -+ O0|=b+m+p|0 -~ 0 O 1 -+ 1 |b+l—m—p|1l -+ 1 1 —q—s




The current basis is optimal if and only if

m =s, qg=1.



The current basis is optimal if and only if
m =s, qg=1.

It implies that b+ 1 = m; + p.



The current basis is optimal if and only if
m =s, qg=1.

It implies that b+ 1 = my + p. Then this
case is a generalization of case 26 in

Dimension 4.



The current basis is optimal if and only if
m =s, qg=1.

It implies that b+ 1 = my + p. Then this
case is a generalization of case 26 in
Dimension 4. Hence the only inequality what

must be generated to obtain the integer hull
iS myp+1

E Xj S m.
J=1



It can be generated by the following weights:
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It can be generated by the following weights:

1 —1
AO pu— —, )\1 T e e o — Aml f— p_)
P P
Ami41 = =+ = Aomyy2 = 0.

The case of non-optimality.

The sequence of entering variables is

)\m1+5+21 )\m1+5+3» “eg >\2m11 )\le—l—l-



At this moment the simplex tableau is as

follows:



At this moment the simplex tableau is as

follows:

Ao | AL As Ami+1 A2y 12 RHS

A 0|1 —% —1 1 1— %

As 0 1 —% —1 % 1— %
N : SR
Amptst2 | O -1 % _% %
/\2m1 0 -1 % 1 7% %

2
OBF 0|0 01 1 % 1 1 01— % % —qg—s




At this moment the simplex tableau is as
follows:
Ao | AL As Ami+1 A2y 12 RHS
)\1 011 —% -1 1 1_%
As 0 1 —% —1 % 1_%
o | ! 11 s
Amptst2 | O -1 % 1 _% g
Xomg || O -1 2 1 - :
oBF Jolo 0] 1 1] ¢ 1 1]0 ol1-9]2 _4_5
P plp

This

is the optimal simplex tableau.




The optimal objective function value is
2

—q——i—q+s.
p



The optimal objective function value is
2

—q——i—q+s.
p

Thus the Chvatal rank of the facet defining

cut is 1 if and only if

2
—q—+q+s<h(s,q)+1:5+1.

P



The optimal objective function value is
2

—q——i—q+s.
p

Thus the Chvatal rank of the facet defining

cut is 1 if and only if

2
—q—+q+s<h(s,q)+1:5+1.

p
This is equivalent to the inequality

q° — pq+p>0. (7)



If mi +p > band s = m; then we obtain

the same inequality.



If mi +p > band s = m; then we obtain

the same inequality.

Let my, p, and b be positive integers such

that my + p > b+ 1. Then the Chvatal rank
of the integer hull of the set

{xE]R’"lH|x1—|—---—|—xm1+pxm1+1§b;
0<x<1,i=1,...,m} (8

is 1 if and only if no positive integer g with
q < p exists such that (7) is violated.




Theorem
Let my, p, and b be positive integers such

that my+p > b—+1and p > 4. Then the
Chvatal rank of the integer hull of the set (8)

is at least 2.




Theorem
Let my, p, and b be positive integers such

that my+p > b—+1and p > 4. Then the
Chvatal rank of the integer hull of the set (8)

is at least 2.

The main content of the theorem is that
although the set defined in (8) has one of
the simplest definitions among the sets of

binary vectors, its Chvatal rank is still large.
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An upper bound of the Chvatal rank

lterative step: |

Assumption: The facet defining cuts for
g=1iand g=p—i, where i <%, are exiting
and have been already generated.

Case g=1i+1. |




An upper bound of the Chvatal rank

lterative step: |

Assumption: The facet defining cuts for
g=1iand g=p—i, where i <%, are exiting
and have been already generated.

Case g=1i+1. |

We got a facet defining inequality if
s=b— p—+i-+1. For the sake of simplicity
assume that S ={1,...,s}.



The inequality for (s, q) =
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The inequalityof g=1lands=b—p+1is

X1+ A+ Xmy + (P — 1)Xmyr1 < b—1. (9)
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)

The inequality of g=1lands=b—p+1is
X1+ A+ Xmy + (P — 1)Xmy+1 < b—1. (9)

(9) can be generated by the following
multipliers:

—1 1
Ao:”T,Alezz---:Amlz—,

Amp41 = =0 = Xomy42 =



These results can be summarize in the

following statement.



These results can be summarize in the
following statement.

Theorem
Let my, p, and b be positive integers such

that my+p>b—+1and p > 4. Then the
Chvatal rank of the integer hull of the set (8)

IS at most
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