On the Chvatál-Complexity of Binary Knapsack Problems

Gergely Kovács ${ }^{1} \quad$ Béla Vizvári ${ }^{2}$

${ }^{1}$ College for Modern Business Studies, Hungary
${ }^{2}$ Eastern Mediterranean University, TRNC

2009.

1 Chvátal Cut and Complexity

1 Chvátal Cut and Complexity

Chvátal's theory on the integer hull of a polyhedral set defined by the inequality system:

$$
\mathbf{A x} \leq \mathbf{b},
$$

1 Chvátal Cut and Complexity

Chvátal's theory on the integer hull of a polyhedral set defined by the inequality system:

$$
\mathbf{A x} \leq \mathbf{b}
$$

where \mathbf{A} is an $m \times n$ matrix, \mathbf{b} and \mathbf{x} are vectors of m and n dimensions, respectively.

Let $\underline{\lambda} \in \mathbf{R}_{+}^{m}$ ．Assume that $\mathbf{A}^{T} \underline{\lambda} \in \mathbb{Z}^{n}$ ．

Let $\underline{\lambda} \in \mathbf{R}_{+}^{m}$. Assume that $\mathbf{A}^{\top} \underline{\lambda} \in \mathbb{Z}^{n}$.
Then all integer vectors \mathbf{x} of the polyhedral set must satisfy the inequality

$$
\begin{equation*}
\underline{\lambda}^{T} \mathbf{A} \mathbf{x} \leq\left\lfloor\underline{\lambda}^{T} \mathbf{b}\right\rfloor . \tag{2}
\end{equation*}
$$

Let $\underline{\lambda} \in \mathbf{R}_{+}^{m}$. Assume that $\mathbf{A}^{\top} \underline{\lambda} \in \mathbb{Z}^{n}$.
Then all integer vectors x of the polyhedral set must satisfy the inequality

$$
\begin{equation*}
\underline{\lambda}^{T} A x \leq\left\lfloor\underline{\lambda}^{T} b\right\rfloor . \tag{2}
\end{equation*}
$$

In general (2) is a valid cut of the integer hull.

Let $\underline{\lambda} \in \mathbf{R}_{+}^{m}$. Assume that $\mathbf{A}^{\top} \underline{\lambda} \in \mathbb{Z}^{n}$.
Then all integer vectors \mathbf{x} of the polyhedral set must satisfy the inequality

$$
\begin{equation*}
\underline{\lambda}^{T} A x \leq\left\lfloor\underline{\lambda}^{T} b\right\rfloor . \tag{2}
\end{equation*}
$$

In general (2) is a valid cut of the integer hull. Furthermore if $\underline{\lambda}^{T} \mathbf{b}$ is non-integer then it will cut off a part of the polyhedral set.

It can be proven that:

It can be proven that:

- there are only finite many significantly different Chvátal cuts of type (2) and

It can be proven that:

(1) there are only finite many significantly different Chvátal cuts of type (2) and

- if the Chvátal cuts added to the set of inequalities (1) and in this way a new the polyhedral set is defined, and the whole procedure is repeated,

It can be proven that:

(1) there are only finite many significantly different Chvátal cuts of type (2) and

- if the Chvátal cuts added to the set of inequalities (1) and in this way a new the polyhedral set is defined, and the whole procedure is repeated, then after finite many iterations the polyhedral set becomes equal to the integer hull.

Definition.
The number of iterations is called Chvátal rank.

2 Notations

2 Notations

$a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq b, \quad$ (3)

2 Notations

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq b \\
x_{j} \geq 0 \quad j=1, \ldots, n
\end{gathered}
$$

2 Notations

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq b \\
x_{j} \geq 0 \quad j=1, \ldots, n \\
x_{j} \leq 1 \quad j=1, \ldots, n
\end{gathered}
$$

2 Notations

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq b \\
x_{j} \geq 0 \quad j=1, \ldots, n \\
x_{j} \leq 1 \quad j=1, \ldots, n
\end{gathered}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and b are positive integers.

2 Notations

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq b \\
x_{j} \geq 0 \quad j=1, \ldots, n \\
x_{j} \leq 1 \quad j=1, \ldots, n
\end{gathered}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ and b are positive integers. Furthermore

$$
\begin{equation*}
a_{1} \leq a_{2} \leq \cdots \leq a_{n} \tag{4}
\end{equation*}
$$

2.1 Indexing of Constraints

Using the same index set the multipliers of the inequalities of this original constraint set are denoted by $\lambda_{0}, \ldots, \lambda_{2 n}$.

3 The Case of Dimensions 1，2，and 3

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.
The set of integer feasible solutions:

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.
The set of integer feasible solutions:
$\{0,1\}$

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.
The set of integer feasible solutions:
$\{0,1\}$ The Chvátal rank is zero.

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.
The set of integer feasible solutions:
$\{0,1\}$ The Chvátal rank is zero. \{0\}

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.
The set of integer feasible solutions:
$\{0,1\}$ The Chvátal rank is zero.
$\{0\}$ The Chvátal rank is one:

3 The Case of Dimensions 1, 2, and 3

The case of $n=1$.
The set of integer feasible solutions:
$\{0,1\}$ The Chvátal rank is zero.
$\{0\}$ The Chvátal rank is one:
$\lambda_{0}=1 / a_{1}, \lambda_{1}=\lambda_{2}=0$ implies $x_{1} \leq 0$.

The case of $n=2$.

The case of $n=2$.

The left-hand side of (3) is decreasing for the following sequence of binary vectors:

The case of $n=2$.

The left-hand side of (3) is decreasing for the following sequence of binary vectors:
$(1,1),(0,1),(1,0),(0,0)$.

The case of $n=2$.

The left-hand side of (3) is decreasing for the following sequence of binary vectors:
$(1,1),(0,1),(1,0),(0,0)$.
The Chvátal rank is again either 0 or 1 .

The case of $n=2$.

The left-hand side of (3) is decreasing for the following sequence of binary vectors:
$(1,1),(0,1),(1,0),(0,0)$.
The Chvátal rank is again either 0 or 1 .
The case of $n=3$.

The case of $n=2$.

The left-hand side of (3) is decreasing for the following sequence of binary vectors:
$(1,1),(0,1),(1,0),(0,0)$.
The Chvátal rank is again either 0 or 1 .
The case of $n=3$.
The maximal elements of the feasible solutions belong to one of the cases of the table below:

case	maximal vectors	inequalities of the feasible set
1	$(0,0,0)$	$y_{i} \leq 0$
2	$(1,0,0)$	$y_{2} \leq 0, y_{3} \leq 0$
3	$(1,0,0),(0,1,0)$	$y_{1}+y_{2} \leq 1, y_{3} \leq 0$
4	$(1,1,0)$	$y_{3} \leq 0$
5	$(1,0,0),(0,1,0),(0,0,1)$	$y_{1}+y_{2}+y_{3} \leq 1$
6	$(0,0,1),(1,1,0)$	$y_{1}+y_{3} \leq 1, y_{2}+y_{3} \leq 1$
7	$(1,1,0),(1,0,1)$	$y_{2}+y_{3} \leq 1$
8	$(1,1,0),(1,0,1),(0,1,1)$	$y_{1}+y_{2}+y_{3} \leq 2$
9	$(1,1,1)$	empty

The knapsack problem has a Chvátal rank at most 1 in all of the cases.

The knapsack problem has a Chvátal rank at most 1 in all of the cases.
The statement can be shown in a trivial way for cases 1, 2, 4, 9 .

The knapsack problem has a Chvátal rank at most 1 in all of the cases.

The statement can be shown in a trivial way for cases $1,2,4,9$. E. g. in case 4

The knapsack problem has a Chvátal rank at most 1 in all of the cases.
The statement can be shown in a trivial way for cases $1,2,4,9$. E. g. in case 4

case	maximal vector	inequality of the feasible set
4	$(1,1,0)$	$y_{3} \leq 0$

The knapsack problem has a Chvátal rank at most 1 in all of the cases.

The statement can be shown in a trivial way for cases $1,2,4,9$. E. g. in case 4

case	maximal vector	inequality of the feasible set
4	$(1,1,0)$	$y_{3} \leq 0$

the multipliers are:

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{a_{3}}, \lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=0, \\
& \lambda_{4}=\frac{a_{1}}{a_{3}}, \lambda_{5}=\frac{a_{2}}{a_{3}}, \lambda_{6}=0 .
\end{aligned}
$$

The other cases can be solved as follows.

The other cases can be solved as follows. Case 3:

case	maximal vectors	inequalities of the feasible set
3	$(1,0,0),(0,1,0)$	$y_{1}+y_{2} \leq 1, y_{3} \leq 0$

The other cases can be solved as follows. Case 3:

case	maximal vectors	inequalities of the feasible set
3	$(1,0,0),(0,1,0)$	$y_{1}+y_{2} \leq 1, y_{3} \leq 0$

The inequality of $y_{3} \leq 0$ as generated for case 4 and another cut with

The other cases can be solved as follows. Case 3:

case	maximal vectors	inequalities of the feasible set
3	$(1,0,0),(0,1,0)$	$y_{1}+y_{2} \leq 1, y_{3} \leq 0$

The inequality of $y_{3} \leq 0$ as generated for case 4 and another cut with
$\lambda_{0}=\frac{1}{b}, \lambda_{1}=1-\frac{a_{1}}{b}, \lambda_{2}=1-\frac{a_{2}}{b}, \lambda_{3}=0$,
$\lambda_{4}=0, \lambda_{5}=0, \lambda_{6}=\frac{a_{3}}{b}$.

case	maximal vectors	inequality of the feasible set
7	$(1,1,0),(1,0,1)$	$y_{2}+y_{3} \leq 1$

case	maximal vectors	inequality of the feasible set
7	$(1,1,0),(1,0,1)$	$y_{2}+y_{3} \leq 1$

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{b}, \lambda_{1}=0, \lambda_{2}=1-\frac{a_{2}}{b}, \lambda_{3}=1-\frac{a_{3}}{b}, \\
& \lambda_{4}=\frac{a_{1}}{b}, \lambda_{5}=0, \lambda_{6}=0 .
\end{aligned}
$$

case	maximal vectors	inequality of the feasible set
7	$(1,1,0),(1,0,1)$	$y_{2}+y_{3} \leq 1$

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{b}, \lambda_{1}=0, \lambda_{2}=1-\frac{a_{2}}{b}, \lambda_{3}=1-\frac{a_{3}}{b} \\
& \lambda_{4}=\frac{a_{1}}{b}, \lambda_{5}=0, \lambda_{6}=0
\end{aligned}
$$

case	maximal vectors	inequality of the feasible set
8	$(1,1,0),(1,0,1),(0,1,1)$	$y_{1}+y_{2}+y_{3} \leq 2$

case	maximal vectors	inequality of the feasible set
7	$(1,1,0),(1,0,1)$	$y_{2}+y_{3} \leq 1$

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{b}, \lambda_{1}=0, \lambda_{2}=1-\frac{a_{2}}{b}, \lambda_{3}=1-\frac{a_{3}}{b} \\
& \lambda_{4}=\frac{a_{1}}{b}, \lambda_{5}=0, \lambda_{6}=0
\end{aligned}
$$

case	maximal vectors	inequality of the feasible set
8	$(1,1,0),(1,0,1),(0,1,1)$	$y_{1}+y_{2}+y_{3} \leq 2$

$\lambda_{0}=\frac{1}{b}, \lambda_{1}=1-\frac{a_{1}}{b}, \lambda_{2}=1-\frac{a_{2}}{b}, \lambda_{3}=1-\frac{a_{3}}{b}$,
$\lambda_{4}=0, \lambda_{5}=0, \lambda_{6}=0$.

case	maximal vectors	inequalities of the feasible set
6	$(0,0,1),(1,1,0)$	$y_{1}+y_{3} \leq 1, y_{2}+y_{3} \leq 1$

case	maximal vectors	inequalities of the feasible set
6	$(0,0,1),(1,1,0)$	$y_{1}+y_{3} \leq 1, y_{2}+y_{3} \leq 1$

The cut of case 8 and another cut with
$\lambda_{0}=\frac{1}{b}, \lambda_{1}=1-\frac{a_{1}}{b}, \lambda_{2}=0, \lambda_{3}=1-\frac{a_{3}}{b}$,
$\lambda_{4}=0, \lambda_{5}=\frac{a_{2}}{b}, \lambda_{6}=0$.

case	maximal vectors	inequalities of the feasible set
6	$(0,0,1),(1,1,0)$	$y_{1}+y_{3} \leq 1, y_{2}+y_{3} \leq 1$

The cut of case 8 and another cut with
$\lambda_{0}=\frac{1}{b}, \lambda_{1}=1-\frac{a_{1}}{b}, \lambda_{2}=0, \lambda_{3}=1-\frac{a_{3}}{b}$,
$\lambda_{4}=0, \lambda_{5}=\frac{a_{2}}{b}, \lambda_{6}=0$.

case	maximal vectors	inequality of the feasible set
5	$(1,0,0),(0,1,0),(0,0,1)$	$y_{1}+y_{2}+y_{3} \leq 1$

case	maximal vectors	inequalities of the feasible set
6	$(0,0,1),(1,1,0)$	$y_{1}+y_{3} \leq 1, y_{2}+y_{3} \leq 1$

The cut of case 8 and another cut with
$\lambda_{0}=\frac{1}{b}, \lambda_{1}=1-\frac{a_{1}}{b}, \lambda_{2}=0, \lambda_{3}=1-\frac{a_{3}}{b}$,
$\lambda_{4}=0, \lambda_{5}=\frac{a_{2}}{b}, \lambda_{6}=0$.

case	maximal vectors	inequality of the feasible set
5	$(1,0,0),(0,1,0),(0,0,1)$	$y_{1}+y_{2}+y_{3} \leq 1$

$\lambda_{0}=\frac{1}{a_{2}}, \lambda_{1}=1-\frac{a_{1}}{a_{2}}, \lambda_{2}=0, \lambda_{3}=0$,
$\lambda_{4}=0, \lambda_{5}=0, \lambda_{6}=\frac{a_{3}}{a_{2}}-1$.

4 A Counterexample in Dimension 4

4 A Counterexample in Dimension 4

$12 x_{1}+12 x_{2}+14 x_{3}+30 x_{4} \leq 53$

4 A Counterexample in Dimension 4

$12 x_{1}+12 x_{2}+14 x_{3}+30 x_{4} \leq 53$

The set of maximal feasible solutions:

4 A Counterexample in Dimension 4

$12 x_{1}+12 x_{2}+14 x_{3}+30 x_{4} \leq 53$

The set of maximal feasible solutions:
$(1,1,1,0),(0,0,1,1),(0,1,0,1),(1,0,0,1)$

4 A Counterexample in Dimension 4

$12 x_{1}+12 x_{2}+14 x_{3}+30 x_{4} \leq 53$

The set of maximal feasible solutions:
$(1,1,1,0),(0,0,1,1),(0,1,0,1),(1,0,0,1)$
The hyperplane $y_{1}+y_{2}+y_{3}+2 y_{4}=3$ contains all of these maximal feasible points.

4 A Counterexample in Dimension 4

$12 x_{1}+12 x_{2}+14 x_{3}+30 x_{4} \leq 53$

The set of maximal feasible solutions:
$(1,1,1,0),(0,0,1,1),(0,1,0,1),(1,0,0,1)$
The hyperplane $y_{1}+y_{2}+y_{3}+2 y_{4}=3$ contains all of these maximal feasible points.

Therefore

$$
y_{1}+y_{2}+y_{3}+2 y_{4} \leq 3
$$

is a valid cut of the integer hull.

4.1 Linear constraints for the generation of the cut

$$
\begin{aligned}
12 \lambda_{0}+\lambda_{1}-\lambda_{5} & =1 \\
12 \lambda_{0}+\lambda_{2}-\lambda_{6} & =1 \\
14 \lambda_{0}+\lambda_{3}-\lambda_{7} & =1 \\
30 \lambda_{0}+\lambda_{4}-\lambda_{8} & =2 \\
53 \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} & <4
\end{aligned}
$$

4.2 LP formulation

$\min 53 \lambda_{0}+\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}$

$$
\begin{aligned}
12 \lambda_{0}+\lambda_{1}-\lambda_{5} & =1 \\
12 \lambda_{0}+\lambda_{2}-\lambda_{6} & =1 \\
14 \lambda_{0}+\lambda_{3}-\lambda_{7} & =1 \\
30 \lambda_{0}+\lambda_{4}-\lambda_{8} & =2 \\
\lambda_{0}, \ldots \lambda_{8} & \geq 0
\end{aligned}
$$

The optimal solution is：

The optimal solution is:

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{15}, \lambda_{1}=\lambda_{2}=\frac{1}{5}, \lambda_{3}=\frac{1}{15} \\
& \lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=\lambda_{8}=0 .
\end{aligned}
$$

The optimal solution is:

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{15}, \lambda_{1}=\lambda_{2}=\frac{1}{5}, \lambda_{3}=\frac{1}{15}, \\
& \lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=\lambda_{8}=0 .
\end{aligned}
$$

The optimal objective function value is 4 .

The optimal solution is:
$\lambda_{0}=\frac{1}{15}, \lambda_{1}=\lambda_{2}=\frac{1}{5}, \lambda_{3}=\frac{1}{15}$,
$\lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=\lambda_{8}=0$.
The optimal objective function value is 4 .
Thus the cut does not exist in the first Chvátal iteration.

The optimal solution is:
$\lambda_{0}=\frac{1}{15}, \lambda_{1}=\lambda_{2}=\frac{1}{5}, \lambda_{3}=\frac{1}{15}$,
$\lambda_{4}=\lambda_{5}=\lambda_{6}=\lambda_{7}=\lambda_{8}=0$.
The optimal objective function value is 4 .
Thus the cut does not exist in the first
Chvátal iteration.

In general there are 27 different sets of maximal feasible solutions in dimension 4 if inequality (4) is satisfied.

10	(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)	$y_{1}+y_{2}+y_{3}+y_{4} \leq 1$
11	$(0,0,1,0),(0,0,0,1),(1,1,0,0)$	$y_{1}+y_{3}+y_{4} \leq 1, y_{2}+y_{3}+y_{4} \leq 1$
12	$(0,0,0,1),(1,1,0,0),(1,0,1,0)$	$y_{1}+y_{2}+y_{3}+2 y_{4} \leq 2, y_{2}+y_{3}+y_{4} \leq 1$
13	$(0,0,0,1),(1,1,0,0),(1,0,1,0),(0,1,1,0)$	$y_{1}+y_{2}+y_{3}+2 y_{4} \leq 2$
14	$(0,0,0,1),(1,1,1,0)$	$y_{1}+y_{4} \leq 1, y_{2}+y_{4} \leq 1, y_{3}+y_{4} \leq 1$
15	$(1,1,0,0),(1,0,1,0),(1,0,0,1)$	$y_{2}+y_{3}+y_{4} \leq 1$
16	$(1,1,0,0),(1,0,1,0),(0,1,1,0),(1,0,0,1)$	$y_{1}+y_{2}+y_{3}+y_{4} \leq 2, y_{2}+y_{4} \leq 1, y_{3}+y_{4} \leq 1$
17	$(1,0,0,1),(1,1,1,0)$	$y_{2}+y_{4} \leq 1, y_{3}+y_{4} \leq 1$
18	$(1,1,0,0),(1,0,1,0),(0,1,1,0),(1,0,0,1),(0,1,0,1)$	$y_{1}+y_{2}+y_{3}+y_{4} \leq 2, y_{3}+y_{4} \leq 1$
19	$(1,0,0,1),(0,1,0,1),(1,1,1,0)$	$y_{1}+y_{2}+y_{4} \leq 2, y_{3}+y_{4} \leq 1$
20	$(1,1,1,0),(1,1,0,1)$	$y_{3}+y_{4} \leq 1$
21	$\begin{gathered} (1,1,0,0),(1,0,1,0),(0,1,1,0) \text { and } \\ (1,0,0,1),(0,1,0,1),(0,0,1,1) \end{gathered}$	$y_{1}+y_{2}+y_{3}+y_{4} \leq 2$
22	$(1,0,0,1),(0,1,0,1),(0,0,1,1),(1,1,1,0)$	$y_{1}+y_{2}+y_{3}+2 y_{4} \leq 3$
23	$(0,0,1,1),(1,1,0,1)$	$y_{1}+y_{3}+y_{4} \leq 2, y_{2}+y_{3}+y_{4} \leq 2$
24	$(0,1,0,1),(1,1,1,0),(1,0,1,1)$	$y_{1}+y_{2}+y_{4} \leq 2, y_{2}+y_{3}+y_{4} \leq 2$
25	(1,1,1,0), (1,1,0,1), (1,0,1,1)	$y_{2}+y_{3}+y_{4} \leq 2$
26	$(1,1,1,0),(1,1,0,1),(1,0,1,1),(0,1,1,1)$	$y_{1}+y_{2}+y_{3}+y_{4} \leq 3$
27	(1,1,1,1)	$0 \leq y_{i} \leq 1 \quad B=1,2,3,4$

As it can be seen from Table the above example belongs to case 22 .

As it can be seen from Table the above example belongs to case 22 .

Maximal vectors:
$(1,0,0,1),(0,1,0,1),(0,0,1,1),(1,1,1,0)$.

As it can be seen from Table the above example belongs to case 22 .

Maximal vectors:
$(1,0,0,1),(0,1,0,1),(0,0,1,1),(1,1,1,0)$.
Inequality of the feasible set:
$y_{1}+y_{2}+y_{3}+2 y_{4} \leq 3$.

As it can be seen from Table the above example belongs to case 22 .

Maximal vectors:
$(1,0,0,1),(0,1,0,1),(0,0,1,1),(1,1,1,0)$. Inequality of the feasible set:
$y_{1}+y_{2}+y_{3}+2 y_{4} \leq 3$.
All other cases have Chvátal rank 1.

The Chvátal rank of case 22 is higher than 1 if and only if

$$
\begin{aligned}
a_{1}+a_{2}+a_{3} & \leq b \\
a_{3}+a_{4} & \leq b \\
a_{1}+a_{2}+a_{4} & >b \\
a_{3} & <\frac{a_{4}}{2} \\
a_{1}+a_{2}+a_{3}+\frac{a_{4}}{2} & \leq b
\end{aligned}
$$

5 The [Dahl-Foldnes 2003] Knapsack Problem Polytope

5 The [Dahl-Foldnes 2003] Knapsack Problem

 Polytope$$
x_{1}+\cdots+x_{m_{1}}+p x_{m_{1}+1}+\cdots+p x_{m_{1}+m_{2}} \leq b
$$

5 The [Dahl-Foldnes 2003] Knapsack Problem

 Polytope$$
x_{1}+\cdots+x_{m_{1}}+p x_{m_{1}+1}+\cdots+p x_{m_{1}+m_{2}} \leq b
$$

Let $T=\left\{m_{1}+1, \ldots, m_{1}+m_{2}\right\}$ and $S \subseteq\left\{1,2, \ldots, m_{1}\right\}$

5 The [Dahl-Foldnes 2003] Knapsack Problem

 Polytope$x_{1}+\cdots+x_{m_{1}}+p x_{m_{1}+1}+\cdots+p x_{m_{1}+m_{2}} \leq b$. (5)

Let $T=\left\{m_{1}+1, \ldots, m_{1}+m_{2}\right\}$ and
$S \subseteq\left\{1,2, \ldots, m_{1}\right\}$ and $s=|S|$, and
$1 \leq q<p$.

Then

$$
h(s, q)={ }_{d f} \max \{x(S)+q x(T): x \in F\}
$$

Then

$$
h(s, q)={ }_{d f} \max \{x(S)+q x(T): x \in F\}
$$

$$
\text { if } s \geq b
$$

Then

$$
h(s, q)={ }_{d f} \max \{x(S)+q x(T): x \in F\}
$$

$$
= \begin{cases}b & \text { if } s \geq b \\ \max \left\{s+q\left\lfloor\frac{b-s}{p}\right\rfloor,\right. & \\ \left.b-(p-q)\left\lceil\frac{b-s}{p}\right\rceil\right\} & \text { if } b>s\end{cases}
$$

Among the last m_{2} variables at most $I_{\text {max }}=\min \left\{m_{2},\left\lfloor\frac{b}{p}\right\rfloor\right\}$ can have value 1 in any feasible solution.

Theorem [Dahl-Foldnes 2003]

(A) The integer hull of the knapsack problem is described by the following system of inequalities:

- (5),
- $x(T) \leq I_{\text {max }}$
- $x(S)+q x(T) \leq h(s, q), \forall S: \emptyset \neq S \subseteq$ $\left\{1,2, \ldots, m_{1}\right\}$ and $\forall q: 1 \leq q<p$,
- $0 \leq x_{i} \leq 1, i \in\left\{1,2, \ldots, m_{1}+m_{2}\right\}$.
(B) The inequality $x(S)+q x(T) \leq h(s, q)$ defines a facet of the integer hull if and only if $(s>q$ or $s=q=1)$ and $s \in\left\{q+b-p, q+b-2 p, \ldots, q+b-p l_{\max }\right\}$.

5.1 The case $m_{2}=1$

Assumption $p \leq b \Longrightarrow I_{\max }=1$.

5.1 The case $m_{2}=1$

Assumption $p \leq b \Longrightarrow I_{\text {max }}=1$.
The above theorem implies that for each
$q>1$ the only value of s giving a facet of the integer hull is

$$
\begin{equation*}
s=q+b-p . \tag{6}
\end{equation*}
$$

Hence it follows that $h(s, q)=s$.

5.1 The case $m_{2}=1$

Assumption $p \leq b \Longrightarrow I_{\text {max }}=1$.
The above theorem implies that for each
$q>1$ the only value of s giving a facet of the integer hull is

$$
\begin{equation*}
s=q+b-p \tag{6}
\end{equation*}
$$

Hence it follows that $h(s, q)=s$.
When has a facet with parameters satisfying
(6) a Chvátal rank 1?

The LP model of the best cut of this type in the first Chvátal iteration:

$$
\begin{aligned}
\min b \lambda_{0}+\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m_{1}+1} & \\
\lambda_{0}+\lambda_{1}-\lambda_{m_{1}+2} & =1 \\
\ldots & \\
\lambda_{0}+\lambda_{s}-\lambda_{m_{1}+s+1} & =1 \\
\lambda_{0}+\lambda_{s+1}-\lambda_{m_{1}+s+2} & =0 \\
\ldots & \\
\lambda_{0}+\lambda_{m_{1}}-\lambda_{2 m_{1}+1} & =0 \\
p \lambda_{0}+\lambda_{m_{1}+1}-\lambda_{2 m_{1}+2} & =q \\
\lambda_{0}, \ldots \lambda_{2 m_{1}+2} & \geq 0 .
\end{aligned}
$$

The Path of the Simplex Method

The variables $\lambda_{1}, \ldots \lambda_{m_{1}+1}$ form a feasible basis.

Case $b \geq m_{1}+p$ ．

Case $b \geq m_{1}+p$.

The integer hull is the unit cube.

Case $b \geq m_{1}+p$.

The integer hull is the unit cube.
The inequalities $x(S)+q x(T) \leq h(s, q)$ are not facet defining.

Case $b \geq m_{1}+p$.

The integer hull is the unit cube.
The inequalities $x(S)+q x(T) \leq h(s, q)$ are not facet defining.
The Chvátal rank is 0 . The simplex tableau is optimal.

Case $m_{1}+p>b$ and $m_{1}>s$.

Case $m_{1}+p>b$ and $m_{1}>s$.

Variable λ_{0} enters and any of the variables
$\lambda_{s+1}, \ldots, \lambda_{m_{1}}$ may leave the basis.

Case $m_{1}+p>b$ and $m_{1}>s$.

Variable λ_{0} enters and any of the variables
$\lambda_{s+1}, \ldots, \lambda_{m_{1}}$ may leave the basis.
After the interchange $\lambda_{0} \Leftrightarrow \lambda_{s+1}$ the simplex tableau is this:

	λ_{0}	λ_{1}	λ_{s}	λ_{s+1}		$\lambda_{m_{1}+1}$	$\lambda_{m_{1}+2}$					$\lambda_{2 m_{1}+2}$	RHS
λ_{1}	0	1		-1			-1		1				1
λ_{s}	0		1	-1				-1	1				1
λ_{0}	1			1					-1				0
λ_{s+2}	0			-1	1				1		-1		0
$\lambda_{m_{1}}$	0			-1	1				1		-1		0
$\lambda_{m_{1}+1}$	0			$-p$		1			p			-1	q
OBF	0	0	0	$-b+m_{1}+p$	$0 \cdots 0$	0	1	1	$b+1-m_{1}-p$		$1 \cdots 1$	1	$-q-s$

The current basis is optimal if and only if $m_{1}=s, q=1$.

The current basis is optimal if and only if $m_{1}=s, q=1$.

It implies that $b+1=m_{1}+p$.

The current basis is optimal if and only if $m_{1}=s, q=1$.

It implies that $b+1=m_{1}+p$. Then this case is a generalization of case 26 in

Dimension 4.

The current basis is optimal if and only if $m_{1}=s, q=1$.

It implies that $b+1=m_{1}+p$. Then this case is a generalization of case 26 in

Dimension 4. Hence the only inequality what must be generated to obtain the integer hull is

$$
\sum_{j=1}^{m_{1}+1} x_{j} \leq m_{1} .
$$

It can be generated by the following weights:

$$
\begin{array}{r}
\lambda_{0}=\frac{1}{p}, \lambda_{1}=\cdots=\lambda_{m_{1}}=\frac{p-1}{p}, \\
\lambda_{m_{1}+1}=\cdots=\lambda_{2 m_{1}+2}=0 .
\end{array}
$$

It can be generated by the following weights:

$$
\begin{array}{r}
\lambda_{0}=\frac{1}{p}, \lambda_{1}=\cdots=\lambda_{m_{1}}=\frac{p-1}{p}, \\
\lambda_{m_{1}+1}=\cdots=\lambda_{2 m_{1}+2}=0 .
\end{array}
$$

The case of non-optimality.

It can be generated by the following weights:

$$
\begin{array}{r}
\lambda_{0}=\frac{1}{p}, \lambda_{1}=\cdots=\lambda_{m_{1}}=\frac{p-1}{p}, \\
\lambda_{m_{1}+1}=\cdots=\lambda_{2 m_{1}+2}=0 .
\end{array}
$$

The case of non-optimality.

The sequence of entering variables is
$\lambda_{m_{1}+s+2}, \lambda_{m_{1}+s+3}, \ldots, \lambda_{2 m_{1}}, \lambda_{2 m_{1}+1}$.

At this moment the simplex tableau is as follows:

At this moment the simplex tableau is as

follows:

	λ_{0}	λ_{1}	λ_{s}		$\lambda_{m_{1}+1}$			$\lambda_{2 m_{1}+2}$	RHS
λ_{1}	0	1			$-\frac{1}{p}$	-1		$\frac{1}{p}$	$1-\frac{q}{p}$
λ_{s}	0		1		$-\frac{1}{p}$	-1		$\frac{1}{p}$	$1-\frac{q}{p}$
λ_{0}	1				$\frac{1}{p}$			$-\frac{1}{p}$	$\frac{q}{p}$
$\lambda_{m_{1}+s+2}$	0			-1	$\underline{1}$		1	$-\frac{1}{p}$	$\frac{q}{p}$
$\lambda_{2 m_{1}}$	0			-1	$\frac{1}{p}$		1	$-\frac{1}{p}$	$\frac{q}{p}$
OBF	0	0	0	$1 \cdots \cdots$	$\frac{q}{p}$	$1 \times \cdots$	$0 \cdots 0$	$1-\frac{q}{p}$	-q-s

At this moment the simplex tableau is as follows:

	λ_{0}	λ_{1}	λ_{s}		$\lambda_{m_{1}+1}$			$\lambda_{2 m_{1}+2}$	RHS
λ_{1}	0	1			$-\frac{1}{p}$	-1		$\underline{1}$	$1-\frac{q}{p}$
λ_{s}	0		1		$-\frac{1}{p}$	-1		$\frac{1}{p}$	$1-\frac{q}{p}$
λ_{0}	1				$\frac{1}{p}$			$-\frac{1}{p}$	$\frac{q}{p}$
$\lambda_{m_{1}+s+2}$	0			-1	$\frac{1}{p}$		1	$-\frac{1}{p}$	$\frac{q}{p}$
$\lambda_{2 m_{1}}$	0			-1	$\dot{\bar{p}}$		1	$-\frac{1}{p}$	$\frac{q}{p}$
OBF	0	0	0	$1 \begin{array}{lll}1 & \cdots & 1\end{array}$	$\frac{q}{p}$	$1 \times \cdots 1$	$0 \cdots 0$	$1-\frac{q}{p}$	-q-s

This is the optimal simplex tableau.

The optimal objective function value is

$$
-\frac{q^{2}}{p}+q+s
$$

The optimal objective function value is

$$
-\frac{q^{2}}{p}+q+s
$$

Thus the Chvátal rank of the facet defining cut is 1 if and only if

$$
-\frac{q^{2}}{p}+q+s<h(s, q)+1=s+1 .
$$

The optimal objective function value is

$$
-\frac{q^{2}}{p}+q+s
$$

Thus the Chvátal rank of the facet defining cut is 1 if and only if

$$
-\frac{q^{2}}{p}+q+s<h(s, q)+1=s+1 .
$$

This is equivalent to the inequality

$$
\begin{equation*}
q^{2}-p q+p>0 \tag{7}
\end{equation*}
$$

If $m_{1}+p>b$ and $s=m_{1}$ then we obtain the same inequality.

If $m_{1}+p>b$ and $s=m_{1}$ then we obtain the same inequality.

Lemma

Let m_{1}, p, and b be positive integers such that $m_{1}+p>b+1$. Then the Chvátal rank of the integer hull of the set

$$
\begin{gather*}
\left\{\mathbf{x} \in \mathbf{R}^{m_{1}+1} \mid x_{1}+\cdots+x_{m_{1}}+p x_{m_{1}+1} \leq b ;\right. \\
\left.0 \leq x_{i} \leq 1, \quad i=1, \ldots, m_{1}\right\} \tag{8}
\end{gather*}
$$

is 1 if and only if no positive integer q with $q<p$ exists such that (7) is violated.

Theorem

Let m_{1}, p, and b be positive integers such that $m_{1}+p>b+1$ and $p \geq 4$. Then the Chvátal rank of the integer hull of the set (8) is at least 2.

Theorem

Let m_{1}, p, and b be positive integers such that $m_{1}+p>b+1$ and $p \geq 4$. Then the Chvátal rank of the integer hull of the set (8) is at least 2.

The main content of the theorem is that although the set defined in (8) has one of the simplest definitions among the sets of binary vectors, its Chvátal rank is still large.

An upper bound of the Chvátal rank

An upper bound of the Chvátal rank

Iterative step:

An upper bound of the Chvátal rank

Iterative step:
Assumption: The facet defining cuts for $q=i$ and $q=p-i$, where $i<\frac{p}{2}$, are exiting and have been already generated.

An upper bound of the Chvátal rank

Iterative step:
Assumption: The facet defining cuts for $q=i$ and $q=p-i$, where $i<\frac{p}{2}$, are exiting and have been already generated.

Case $q=i+1$.

An upper bound of the Chvátal rank

Iterative step:
Assumption: The facet defining cuts for $q=i$ and $q=p-i$, where $i<\frac{p}{2}$, are exiting and have been already generated.

Case $q=i+1$.
We got a facet defining inequality if $s=b-p+i+1$. For the sake of simplicity assume that $S=\{1, \ldots, s\}$.

The inequality for $(s, q)=$

The inequality for $(s, q)=$

$u \cdot \sum$ the inequalities for $(s-1, q-1)+$

The inequality for $(s, q)=$

$u \cdot \sum$ the inequalities for $(s-1, q-1)+$ $+v \cdot($ the inequality for $(b-i, p-i)+$

$$
\left.+\sum_{j=s+1}^{b-i}\left(-x_{j} \leq 0\right)\right)
$$

The inequality for $(s, q)=$
$u \cdot \sum$ the inequalities for $(s-1, q-1)+$ $+v \cdot($ the inequality for $(b-i, p-i)+$

$$
\left.+\sum_{j=s+1}^{b-i}\left(-x_{j} \leq 0\right)\right)
$$

where

$$
u=\frac{p-2 i-1}{(s-1)(p-2 i)-i}, v=\frac{s-i-1}{(s-1)(p-2 i)-i} .
$$

Case $q=p-i-1, s=b-i-1$ ．

Case $q=p-i-1, s=b-i-1$.

Assume that $S=\{1, \ldots, b-i-1\}$.

Case $q=p-i-1, s=b-i-1$.

Assume that $S=\{1, \ldots, b-i-1\}$.
The inequality for $(s, q)=$

Case $q=p-i-1, s=b-i-1$.

Assume that $S=\{1, \ldots, b-i-1\}$.
The inequality for $(s, q)=$
$u \cdot \sum$ the inequalities for $(b-p+i, i)+$

Case $q=p-i-1, s=b-i-1$.

Assume that $S=\{1, \ldots, b-i-1\}$.
The inequality for $(s, q)=$
$u \cdot \sum$ the inequalities for $(b-p+i, i)+$
$+v \cdot$ (the inequality for $(b-i, p-i)+$

$$
\left.+\left(-x_{b-i} \leq 0\right)\right)
$$

Case $q=p-i-1, s=b-i-1$.

Assume that $S=\{1, \ldots, b-i-1\}$.
The inequality for $(s, q)=$
$u \cdot \sum$ the inequalities for $(b-p+i, i)+$
$+v \cdot$ (the inequality for $(b-i, p-i)+$

$$
\left.+\left(-x_{b-i} \leq 0\right)\right)
$$

where

$$
u=\frac{1}{\binom{b-i-2}{b-p+i-1}\left(p-i-\frac{b-i-1}{b-p+i}\right)}, v=1-\frac{1}{p-i-\frac{b-i-1}{b-p+i} i} .
$$

Initial step．

Initial step.

The inequality of $q=1$ and $s=b-p+1$ is

$$
x_{1}+\cdots+x_{m_{1}}+(p-1) x_{m_{1}+1} \leq b-1
$$

Initial step.

The inequality of $q=1$ and $s=b-p+1$ is

$$
x_{1}+\cdots+x_{m_{1}}+(p-1) x_{m_{1}+1} \leq b-1
$$

(9) can be generated by the following multipliers:

$$
\begin{array}{r}
\lambda_{0}=\frac{p-1}{p}, \\
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m_{1}}=\frac{1}{p}, \\
\\
\lambda_{m_{1}+1}=\cdots=\lambda_{2 m_{1}+2}=0 .
\end{array}
$$

These results can be summarize in the following statement.

These results can be summarize in the following statement.

Theorem

Let m_{1}, p, and b be positive integers such that $m_{1}+p>b+1$ and $p \geq 4$. Then the Chvátal rank of the integer hull of the set (8) is at most

$$
\left\lfloor\frac{p}{2}\right\rfloor .
$$

E Chvátal, V., Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Math, 4(1973), 305-337.

围 Dahl, G., Foldnes, N., Complete description of a class of knapsack polytopes, Operations Research Letters, 31(2003), 335-340.

國 Schrijver, A., The Theory of Linear and Integer Programming, J. Wiley \& Sons, Chichester, 1986.

