On Approximate Horn Minimization

A. Bhattacharya, B. DasGupta, D. Mubayi, Gy. Turán

January 2009, RUTCOR

- 1. Preliminaries
- 2. Different versions of the problem
- 3. Approximability
- 4. Inapproximability

Preliminaries

- Horn clause: at most one unnegated variable, e.g.
- $a, b \rightarrow c$ or $\bar{a} \vee \bar{b} \vee c$
- definite Horn clause: one unnegated variable
- (definite) Horn formula: conjunction of (definite) Horn clauses
- $(a, b \rightarrow c) \wedge(a, c \rightarrow d) \wedge(d, e \rightarrow f)$
- size: number of clauses or variables
- implication (can be decided efficiently):
- $(a, b \rightarrow c) \wedge(a, c \rightarrow d) \models(a, b \rightarrow d)$
- equivalence of φ and ψ :
- $\forall a \varphi(a) \Leftrightarrow \psi(a)$
- $\forall C \varphi \models C \Leftrightarrow \psi \models C$

Horn minimization

- given a Horn formula φ and a number k, is there a Horn formula with at most k clauses equivalent to φ ?
- $x_{i} \rightarrow y_{j}, \quad y_{1}, \ldots, y_{n} \rightarrow x_{i} \quad n^{2}+n$ clauses
- $x_{i} \rightarrow x_{i+1}, \quad x_{n} \rightarrow y_{i}, \quad y_{1}, \ldots, y_{n} \rightarrow x_{1} \quad 2 n$ clauses
- restricted version: given a Horn formula φ and a number k, does φ have a subformula with at most k clauses equivalent to φ ?

Previous work

- Boros, Čepek (1994): NP-complete
- Hammer, Kogan (1993):
- NP-complete if the number of literals is to be minimized; in P for quasi-acyclic formulas
- (restricted) Horn minimization (number of clauses) has an ($n-1$)-approximation algorithm (n : number of different variables) $O(n)$?
- Maier (1983), Ausiello, D'Atri, Saccà (1986), Guigues, Duquenne (1986), Angluin, Frazier, Pitt (1992): minimization of the number of bodies can be done efficiently
- Boros, Čepek, Kogan (1997): iterative decomposition algorithm

Transitive reduction

- given a directed graph G and a number k, is there a directed graph with at most k edges having the same transitive closure? - in P
- given a directed graph G and a number k, does G have a subgraph with at most k edges having the same transitive closure? - NP-complete
- Berman, DasGupta, Karpinski (2007): 1.5-approximation algorithm
- definite Horn clauses of size 2

\mathcal{R}-equivalence

- Flögel, Kleine Büning, Lettmann (1993): introduce new variables
$-x_{1} / y_{1}, \ldots, x_{n} / y_{n} \rightarrow u \quad 2^{n}$ clauses
- $x_{i} \rightarrow z_{i}, y_{i} \rightarrow z_{i}, \quad z_{1}, \ldots, z_{n} \rightarrow u \quad 2 n+1$ clauses
- same set of consequences over the original variables
- $\varphi \sim_{\mathcal{R}} \psi$, where \mathcal{R} is a set of variables: same set of consequences over \mathcal{R}
- co - NP-complete even in rather restricted cases

Narrow extension

- introduce new variables in a restricted way
- $x_{i} \rightarrow y_{j}, \quad i=1, \ldots, n, j=1, \ldots, m \quad n m$ clauses
- $x_{i} \rightarrow z, \quad z \rightarrow y_{j}, \quad i=1, \ldots, n, j=1, \ldots, m \quad n+m$ clauses
- new variables can be heads, or singleton bodies with old heads
- $\varphi \sim_{\mathcal{R}} \psi$, where variables new are introduced by narrow extension: can be decided efficiently

A $o(n)$ approximation algorithm

Theorem
There is an efficient $O\left(\frac{n}{\log n}\right)$-approximation algorithm for narrow extended Horn minimization.

A o(n) approximation algorithm

Theorem

There is an efficient $O\left(\frac{n}{\log n}\right)$-approximation algorithm for narrow extended Horn minimization.

- find an equivalent Horn formula with the minimal number of bodies

A $o(n)$ approximation algorithm

Theorem

There is an efficient $O\left(\frac{n}{\log n}\right)$-approximation algorithm for narrow extended Horn minimization.

- find an equivalent Horn formula with the minimal number of bodies
- find a decomposition of the bipartite graph between heads and bodies

Hardness of approximation

Theorem
If NP $\nsubseteq D T I M E\left(n^{\text {polylog(n) }}\right)$ then for every $0<\delta<1$ restricted Horn minimization is not

$$
2^{\log ^{\delta} \operatorname{size}(\varphi)}
$$

approximable.

- approximation preserving reduction from the MINREP problem

Decomposition of graphs

- Chung, Erdős, Spencer (1983), Bublitz (1986): every n-vertex graph can be partitioned into complete bipartite graphs with $O\left(n^{2} / \log n\right)$ vertices altogether
- Tuza (1984): every (a, b)-bipartite graph can be partitioned into complete bipartite graphs with $O(a b / \log (a+b))$ vertices altogether

Decomposition of graphs

- Chung, Erdős, Spencer (1983), Bublitz (1986): every n-vertex graph can be partitioned into complete bipartite graphs with $O\left(n^{2} / \log n\right)$ vertices altogether
- Tuza (1984): every (a, b)-bipartite graph can be partitioned into complete bipartite graphs with $O(a b / \log (a+b))$ vertices altogether
- Kővári, Sós, Turán (1954): every (n, n)-bipartite graph with $c_{q} n^{2-1 / q}$ edges contains a complete (q, q)-bipartite graph (Zarankiewicz problem)
- proofs are non-constructive

Decomposition of graphs

- Chung, Erdős, Spencer (1983), Bublitz (1986): every n-vertex graph can be partitioned into complete bipartite graphs with $O\left(n^{2} / \log n\right)$ vertices altogether
- Tuza (1984): every (a, b)-bipartite graph can be partitioned into complete bipartite graphs with $O(a b / \log (a+b))$ vertices altogether
- Kővári, Sós, Turán (1954): every (n, n)-bipartite graph with $c_{q} n^{2-1 / q}$ edges contains a complete (q, q)-bipartite graph (Zarankiewicz problem)
- proofs are non-constructive
- Kirchner (2008): efficient algorithm to find a complete $(\sqrt{\log n}, \sqrt{\log n})$ bipartite graph in a dense n-vertex graph

Efficient decomposition

Theorem
There are efficient algorithms for finding

- a complete bipartite subgraph with parts about

$$
\frac{\log n}{\log \left(n^{2} / m\right)}
$$

in n-vertex graphs with m edges $\left(m>n^{3 / 2}\right)$

Efficient decomposition

Theorem
There are efficient algorithms for finding

- a complete bipartite subgraph with parts about

$$
\frac{\log n}{\log \left(n^{2} / m\right)}
$$

in n-vertex graphs with m edges $\left(m>n^{3 / 2}\right)$

- a decomposition of n-vertex graphs into complete bipartite graphs with $O\left(n^{2} / \log n\right)$ vertices altogether
- a decomposition of (a, b)-bipartite graphs into complete bipartite graphs with $O(a b / \log (a+b))$ vertices altogether

