LARGE MARGIN LAD MODELS AND LAD-BASED REGRESSION

Tibérius O. Bonates

Princeton Consultants, Inc.

DIMACS - RUTCOR Workshop on Boolean and Pseudo-Boolean Functions in Memory of Peter L. Hammer

January, 2009

• Introduction

- Large Margin LAD Classifiers
- LAD-Based Regression
- Conclusions and Future Work

Consider a dataset $\Omega = \Omega^+ \cup \Omega^- \subset \{0,1\}^n$, with $\Omega^+ \cap \Omega^- = \emptyset$.

A conjunction is a clause involving literals from $\{x_1, \ldots, x_n, \overline{x_1}, \ldots, \overline{x_n}\}$. A conjunction defines a subcube of $\{0, 1\}^n$ in which a subset of the components is fixed to 0 or 1.

A positive pattern is a homogeneous conjunction, i.e. a subcube having:

- (i) a nonempty intersection with Ω^+ ,
- (ii) an empty intersection with Ω^- .

A negative pattern is defined similarly.

The concept of a pattern is frequently relaxed to allow the inclusion of a small number of points of the other set.

A pattern P is said to "cover" a point ω if ω is in the subcube defined by P.

LAD Model: collection $M = M^+ \cup M^-$ of positive and negative patterns so that every point in Ω is covered by at least one pattern of M.

Let
$$M^+ = \{P_1, \dots, P_r\}$$
 and $M^- = \{N_1, \dots, N_s\}.$

LAD Discriminant Function: for a point $\omega \in \{0, 1\}^n$ the discriminant function associated with model M is given by

$$\Delta(\omega) = \sum_{j=1}^{r} \alpha_j P_j(\omega) - \sum_{j=1}^{s} \beta_j N_j(\omega),$$

where α, β are positive real vectors and $P_j(\omega) = 1$ if ω is covered by P_j , and $P_j(\omega) = 0$ otherwise.

The weights α and β are chosen so that

 $\Delta(\omega) \ge 0, \text{ for every } \omega \in \Omega^+$ $\Delta(\omega) \le 0, \text{ for every } \omega \in \Omega^-.$

Given a model M and an associated discriminant function Δ , the LAD classification of a new point $\omega \in \{0,1\}^n$ is as follows:

If $\Delta(\omega) > 0$, then ω is classified as positive

If $\Delta(\omega) < 0$, then ω is classified as negative

If $\Delta(\omega) = 0$, then ω is <u>not classified</u>

- Introduction
- Large Margin LAD Classifiers
- LAD-Based Regression
- Conclusions and Future Work

Dataset:

Class	1	2	3	4	5	6	7
+	1	0	0	0	0	1	1
+	0	1	1	1	0	0	1
+	1	1	0	1	0	1	0
-	0	0	0	1	0	1	0
-	0	1	1	0	1	1	1
-	1	0	1	1	1	0	0

Dataset:

Class	1	2	3	4	5	6	7
+	1	0	0	0	0	1	1
+	0	1	1	1	0	0	1
+	1	1	0	1	0	1	0
-	0	0	0	1	0	1	0
-	0	1	1	0	1	1	1
-	1	0	1	1	1	0	0

 $\begin{array}{l} \Delta =+0.5 \\ \Delta =+0.5 \\ \Delta =+1.0 \end{array}$

Positive patterns: $x_1 \overline{x_3}$ and $x_2 x_4$ (both with a 0.5 weight).

Dataset:

Class	1	2	3	4	5	6	7	
+	1	0	0	0	0	1	1	$\Delta = +0.$
+	0	1	1	1	0	0	1	$\Delta = +0.$
+	1	1	0	1	0	1	0	$\Delta =+1.$
-	0	0	0	1	0	1	0	$\Delta = -0.5$
-	0	1	1	0	1	1	1	$\Delta = -1.0$
-	1	0	1	1	1	0	0	$\Delta = -0.5$

Positive patterns: $x_1 \overline{x_3}$ and $x_2 x_4$ (both with a 0.5 weight). Negative patterns: $x_3 x_5$ and $\overline{x_1} x_6$ (both with a -0.5 weight). Margin of separation: +0.5 + |-0.5| = 1.0.

Dataset:

Class	1	2	3	4	5	6	7	
+	1	0	0	0	0	1	1	$\Delta = +0.6$
+	0	1	1	1	0	0	1	$\Delta = +0.6$
+	1	1	0	1	0	1	0	$\Delta = +0.6$
-	0	0	0	1	0	1	0	$\Delta = -0.5$
-	0	1	1	0	1	1	1	$\Delta = -1.0$
-	1	0	1	1	1	0	0	$\Delta = -0.5$

Positive patterns: $x_1 \overline{x_3}$, $x_2 x_4$, and $\mathbf{x_5} \mathbf{x_7}$ (all with a 0.33 weight). Negative patterns: $x_3 x_5$ and $\overline{x_1} x_6$ (both with a -0.5 weight). Margin of separation: +0.66 + |-0.5| = 1.16. **Problem:** Construct a LAD model and an associated discriminant function maximizing the margin of separation between points in the training set.

Recall that

$$\Delta(\omega) = \sum_{j} \alpha_{j} P_{j}(\omega) - \sum_{k} \beta_{k} N_{k}(\omega),$$

and that we want

$$\begin{split} \Delta(\omega) &\geq r, \quad \text{ for } \omega \in \Omega^+, \\ \Delta(\omega) &\leq -s, \quad \text{ for } \omega \in \Omega^-, \end{split}$$

for some r, s > 0. The margin of separation is given by r + s.

We want to find a set of patterns, values for \underline{r} , \underline{s} , and the weights α and β so that r + s is maximized.

We can obtain an optimal discriminant function by solving the following linear program (MP):

$$\text{maximize} \quad r+s \quad - \quad C\sum_{\omega\in\Omega}\epsilon_{\omega}$$

subject to:

$$\Delta(\omega) + \epsilon_{\omega} \ge r, \quad \forall \ \omega \in \Omega^+ \tag{1}$$

$$\Delta(\omega) - \epsilon_{\omega} \le -s, \ \forall \ \omega \in \Omega^-$$
(2)

$$\sum_{P_i \in \mathbb{P}} \alpha_i = \sum_{N_j \in \mathbb{N}} \beta_j = 1,$$
(3)

with $\alpha, \beta \ge 0$, $r \ge 0$, $s \ge 0$, $\epsilon_{\omega} \ge 0$, for every $\omega \in \Omega$, and C being a penalty factor for the violating margin of separation.

Typically MP cannot be solved directly. We apply column generation to iteratively construct an optimal discriminant function, starting from a simple set of patterns $\mathcal{P} \cup \mathcal{N}$.

Let λ and μ be the dual variables associated to (1) and (2).

To find a conjunction with positive reduced cost we solve:

maximize

$$\sum_{\omega \in \Omega^+} (-\lambda_\omega) y_\omega + \sum_{\gamma \in \Omega^-} \mu_\gamma y_\omega$$

subject to:

$$\begin{split} &\sum_{i:\omega_i=0} x_i + \sum_{j:\omega_j=1} x_j^c + ny_\omega \le n, \forall \ \omega \in \Omega \\ &\sum_{i:\omega_i=0} x_i + \sum_{j:\omega_j=1} x_j^c + y_\omega \ge 1, \forall \ \omega \in \Omega \\ &x, x^c \in \{0, 1\}^n \\ &y \in \{0, 1\}^{|\Omega|}. \end{split}$$

Also known as...

(S1) maximize
$$\sum_{\omega \in \Omega} \left(\prod_{i:\omega_i=0} \overline{p_i} \prod_{j:\omega_j=1} \overline{p_j^c} \right) \beta_{\omega}$$

subject to: $p_j, p_j^c \in \{0, 1\}, \ j = 1, \dots, n,$

We solve (S1) approximately with a simple branch-and-bound procedure, branching on terms.

Large Margin LAD Models

Table: Histograms of discriminant values of positive and negative points.

(— positive points; — negative points)

Large Margin LAD Models

Dataset	SMO	J48	Rand.For.	Mult.Perc.	LM-LAD
breast-w	0.965 ± 0.011	0.939 ± 0.012	0.967 ± 0.009	0.956 ± 0.012	0.942 ± 0.024
credit-a	0.864 ± 0.025	0.856 ± 0.031	0.882 ± 0.027	0.831 ± 0.032	0.815 ± 0.044
hepatitis	0.772 ± 0.084	0.652 ± 0.086	0.722 ± 0.101	0.727 ± 0.065	0.738 ± 0.091
krkp	0.996 ± 0.003	0.994 ± 0.003	0.992 ± 0.003	0.993 ± 0.002	0.962 ± 0.031
boston	0.889 ± 0.028	0.837 ± 0.045	0.875 ± 0.024	0.893 ± 0.031	0.840 ± 0.045
bupa	0.701 ± 0.045	0.630 ± 0.041	0.731 ± 0.046	0.643 ± 0.020	0.678 ± 0.034
heart	0.837 ± 0.039	0.799 ± 0.052	0.834 ± 0.051	0.815 ± 0.025	0.814 ± 0.033
pima	0.727 ± 0.029	0.722 ± 0.026	0.736 ± 0.030	0.726 ± 0.023	0.682 ± 0.023
sick	0.824 ± 0.027	0.926 ± 0.020	0.832 ± 0.023	0.852 ± 0.049	0.815 ± 0.041
voting	0.961 ± 0.018	0.960 ± 0.015	0.961 ± 0.016	0.944 ± 0.025	$0.945~\pm~0.025$

Table: Classification accuracy of Weka algorithms and LM-LAD.

	SMO	J48	Rand.For.	Mult.Perc.	CAP-LAD
J48	4-1-5				
Rand.For.	1-1-8	4 - 1 - 5			
Mult.Perc.	0-4-6	2 - 2 - 6	0-2-8		
S.Log.	1-1-8	1 - 2 - 7	0-2-8	1 - 2 - 7	
CAP-LAD	0-1-9	2 - 1 - 7	0-0-10	2-1-7	
LM-LAD	0-0-10	0-1-9	0-1-9	0-0-10	0-1-9

Table: Matrix of wins, losses and ties (95% confidence interval).

- Introduction
- Large Margin LAD Classifiers
- LAD-Based Regression
- Conclusions and Future Work

Consider a dataset $\Omega \subset \{0,1\}^n$ and the values of an unknown *target* function $r: \Omega \to \mathbb{R}$, and let $y^i = r(\omega^i), \omega^i \in \Omega$. We want to find a function $f: \Omega \to \mathbb{R}$ that approximates r "well enough".

Measures of interest:

• Least Absolute Residual (LAR) measure:
$$\sum_{i=1}^{|\Omega|} |f(\omega^i) - y^i|.$$

• Correlation coefficient between the values of f and r over Ω .

Approach:

Construct a regression function in the space of conjunctions (i.e. use conjunctions as independent variables).

Let $C^0 = \{C_1, \ldots, C_n\}$ be the set of conjunctions consisting of the *n* positive literals, i.e. $C_j = x_j$ $(j = 1, \ldots, n)$. The LAR-best linear approximation of *r* using C^0 can be found by solving

minimize
$$\sum_{i=1}^{m} e_i$$

subject to: $e_i + \beta_0 + \sum_{C_j \in \mathcal{C}^0} \beta_j \, \mathcal{C}_j(\omega^i) \ge y^i, \ i = 1, \dots, m$ (4)
 $e_i - \beta_0 - \sum_{C_j \in \mathcal{C}^0} \beta_j \, \mathcal{C}_j(\omega^i) \ge -y^i, \ i = 1, \dots, m$ (5)
 $\beta_j \ge 0, \quad j = 0, \dots, n$
 $e_i \ge 0, \quad i = 1, \dots, m.$

Let λ^* and μ^* be the optimal vectors of dual variables associated to constraints (4) and (5), respectively.

Find a new conjunction whose inclusion in C^0 is likely to improve the current LAR-approximation by solving the following problem (S2):

maximize
$$\sum_{\omega \in \Omega} \left(\prod_{i:\omega_i=0} \overline{p_i} \prod_{j:\omega_j=1} \overline{p_j^c} \right) (\lambda_{\omega}^* - \mu_{\omega}^*)$$
subject to: $p_j, p_j^c \in \{0, 1\}, \ j = 1, \dots, n,$

with p_j being a binary decision variable corresponding to the inclusion of literal x_j in the resulting conjunction. Similarly, p_j^c corresponds to the inclusion of $\overline{x_j}$.

Problem (S2) is an instance of (S1) and is solved with the B&B algorithm previously mentioned.

LAD-Based Regression: Results

Mean Absolute Error									
Algorithms	AB	BH	MPG	RAK	SV	Borda			
LR	1.59	3.33	2.73	0.16	0.87	9			
MP	1.62	2.94	2.90	0.13	0.44	14			
SVR	1.54	3.17	2.63	0.16	0.70	12			
PBR	1.82	3.11	2.37	0.15	0.29	15			

Table: Mean absolute error of regression algorithms applied to 5 datasets.

Correlation								
Algorithms	AB	BH	MPG	RAK	SV	Borda		
LR	0.73	0.86	0.89	0.64	0.67	9		
MP	0.75	0.91	0.92	0.82	0.90	19		
SVR	0.73	0.84	0.89	0.64	0.63	9		
PBR	0.51	0.86	0.89	0.68	0.94	13		

Table: Correlation of regression algorithms applied to 5 datasets.

- Introduction
- Large Margin LAD Classifiers
- LAD-Based Regression
- Conclusions and Future Work

- $\checkmark\,$ Large margin LAD models: parameter-free, accurate models
- $\checkmark~$ Extension of LAD methodology to regression problems
- $\stackrel{\texttt{lb}}{=}$ Quadratic objective functions
- \clubsuit More applications and different loss functions for regression

Reading Material

- Discrete Applied Mathematics: http://dx.doi.org/10.1016/j.dam.2007.06.004
- Annals of Operations Research: vol. 148, pp. 203–225, 2006
- Annals of Mathematics and Artificial Intelligence: vol. 49, pp. 265-312, 2007
- RUTCOR Research Reports: 9-2006, 3-2007, 21-2007, 22-2007
- Coming soon...
- \Rightarrow Tiberius.Bonates@rutgers.edu