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Main Result in a Nutshell

Exact characterization of the 2k − 1 prime implicants of those
k-term DNF having 2k − 1 prime implicants, which has been
known to be the maximum possible since late 1970’s.

Relates to a particular type of decision tree.

Next: One reason it’s important—at least to me. Then on to
a few definitions and main talk.
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A Bit of a Teenage Boy’s Dream

I looked at Knuth’s The Art of Computer Programming in the
1970’s or perhaps early 1980’s.

For some reason, it didn’t mention me!

Maybe because this was when I was somewhere around 13–19?

But now, “Bitte ein Bit!”, (Slogan of Bitburger Brauerie in
1951 and again today), Volume 4 is being released in
Fascicles, and in Pre-Fascicle 0B, Section 7.1.1, “Boolean
Basics” Problem 32 is about this, and solution to 32(b) cites
our ECCC Report!
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Basic Definitions

n-dimensional hypercube: {0, 1}n

Cube or term: 0 ∗ 1 or x̄ ∧ z

Union of k cubes or k-term DNF: T1 ∨ . . . ∨ Tk

Implicant of A ⊆ {0, 1}n: cube contained in A

Prime implicant of A ⊆ {0, 1}n: maximal cube contained in A
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How Many Prime Implicants can a k-term DNF have?

How many prime implicants can a k-term DNF have, or,
equivalently:

How many maximal cubes can there be in a union of k cubes?

Theorem

A k-term DNF can have at most 2k − 1 prime implicants, and this
is sharp.

Chandra, Markowsky (1978)

Laborde (1980)

A. A. Levin (1981)

McMullen, Shearer (1986)
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Example: A 3-term DNF with 6 Prime Implicants
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A 3-term DNF with 7 Prime Implicants: xv ∨ ux̄y ∨ x̄ ȳ z
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A 3-term DNF with 7 Prime Implicants: Another View
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How to Find Prime Implicants
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Nonrepeating Unate-leaf Decision Tree (NUD)
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k-term DNF with the Largest Number of Prime Implicants

Lemma

Every k-term NUD has 2k − 1 prime implicants.

One for each nonempty subset of the leaves.

Is that all?

Theorem

A k-term DNF has 2k − 1 prime implicants iff it is a NUD.
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Definitions: Distance of Disjoint Subcubes of {0, 1}n

Distance of two cubes: number of conflicting coordinates

dist(0 ∗ 10, 110∗) = dist(x̄1x3x̄4, x1x2x̄3) = 2

Partition of the hypercube into cubes is distance-k if any two
of its cubes have distance at most k

Distance 1: neighboring
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Neighboring Cube Partition
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Splitting Lemma

Lemma (Splitting Lemma)

For every neighboring partition there is a variable that occurs in
every term (either negated or unnegated).

Kullmann (2000), using matroid theory

Related results in satisfiablity theory—Aharoni, Linial (1986),
Davydov, Davydova, Kleine-Büning (1998)

Ours: elementary combinatorial proof, simplified by Sgall
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Proof of the Splitting Lemma: Induction

Want to show: For every neighboring partition there is a
variable that occurs in every term.

Proof is by induction on number of variables; trivial for 1
variable.

For > 1 variable; holds on subcube induced by a literal by
inductive hypothesis.

With s variables, 2s literals but only s variables, so must be
two literals that both have same variable mentioned in
induced subcube.
Say common variable is z .

For contradiction, assume there is some term t in the partition
not containing variable z , and let a be a vector covered by t.
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Proof of the Splitting Lemma: Induction Step
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Splittability of Partitions

Splitting Lemma showed: for every neighboring partition, can
split cube in half respecting the partition.

How much can a split in half respect a more general partition?

Put T = (T1, . . . ,Tm) = cube partition of n-dim hypercube

Define:
Influence of variable xi on T :

vTi =
∑
{2−|Tj | : xi ∈ Tj or x̄i ∈ Tj} ,

where |T | = number vectors satisfying T .

αn = min
T

max
i

vTi

αd
n = min

T :distance d
max

i
vTi

From Splitting Lemma: α1
n = 1. Theorem: α3

n < 1
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Example for α3
n < 1: Partition into 5 Subcubes
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Neighboring partitions for NUD–k-term DNF
General Splitting Problem for Cube Partitions

Bounds on Splittability

Theorem

log n − log log n

n
≤ αn ≤ O

(
n−1/5

)

Theorem (Szörényi)

α2
n = 1
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Some Open Problems

How many shortest prime implicants can a k-term DNF have?
Example: k-term DNF

x1x̄2 ∨ x2x̄3 ∨ · · · ∨ xk−1x̄k ∨ xk x̄1

has k(k − 1) prime implicants of length 2: xi x̄j for every i 6= j .

Maximal number prime implicants of function given number
true points: How many maximal subcubes can be in
A ⊆ {0, 1}n when |A| = m?—between mlog2 3 and m2

Bounds for αn and αd
n for d ≥ 3

How many prime implicants can any n-variable Boolean

function have?—between Ω
(

3n

n

)
and O

(
3n
√

n

)
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Summary

Characterized the 2k − 1 prime implicants of k-term DNF
using all the nonempty subsets of a k-leaf NUD.

Using Splitting Lemma.

Bit about general partitions and how they respect splits.

Paper has some related results on partitions of complete
graphs into complete bipartite graphs.
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