Boolean Decision trees

Problems and Results, Old and New

Michael Saks, Rutgers University

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks
- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks
- Unknown graph G on vertex set $\{1,2,3,4,5\}$.
- I want to know: is G connected?
- I can ask: Is (i, j) an edge?

What is the fewest number of questions needed in worst case?

Adversary view

- You (my adversary) answer the questions.
- How many questions can you force me to ask?

Analogous problem for any graph property, e.g.:

- Is G planar?
- Is G 3-colorable?

More generally ...

Evaluating boolean functions

- Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$ with unknown values
- Given boolean function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$
- Goal: evaluate $f\left(x_{1}, \ldots, x_{n}\right)$.
- Elementary step: What is x_{i} ?

Evaluating boolean functions

How many questions are needed in worst case?

Note: All other computation is free.

Graph properties

For a graph property over graphs on vertex set V of size v :

- Variables are $x_{\{i, j\}}$ for $i, j \in V$.
- $n=\binom{v+1}{2}$.

Boolean decision trees

Function computed by BDT T

Function f_{T} computed by decision tree T :

- Input x determines a root-to-leaf path.
- Output $f_{T}(x)=$ label of leaf.

Cost of decision tree

The cost of T on input x :

$$
\begin{aligned}
D_{x}(T) & =\text { depth of path followed by } x \\
& =\text { number of queries. }
\end{aligned}
$$

Worst case cost of T: $D(T)=\max _{x} D_{x}(T)$.

Deterministic DT complexity of f :

$$
D(f)=\min \{D(T): T \text { computes } f\}
$$

Evasive functions

Trivial upper bound:

$$
D(f) \leq n
$$

f is evasive if

$$
D(f)=n
$$

Lower bounds by adversary arguments

Adversary strategy: strategy for answering questions

- OR
- MAJ
- Symmetric functions
- Graph connectivity (Adversary strategy: Just say No)

Can $D(f)$ ever be less n ?

Irrelevant variables

- $f\left(x_{1}, \ldots, x_{n}\right)=x_{7}$.

What if all variables are relevant?

The addressing function

Variables $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{2^{k}}$:

$$
f\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{2^{k}}\right)=y_{x_{1}, \ldots, x_{k}} .
$$

- $n=2^{k}+k$
- $D(f)=k+1$.
f is highly asymmetric...

Automorophism group of f

$\Gamma(f)$ is Automorphism group of f :

Set of permutations of variables that leave f unchanged.

- For symmetric functions,
$\Gamma(f)$ is the full symmetric group
- For graph properties on graphs with vertex set V
$\Gamma(f)$ is subgroup induced by symmetric group on V.

Weakly symmetric functions

f is weakly symmetric if $\Gamma(f)$ is transitive:
for any two variables some σ in $\Gamma(f)$ maps one to the other.
E.g. any function coming from a graph property.

- Is every non-constant weakly symmetric functions evasive?
- Is every non-constant graph property evasive?

An example

Digraph property: Does G have a supersink?

- With $v-1$ questions narrow to one candidate.
- With $2 v-3$ more questions check the candidate.
$D(f) \leq 3 v-4$ compared to $v(v-1)$ variables.
(There are also examples for undirected graph properties.)

Aanderaa-Rosenberg conjecture

A graph property is monotone if it is preserved under addition of edges (e.g. connectivity).
(1973) Any non-trivial monotone graph property on v vertices has complexity $\omega\left(v^{2}\right)$.

Stengthening (attributed to (but denied by) Karp):

Any non-trivial monotone graph property is evasive.

Progress on AR conjecture

Lower bounds for monotone graph properties on v vertices:

$$
\begin{array}{cc}
\frac{v^{2}}{16} & \text { Rivest-Viullemin (1975) settling AR } \\
\frac{v^{2}}{9} & \text { Kleitman-Kwiatkowski (1980) } \\
\frac{v^{2}}{4}+o\left(v^{2}\right) & \text { Kahn-Saks-Sturtevant (1984) }
\end{array}
$$

Progress on evasiveness

Specific properties

Any GP for v a prime power

Analog for bipartite graph properties
Additional classes of graph properties

Best-van Emde Boas- Lenstra (1974)
Milner-Welsh (1975)
Bollobás (1976)

Kahn-Saks-Sturtevant (1984)
Yao (1988)

Triesch (1994)

Chakrabarti, Khot, Shi (2001)

General lower bounds on $D(f)$

$D(f) \geq \operatorname{deg}(f)$ (Fourier degree) (Best, van Emde Boas, Lenstra)

Implications:

- Almost all functions f are evasive
- Together with elegant counting argument: When n is a prime power, every weakly symmetric n-variate f satisfying $f\left(0^{n}\right) \neq f\left(1^{n}\right)$ is evasive. (Rivest-Viullemin 1975).

A topological connection

Associate f to a collection of subsets of $\{1, \ldots, n\}$:

$$
\Delta(f)=\left\{S \subseteq\{1, \ldots, n\}: f\left(\chi_{S}\right)=0\right\} .
$$

If f is monotone then $\Delta(f)$ is an abstract simplicial complex. Then:
$D(f)<n$ implies $\Delta(f)$ is collapsible (and thus contractible). (Kahn-Saks-Sturtevant 1984)

Contrapositive: if $\Delta(f)$ is not contractible then f is evasive.

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks

Randomized decision trees

Questioner may flip coins when choosing next query.

Example. Does 0-1 matrix M have an all 1 row?

On worst case input, expected number of queries is $n / 2$.

RDTs: Model

Two models (equivalent for our purposes):

- Decision tree may have random nodes which are not counted towards computation cost.
- Randomized Algorithm = probability distribution \tilde{T} over deterministic decision trees.

RDTs: Model

Las Vegas algorithm:

- Algorithms must always answer correctly
- Algorithm to compute f is a distribution over DDTs that each compute f.
- Goal: Minimize the expected number of queries used on worst case input.
- Adversary view: Adversary chooses the input knowing the algorithm, but not the results of the coin flips.

Iterated majority of 3

- $\mathrm{I}_{3} \mathrm{M}_{1}$ is majority of 3
- $\mathrm{I}_{\mathrm{M}}^{k}$ has 3^{k} variables, split into 3 groups x^{k}, y^{k}, z^{k}.
- $\operatorname{I3M}_{k}\left(x^{k}, y^{k}, z^{k}\right)=\operatorname{MAJ}\left(13 \mathrm{M}_{k-1}\left(x^{k}\right), \operatorname{I3M}_{k-1}\left(y^{k}\right), \operatorname{I3M}_{k-1}\left(z^{k}\right)\right)$.
$13 \mathrm{M}_{k}$ is evasive. (By easy adversary argument, also R-V theorem.

Randomized DT for I3M

To evaluate $13 \mathrm{M}_{k}$

- Choose 2 groups of variables (out of 3) at random
- Recursively Evaluate $13 \mathrm{M}_{k-1}$ on 2 selected groups.
- Evaluate $\mathrm{I}_{3} \mathrm{M}_{k-1}$ on remaining group if needed

Randomized DT for I3M

Expected cost: $\left(\frac{8}{3}\right)^{k} \approx n^{.893}$
Upper bound can be improved (Saks-Wigderson 1986).
Best lower bound: $\left(\frac{7}{3}\right)^{k}$ (Jayram, Kumar, Sivakumar 2003 via information theory)

Best upper and lower bounds don't match.

Another example: Iterated $\mathrm{v}-\wedge$

Function F_{k} has

- F_{1} has 4 variables, $F_{1}(a, b, c, d)=(a \wedge b) \vee(c \wedge d)$
- F_{k} has 4^{k} variables and is obtained by iterating F_{1}.

Best upper bound (Snir 1983): $O\left(n^{.754}\right)$

Matching lower bound (Saks-Wigderson 1986).

How much does randomization help?

- For all $n, \exists n$-variate evasive f with $R(f) \leq n^{.754}$.
- For any $f, R(f) \geq D(f)^{1 / 2}$.

Open problems

- Find largest α such that $R(f) \geq D(f)^{\alpha}$ for all f
- Conjecture (Saks-Wigderson)

$$
\alpha=.754 .
$$

- Conjecture (Yao): For monotone graph properties, randomness does not help, i.e.

$$
R(f)=\Omega(n)=\Omega\left(v^{2}\right)
$$

Lower bounds on $R(f)$ for monotone graph properties

$v \quad$ easy
$v(\log v)^{c} \quad$ Yao 1987
$v^{5 / 4} \quad$ King 1988
$v^{4 / 3} \quad$ Hajnal 1991

Lower bounds on $R(f)$ for monotone graph properties

$$
\begin{aligned}
& v^{4 / 3}(\log v)^{1 / 3} \\
& \min \left\{\frac{v}{p}, \frac{v^{2}}{\log v}\right\}
\end{aligned}
$$

$$
\frac{v^{4 / 3}}{p^{1 / 3}} \quad \text { O'Donnell, Saks, Schramm, Servedio } 2005
$$

Critical probability p for monotone f is unique p so that:

$$
\text { if } x_{i}=1 \text { independently with probability } p \text {, then } \operatorname{Prob}[f=1] \text { is } \frac{1}{2} \text {. }
$$

Lower bound for $R(f)$ for weakly symmetric f

Theorem. For any monotone weakly symmetric n-variate f,

$$
R(f)=\frac{n^{2 / 3}}{p^{1 / 3}} .
$$

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks

Influences

How do we measure the influence of a variable on a boolean function?

$$
f:\{-1,1\}^{n} \longrightarrow\{-1,1\}
$$

Product distribution on $\{-1,1\}^{n}$:

$$
\begin{gathered}
\mu=\Pi \mu_{i} \quad\left(\mu_{i} \text { is } 1 \text { w.p. } p_{i}\right) \\
p_{i}=1 / 2 \text { for all } i \text { : uniform distribution }
\end{gathered}
$$

p-biased influence of variable i on f

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

x

y

$$
\operatorname{Inf}_{i}^{p}(f) \text { is } \operatorname{Prob}[f(x) \neq f(y)]
$$

when x, y generated by ...

p-biased influence of variable i on f

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

x

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		x_{8}	x_{9}	x_{10}	x_{11}	x_{12}

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}		x_{8}	x_{9}	x_{10}	x_{11}	x_{12}

$\operatorname{Inf}_{i}^{p}(f)$ is $\operatorname{Prob}[f(x) \neq f(y)]$
For $j \neq i$, select $x_{j}=y_{j}$ by p-biased coin

p-biased influence of variable i on f

$$
\boldsymbol{\operatorname { l n }} \mathbf{f}_{i}^{p}(f) \text { is } \operatorname{Prob}[f(x) \neq f(y)]
$$

Select x_{i} and y_{i} independently by p-biased coin

Max influence and Total influence

$\operatorname{Inf}_{i}^{p}(f) \quad p$-biased influence of i on f
$\operatorname{Inf}_{\text {max }}^{p}(f) \quad$ Maximum of $\operatorname{Inf}_{i}^{p}(f)$ over i
$\operatorname{In}{\underset{\Sigma}{p}}_{p}^{p}(f) \quad$ Sum of $\operatorname{Inf}_{i}^{p}(f)$ over i (Total influence).

KKL lower bound on max influence

Assume uniform distribution.
f is balanced if critical probability is $1 / 2$.

- Elementary: There is always a variable of influence at least $1 / n$.
- Kahn-Kalai-Linial 1988: ... always a variable of influence $\Omega\left(\frac{\log n}{n}\right)$.

This is best possible (tribes function).

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks

Influences in functions of small decision tree depth

If f has (randomized) decision tree depth d, then f depends at most 2^{d} variables.

By KKL, f has a variable of influence $\Omega\left(\frac{d}{2^{d}}\right)$.

Theorem.(O’Donnell-Saks-Schramm-Servedio 2005)
For balanced f :
There is a variable of influence at least $\frac{1}{R(f)}$.
(A family of examples shows that this is best possible.)

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks

Consequence for $R(f)$

Theorem says:

For balanced $f, R(f) \geq \frac{1}{\operatorname{lnf}_{\max }(f)}$.

Generalization to arbitrary f with critical probability p :

Theorem. (OSSS 2005)

$$
R(f) \geq \frac{1}{\ln _{\max }^{p}(f)} .
$$

Consequence for $R(f)$

$$
R(f) \geq \frac{1}{\boldsymbol{\operatorname { l n } \boldsymbol { f } _ { \operatorname { m a x } } ^ { p } f}}
$$

Theorem.(O'Donnell-Servedio 2005) For monotone f :

$$
R(f) \geq \frac{\left(\operatorname{Inf}_{\Sigma}^{p}(f)\right)^{2}}{4 p(1-p)}
$$

Corollary.(OSSS 2005) For monotone, weakly-symmetric f,

$$
R(f) \geq \frac{n^{2 / 3}}{(4 p(1-p))^{1 / 3}} .
$$

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks

Proof of influence bound

Goal: f has a variable of p-biased influence at least $1 / R(f)$.

A Strengthening

Fix:

- n-variate deterministic decision tree T for f
- p-biased probability distribution on variables.
- $\delta_{i}=\operatorname{Prob}[T$ reads variable $i]$

Theorem.

$$
\sum_{i=1}^{n} \delta_{i} \boldsymbol{\operatorname { l n }} \mathbf{n}_{i} \geq \operatorname{Var}[f]
$$

Corollary. There is a variable with influence at least $\frac{\operatorname{Var}[f]}{R(f)}$.
If p is a critical probability for f, then $\operatorname{Var}[f]=1$.

Theorem.

$$
\sum_{i=1}^{n} \delta_{i} \mid \boldsymbol{\operatorname { ~ f }}_{i} \geq \operatorname{Var}[f]
$$

Two (related) proofs:

- Combinatorial (injective) (more intuitive)
- Analytic (gives more general results)

Combinatorial proof

$$
\operatorname{Var}[f] \leq \sum_{i=1}^{n} \delta_{i} \operatorname{lnf}_{i} .
$$

(For this talk: assume $p=\frac{1}{2}$.)
Multiply both sides by $2^{2 n-1}$:

Combinatorial formulation

LHS counts:
Pairs x, y

x | x_{1} | x_{2} | x_{3} | x_{4} | x_{5} | x_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- |

$f(x) \neq f(y)$

y | y_{1} | y_{2} | y_{3} | y_{4} | y_{5} | y_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- |

RHS counts:
Triples u, v, i

uu_{1} u_{2} u_{3} u_{4} u_{5} u_{6}					
T					

$i=4$
$f(v)$ sensitive at i

V | v_{1} | v_{2} | v_{3} | v_{4} | v_{5} | v_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- |

Proof strategy: Construct an injection

Input

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

$$
\mathrm{x} \quad \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & x_{7} & x_{8} & x_{9} & x_{10} & x_{11} & x_{12} \\
\hline
\end{array}
$$

y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{9}	y_{10}	y_{11}	y_{12}

$f(x)$ is not equal to $f(y)$.

To construct $u, v, i .$.

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

u

x_{1}	y_{2}	x_{3}	y_{4}	y_{5}	y_{6}	x_{7}	x_{8}	x_{9}	x_{10}	y_{11}	y_{12}

$\mathrm{v} \quad$| y_{1} | x_{2} | y_{3} | x_{4} | x_{5} | x_{6} | y_{7} | y_{8} | y_{9} | y_{10} | x_{11} | x_{12} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Swap coordinates on some set S and choose i from S.

Swap the first variable read by T on x.

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array} \\
& x^{1}
\end{aligned}
$$

\ldots to produce x^{1} and y^{1}

Continue swapping variables read by T on $x \ldots$

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

x^{4}	x_{1}	y_{2}	y_{3}	x_{4}	y_{5}	y_{6}	x_{7}	y_{8}	$x 9$	x_{10}	x_{11}	x_{12}
	critical index											
y^{4}	y_{1}	x_{2}	y_{3}	y4	x_{5}	x_{6}	y_{7}	x_{8}	Y9	Y10	Y_{11}	y_{12}

... until $f\left(y^{j}\right)$ changes to $f(x)$.

Are we done? f is sensitive to i at v but \ldots

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

$\ldots T$ may not read i on u.

First swap all variables read by T on x.

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|}
\hline x^{6} & x_{1} & y_{2} & y_{3} & y_{4} & y_{5} & y_{6} & x_{7} & y_{8} & x_{9} & y_{10} & x_{11} & x_{12} \\
\hline
\end{array}
$$

$$
\begin{array}{ll|l|l|l|l|l|l|l|l|l|l|l|}
\hline y_{1}^{6} & y_{1} & x_{2} & y_{3} & x_{4} & x_{5} & x_{6} & y_{7} & x_{8} & y_{9} & x_{10} & y_{11} & y_{12} \\
\hline
\end{array}
$$

$$
f\left(y^{6}\right) \text { is not equal to } f(y)
$$

Then swap back variables read by T on y^{6} until f changes back to $f(y)$.

$$
\begin{aligned}
& \begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array} \\
& u \\
& v
\end{aligned}
$$

$$
f(u)=f(y) \quad T \text { reads } i \text { on } u \quad f \text { is sensitive to } i \text { at } v
$$

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
- Influences of boolean functions
- Influences-Decision Tree connection theorem
- Deducing the lower bound on RDT complexity
- Proof of Influences-Decision Tree connection theorem
- Final remarks

What was left out ...

- Property Testing
- Fault tolerant decision trees
- Learning theory
- Quantum query complexity
- Jointly computing many independent instances
- ...

