Boolean Decision trees

Problems and Results ,
Old and New

Michael Saks, Rutgers University



e Deterministic Decision Trees

e Randomized Decision Trees (RDTs) and a new lower bound

e Proof of lower bound
— Influences of boolean functions
— Influences—Decision Tree connection theorem
— Deducing the lower bound on RDT complexity

— Proof of Influences-Decision Tree connection theorem

e Final remarks



e Deterministic Decision Trees

e Randomized Decision Trees (RDTs) and a new lower bound

e Proof of lower bound
— Influences of boolean functions
— Influences—Decision Tree connection theorem
— Deducing the lower bound on RDT complexity

— Proof of Influences-Decision Tree connection theorem

e Final remarks



e Unknown graph G on vertex set {1,2,3,4,5}.

e | want to know: is (G connected?

e | canask: Is (i, 7) an edge?

What is the fewest number of questions needed in worst case?



Adversary view

e You (my adversary) answer the guestions.

e How many questions can you force me to ask?
Analogous problem for any graph property, e.g.:

e Is G planar?

e Is (G 3-colorable?

More generally ...



Evaluating boolean functions

Boolean variables x1, zo, ..., x;, with unknown values
Given boolean function f : {0,1}" — {0, 1}
Goal: evaluate f(x1,...,xn).

Elementary step: What is z;?



Evaluating boolean functions

How many questions are needed in worst case?

Note: All other computation is free.



Graph properties

For a graph property over graphs on vertex set V' of size v:

o Variables are xy; ;, fori, j € V.

o n=("11).



Boolean decision trees




Function computed by BDT T

Function f7» computed by decision tree 7"

e Input = determines a root-to-leaf path.

e Output f(x) = label of leaf.



Cost of decision tree

The cost of 7" on input x:

Dy (T) depth of path followed by x

number of queries.

Worst case cost of T: D(T') = maxg D, (T).

Deterministic DT complexity of f:

D(f) = min{D(T) : T computes f}



Evasive functions

Trivial upper bound:

D(f) <n.

f Is evasive If

D(f) =n.



Lower bounds by adversary
arguments

Adversary strategy: strategy for answering questions
e OR
o MAJ
e Symmetric functions
e Graph connectivity (Adversary strategy: Just say No)

Can D(f) ever be less n?



Irrelevant variables

What if all variables are relevant?



The addressing function

Variables =4, . .., Thy Y1y - - - s Yok
f(xla"'aajkaylv"'ayzk):yCUl ,,,,, Tk -
e n=2F14k
e D(f)=k+ 1.

f is highly asymmetric. ..



Automorophism group of f

[ (f) is Automorphism group of f:
Set of permutations of variables that leave f unchanged.

e For symmetric functions,

[ (f) is the full symmetric group

e For graph properties on graphs with vertex set V/

" (f) is subgroup induced by symmetric group on V.



Weakly symmetric functions

f is weakly symmetric if ' (f) is transitive:
for any two variables some o in ' (/) maps one to the other.
E.g. any function coming from a graph property.
e Is every non-constant weakly symmetric functions evasive?

e |s every non-constant graph property evasive?



An example

Digraph property: Does G have a supersink?
e With v — 1 questions narrow to one candidate.
e With 2v — 3 more questions check the candidate.

D(f) < 3v — 4 compared to v(v — 1) variables.

(There are also examples for undirected graph properties.)



Aanderaa-Rosenberg conjecture

A graph property is monotone if it is preserved under addition of edges
(e.g. connectivity).

(1973) Any non-trivial monotone graph property on v vertices has
complexity w(v?).

Stengthening (attributed to (but denied by) Karp):

Any non-trivial monotone graph property is evasive.



Progress on AR conjecture

Lower bounds for monotone graph properties on v vertices:

"1)_2 Rivest-Viullemin (1975) settling AR
% Kleitman-Kwiatkowski (1980)

% + o(v?) Kahn-Saks-Sturtevant (1984)



Progress on evasiveness

Specific properties Best-van Emde Boas- Lenstra (1974)
Milner-Welsh (1975)

Bollobas (1976)

Any GP for v a prime power Kahn-Saks-Sturtevant (1984)
Analog for bipartite graph properties Yao (1988)
Additional classes of graph properties Triesch (1994)

Chakrabarti, Khot, Shi (2001)



General lower boundson D(f)
D(f) > deg(f) (Fourier degree) (Best, van Emde Boas, Lenstra)

Implications:
e Almost all functions f are evasive

e Together with elegant counting argument. When n is a prime power,
every weakly symmetric n-variate f satisfying f(0™) = f(1") is eva-
sive. (Rivest-Viullemin 1975).



A topological connection

Associate f to a collection of subsets of {1,... n}:

A(f) ={5c{1,...,n}: f(xs) =0}

If fis monotone then A(f) is an abstract simplicial complex. Then:

D(f) < nimplies A(f) is collapsible (and thus contractible). (Kahn-
Saks-Sturtevant 1984)

Contrapositive: if A(f) is not contractible then f is evasive.
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Randomized decision trees

Questioner may flip coins when choosing next query.

Example. Does 0-1 matrix M have an all 1 row?

On worst case input, expected number of queries is n /2.



RDTs: Model

Two models (equivalent for our purposes):

e Decision tree may have random nodes which are not counted towards
computation cost.

e Randomized Algorithm = probability distribution 7" over deterministic
decision trees.



RDTs: Model

Las Vegas algorithm:
e Algorithms must always answer correctly

e Algorithm to compute f is a distribution over DDTs that each compute

f-

e Goal: Minimize the expected number of queries used on worst case
iInput.

e Adversary view: Adversary chooses the input knowing the algorithm,
but not the results of the coin flips.



lterated majority of 3

e [3Mq is majority of 3
e 13M;. has 3% variables, split into 3 groups z*, y", z*.
o I3My (2, 4%, 27) = MAJ(I3M,_1 (zF), 13M;,_1 (v"), 13M},_1 (zF)).

I3M . Is evasive. (By easy adversary argument, also R-V theorem.



Randomized DT for |13M

To evaluate 13M,.
e Choose 2 groups of variables (out of 3) at random
e Recursively Evaluate I3M;._ 1 on 2 selected groups.

e Evaluate I3M;._ 1 on remaining group if needed



Randomized DT for |13M

k
Expected cost:; (%) ~ 7,893

Upper bound can be improved (Saks-Wigderson 1986).

Best lower bound: (%) (Jayram, Kumar, Sivakumar 2003 via information
theory)

Best upper and lower bounds don’t match.



Another example: lterated

Function Fj, has
e 1 has 4 variables, F(a,b,c,d) = (aAb)V (c A\ d)
e [ has 4" variables and is obtained by iterating F} .

Best upper bound (Snir 1983): O(n'7>%)

Matching lower bound (Saks-Wigderson 1986).

V=A



How much does randomization
help?

e For all n, 3 n-variate evasive f with R(f) < n'">%.

e Forany f, R(f) > D(f)/2.



Open problems
e Find largest o such that R(f) > D(f)® for all f

e Conjecture (Saks-Wigderson)

a = .754.

e Conjecture (Yao): For monotone graph properties, randomness does
not help, i.e.

R(f) = Q(n) = Qv?)



Lower bounds on R(f) for
monotone graph properties

v easy
v(logv)€ Yao 1987
vo/4 King 1988

v*/3  Hajnal 1991



Lower bounds on R(f) for
monotone graph properties

v4/3(log v)1/3 Chakrabarti and Khot 2001
min{%, %} Friedgut, Kahn, Wigderson 2002
% O’Donnell, Saks, Schramm, Servedio 2005.

Critical probability p for monotone f is unique p so that:

if x;, = 1 independently with probability p, then Prob [/ = 1] is %



Lower bound for R(f) for weakly
symmetric f

Theorem. For any monotone weakly symmetric n-variate f,

2/3
R(f) ="
pl/3
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Influences

How do we measure the influence of a variable on a boolean function?

fo{-1,13" — {-1,1}
Product distribution on {—1,1}":

po= 11 1 (1 1s T w.p. p;)

p; = 1/2 for all <: uniform distribution



p-biased influence of variable :
on f

1 2 3 4 5 6 7 8 9 10 11 12

Infy(f) is Prob [f () # f(y)]

when z, y generated by ...



p-blased influence of variable 1
on f

1 2 3 4 5 6 7 8 9 10 11 12

L1 | L2 X3 | X4 | L5 | L6 L8| L9 |L10L11|L12

y 1|2 |X3|T4|T5|T6 g |x9 |X10|T11|T12

Infy (f) is Prob [f () # f(y)]

For j # 1, select z; = y; by p-biased coin



p-biased influence of variable :
on f

1 2 3 4 5 6 7 8 9 10 11 12

L1 | L2 | X3 | X4 | L5 | L | L7 | X | L9 |XL10[X11|L12

y L1 |2 |X3|T4|T5|X6 | Y7 |T8|XQ9|T10|T11|T12

InfY(f) is Prob [f () # f(y)]

Select x; and y; independently by p-biased coin



Max Influence and Total
Influence

Inf’(f)  p-biased influence of : on f
Inflhax(f)  Maximum of Inf?(f) over

Infl-(f)  Sum of Inf’(f) over i (Total influence).



KKL lower bound on max
Influence

Assume uniform distribution.

f is balanced if critical probability is 1/2.

e Elementary: There is always a variable of influence at least 1 /n.

e Kahn-Kalai-Linial 1988: ...always a variable of influence Q('OS”).

This is best possible (tribes function).
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Influences In functions of small
decision tree depth

If £ has (randomized) decision tree depth d, then f depends at most 2¢
variables.

By KKL, f has a variable of influence Q(%).

Theorem.(O’'Donnell-Saks-Schramm-Servedio 2005)

For balanced f:

There is a variable of influence at least (#

R(f)

(A family of examples shows that this is best possible.)
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Consequence for R(f)

Theorem says:

For balanced f, R(f) > — 7
maxX

Generalization to arbitrary f with critical probability p:

Theorem. (OSSS 2005)

R 2 Infhnax(f)



Consequence for R(f)

R(f) 2

mfﬁqaxf.

Theorem.(O’'Donnell-Servedio 2005) For monotone f:

(Inf&-(f))?
R(f) 2 251 — )

Corollary.(OSSS 2005) For monotone, weakly-symmetric f,

12/3

(4p(1 —p))L/3

R(f) 2



e Deterministic Decision Trees

e Randomized Decision Trees (RDTs) and a new lower bound

e Proof of lower bound
— Influences of boolean functions
— Influences—Decision Tree connection theorem
— Deducing the lower bound on RDT complexity

— Proof of Influences-Decision Tree connection theorem

e Final remarks



Proof of influence bound

Goal: f has a variable of p-biased influence at least 1/ R(f).



A Strengthening

FiX:
e n-variate deterministic decision tree 7’ for f
e p-biased probability distribution on variables.

e §; = Prob [T reads variable i]



Theorem.

n
> §;Inf; > Var|[f]
i=1

Var[f]

Corollary. There is a variable with influence at least R

If p is a critical probability for f, then Var[f] = 1.




Theorem.

n
> §;Inf; > Var[f]
i=1

Two (related) proofs:
e Combinatorial (injective) (more intuitive)

e Analytic (gives more general results)



Combinatorial proof

n
Var[f] < ) §lInf;.
i=1

(For this talk: assume p = 3.)

Multiply both sides by 227 1:



Combinatorial formulation

LHS counts: RHS counts:
Pairs x, vy Triples u, v,
X |T1 |22 |X3|X4|X5| X6 U |up|up u3|ug|us|ug
{ T(w) reads 1
f(z) # f(y) i=4
\ f(v) sensitive at ¢
Y Y1 |Y2|Y3 |94 Y5 | Y6 V | V1| V2| V3 |V4 ) V5| Ve

Proof strategy. Construct an injection



Input

1 2 3 4

5 6 7 8 9 10 11 12

T1|To | 3| T4

L5 | L6 | X7 | X | L9 |X10[F11|L12

Y1 Y2 93| Y4

Ys | Y6 | Y7 | Y8 | Y9 |Y10|Y11|Y12

f(x) is not equal to f(vy).




To construct u, v, 1. ..

1 2 3 4 5 6 7 8 9 101112

u L1|Y2 |23 |Y4 Y5 | Y6 | L7 | X8 |L9 |L10|Y11|Y12

Vv Y1 |2 | Y3 | L4 | X5 | Te | Y7 | Y8 | Y9 |Y10[L11|L12

Swap coordinates on some set S and choose : from S.



Swap the first variable read by 7" on z.

1 2 3 4 5 6 7 8 9 10 11 12

L2

Y3

T4

L5

L6

7

ys

L9

L10

Y2

Y3

Ya

Y5

Y6

yr

L8

Yo

Y10

Y11

Y12

...to produce z! and 1!




Continue swapping variables read by 7'on = . ..

1 2 3 4 5 6 7 8 9 10 11 12

74 T1|Y2 Y3 |24 |Y5 | Y6 | L7 |YS|T9|T10|T11|T12
critical index
yt Y1 |T2|Y3 | Y4 |T5 | T6 | Y7 | T8 | Y9 [Y10(Y11[Y12

...until f(y7) changesto f(z).




Are we done? f is sensitive to 7 at v but ...

1 2 3 4 5 6 7 8 9 10 11 12

L1

Y2

Y3

T4

Y5

Y6

7

ys

L9

L10

L11

L12

critical index

Y1

L2

Y3

Ya

L5

L6

yr

L8

Y9

Y10

Y11

Y12

... I’ may not read 7 on .




First swap all variables read by 7" on =.

1 2 3 4 5 6 7 8 9 10 11 12

Y2

Y3

Ya

Y5

Y6

7

ys

L9

Y10

L11

L2

Y3

T4

L5

L6

yr

L8

Yo

L10

Y11

Y12

f(y®) is not equal to f(v).




Then swap back variables read by 7" on y© until f changes back to f(y).

1 3 4 5 7 9 10 11 12

U L1 |L21Y3 Y4 | Y5 |6 | X7 | L8| L9 |Y10|X11|L12

critical index 7

v Y1 1Y2 | Y3z | L4 | L5 | Y6 | Y7 | Y8 | Y9 |L10(Y11|Y12

f(u) = f(y) Treadsionwu fissensitiveto i atv
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What was left out ...

Property Testing
Fault tolerant decision trees
Learning theory
Quantum query complexity

Jointly computing many independent instances



