Boolean Decision trees

Problems and Results, Old and New

Michael Saks, Rutgers University

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

- Unknown graph G on vertex set $\{1, 2, 3, 4, 5\}$.
- I want to know: is G connected?
- I can ask: Is (i, j) an edge?

What is the fewest number of questions needed in worst case?

Adversary view

- You (my adversary) answer the questions.
- How many questions can you force me to ask?

Analogous problem for any graph property, e.g.:

- Is *G* planar?
- Is G 3-colorable?

More generally ...

Evaluating boolean functions

- Boolean variables x_1, x_2, \ldots, x_n with unknown values
- Given boolean function $f : \{0, 1\}^n \longrightarrow \{0, 1\}$
- Goal: evaluate $f(x_1, \ldots, x_n)$.
- Elementary step: What is x_i ?

Evaluating boolean functions

How many questions are needed in worst case?

Note: All other computation is free.

Graph properties

For a graph property over graphs on vertex set V of size v:

- Variables are $x_{\{i,j\}}$ for $i, j \in V$.
- $n = \binom{v+1}{2}$.

Boolean decision trees

Function computed by BDT T

Function f_T computed by decision tree T:

- Input *x* determines a root-to-leaf path.
- Output $f_T(x)$ = label of leaf.

Cost of decision tree

The cost of T on input x:

$$D_x(T) =$$
 depth of path followed by x
= number of queries.

Worst case cost of T: $D(T) = \max_x D_x(T)$.

Deterministic DT complexity of f:

 $D(f) = \min\{D(T) : T \text{ computes } f\}$

Evasive functions

Trivial upper bound:

 $D(f) \leq n.$

f is evasive if

D(f) = n.

Lower bounds by adversary arguments

Adversary strategy: strategy for answering questions

- OR
- MAJ
- Symmetric functions
- Graph connectivity (Adversary strategy: Just say No)

Can D(f) ever be less n?

Irrelevant variables

•
$$f(x_1,\ldots,x_n)=x_7$$
.

What if all variables are relevant?

The addressing function

Variables $x_1, ..., x_k, y_1, ..., y_{2^k}$:

$$f(x_1,\ldots,x_k,y_1,\ldots,y_{2^k}) = y_{x_1,\ldots,x_k}.$$

- $n = 2^k + k$
- D(f) = k + 1.
- f is highly asymmetric...

Automorophism group of f

 $\Gamma(f)$ is Automorphism group of f:

Set of permutations of variables that leave f unchanged.

• For symmetric functions,

 $\Gamma(f)$ is the full symmetric group

• For graph properties on graphs with vertex set V

 $\Gamma(f)$ is subgroup induced by symmetric group on V.

Weakly symmetric functions

f is weakly symmetric if $\Gamma(f)$ is transitive:

for any two variables some σ in $\Gamma(f)$ maps one to the other.

E.g. any function coming from a graph property.

- Is every non-constant weakly symmetric functions evasive?
- Is every non-constant graph property evasive?

An example

Digraph property: Does *G* have a supersink?

- With v 1 questions narrow to one candidate.
- With 2v 3 more questions check the candidate.

 $D(f) \leq 3v - 4$ compared to v(v - 1) variables.

(There are also examples for undirected graph properties.)

Aanderaa-Rosenberg conjecture

A graph property is monotone if it is preserved under addition of edges (e.g. connectivity).

(1973) Any non-trivial monotone graph property on v vertices has complexity $\omega(v^2)$.

Stengthening (attributed to (but denied by) Karp):

Any non-trivial monotone graph property is evasive.

Progress on AR conjecture

Lower bounds for monotone graph properties on *v* vertices:

Progress on evasiveness

Specific properties

Best-van Emde Boas- Lenstra (1974)

Milner-Welsh (1975)

Bollobás (1976)

Any GP for v a prime power

Analog for bipartite graph properties

Additional classes of graph properties

Kahn-Saks-Sturtevant (1984)

Yao (1988)

Triesch (1994)

Chakrabarti, Khot, Shi (2001)

General lower bounds on D(f)

 $D(f) \ge deg(f)$ (Fourier degree) (Best, van Emde Boas, Lenstra)

Implications:

- Almost all functions *f* are evasive
- Together with elegant counting argument: When *n* is a prime power, every weakly symmetric *n*-variate *f* satisfying *f*(0ⁿ) ≠ *f*(1ⁿ) is evasive. (Rivest-Viullemin 1975).

A topological connection

Associate f to a collection of subsets of $\{1, \ldots, n\}$:

$$\Delta(f) = \{ S \subseteq \{1, \ldots, n\} : f(\chi_S) = 0 \}.$$

If f is monotone then $\Delta(f)$ is an abstract simplicial complex. Then:

D(f) < n implies $\Delta(f)$ is collapsible (and thus contractible). (Kahn-Saks-Sturtevant 1984)

Contrapositive: if $\Delta(f)$ is not contractible then f is evasive.

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

Randomized decision trees

Questioner may flip coins when choosing next query.

Example. Does 0-1 matrix M have an all 1 row?

On worst case input, expected number of queries is n/2.

RDTs: Model

Two models (equivalent for our purposes):

- Decision tree may have random nodes which are not counted towards computation cost.
- Randomized Algorithm = probability distribution \tilde{T} over deterministic decision trees.

RDTs: Model

Las Vegas algorithm:

- Algorithms must always answer correctly
- Algorithm to compute f is a distribution over DDTs that each compute f.
- Goal: Minimize the expected number of queries used on worst case input.
- Adversary view: Adversary chooses the input knowing the algorithm, but not the results of the coin flips.

Iterated majority of 3

- I3M₁ is majority of 3
- $I3M_k$ has 3^k variables, split into 3 groups x^k, y^k, z^k .
- $I3M_k(x^k, y^k, z^k) = MAJ(I3M_{k-1}(x^k), I3M_{k-1}(y^k), I3M_{k-1}(z^k)).$

 $I3M_k$ is evasive. (By easy adversary argument, also R-V theorem.

Randomized DT for I3M

To evaluate $I3M_k$

- Choose 2 groups of variables (out of 3) at random
- Recursively Evaluate $I3M_{k-1}$ on 2 selected groups.
- Evaluate $I3M_{k-1}$ on remaining group if needed

Randomized DT for I3M

Expected cost: $\left(\frac{8}{3}\right)^k \approx n^{.893}$

Upper bound can be improved (Saks-Wigderson 1986).

Best lower bound: $\left(\frac{7}{3}\right)^k$ (Jayram, Kumar, Sivakumar 2003 via information theory)

Best upper and lower bounds don't match.

Another example: Iterated v-

Function F_k has

- F_1 has 4 variables, $F_1(a, b, c, d) = (a \land b) \lor (c \land d)$
- F_k has 4^k variables and is obtained by iterating F_1 .

Best upper bound (Snir 1983): $O(n^{.754})$

Matching lower bound (Saks-Wigderson 1986).

How much does randomization help?

- For all n, $\exists n$ -variate evasive f with $R(f) \leq n^{.754}$.
- For any $f, R(f) \ge D(f)^{1/2}$.

Open problems

- Find largest α such that $R(f) \ge D(f)^{\alpha}$ for all f
- Conjecture (Saks-Wigderson)

.

 $\alpha = .754.$

• Conjecture (Yao): For monotone graph properties, randomness does not help, i.e.

$$R(f) = \Omega(n) = \Omega(v^2)$$

Lower bounds on R(f) for monotone graph properties

v	easy
$v(\log v)^c$	Yao 1987
v ^{5/4}	King 1988
v ^{4/3}	Hajnal 1991

Lower bounds on R(f) for monotone graph properties

- $v^{4/3}(\log v)^{1/3}$ Chakrabarti and Khot 2001
 - $\min\{\frac{v}{p}, \frac{v^2}{\log v}\}$ Friedgut, Kahn, Wigderson 2002

 $\frac{v^{4/3}}{p^{1/3}}$ O'Donnell, Saks, Schramm, Servedio 2005.

Critical probability p for monotone f is unique p so that:

if $x_i = 1$ independently with probability p, then Prob[f = 1] is $\frac{1}{2}$.

Lower bound for R(f) for weakly symmetric f

Theorem. For any monotone weakly symmetric n-variate f,

$$R(f) = \frac{n^{2/3}}{p^{1/3}}.$$

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

Influences

How do we measure the influence of a variable on a boolean function?

 $f: \{-1,1\}^n \longrightarrow \{-1,1\}$

Product distribution on $\{-1, 1\}^n$:

 $\mu = \prod \mu_i$ (μ_i is 1 w.p. p_i)

 $p_i = 1/2$ for all *i*: uniform distribution

p-biased influence of variable i on f

 $lnf_i^p(f)$ is $Prob[f(x) \neq f(y)]$

when x, y generated by ...

p-biased influence of variable i on f

y <i>x</i>	$x_1 \mid x_2$	$2 x_3$	x 4	x_5	<i>x</i> 6		<i>x</i> 8	x_9	<i>x</i> ₁₀	x_{11}	<i>x</i> ₁₂
------------	----------------	---------	------------	-------	------------	--	------------	-------	------------------------	----------	------------------------

 $lnf_i^p(f)$ is $Prob[f(x) \neq f(y)]$

For $j \neq i$, select $x_j = y_j$ by *p*-biased coin

p-biased influence of variable i on f

X	x_1	x_2	xз	<i>x</i> 4	x_5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8	x 9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂	
---	-------	-------	----	------------	-------	------------	------------	------------	------------	------------------------	------------------------	------------------------	--

	у	x_1	<i>x</i> ₂	x ₃	<i>x</i> 4	x_5	<i>x</i> 6	y_7	x_8	<i>x</i> 9	<i>x</i> ₁₀	<i>x</i> ₁₁	<i>x</i> ₁₂
--	---	-------	-----------------------	----------------	------------	-------	------------	-------	-------	------------	------------------------	------------------------	------------------------

 $lnf_i^p(f)$ is $Prob[f(x) \neq f(y)]$

Select x_i and y_i independently by p-biased coin

Max influence and Total influence

 $lnf_i^p(f)$ p-biased influence of i on f

 $lnf_{max}^{p}(f)$ Maximum of $lnf_{i}^{p}(f)$ over i

KKL lower bound on max influence

Assume uniform distribution.

f is balanced if critical probability is 1/2.

- Elementary: There is always a variable of influence at least 1/n.
- Kahn-Kalai-Linial 1988: ... always a variable of influence $\Omega(\frac{\log n}{n})$.

This is best possible (tribes function).

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

Influences in functions of small decision tree depth

If f has (randomized) decision tree depth d, then f depends at most 2^d variables.

By KKL, *f* has a variable of influence $\Omega(\frac{d}{2^d})$.

Theorem.(O'Donnell-Saks-Schramm-Servedio 2005)

For balanced f:

There is a variable of influence at least $\frac{1}{R(f)}$.

(A family of examples shows that this is best possible.)

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

Consequence for R(f)

Theorem says:

For balanced
$$f$$
, $R(f) \ge \frac{1}{\ln f_{\max}(f)}$.

Generalization to arbitrary f with critical probability p:

Theorem. (OSSS 2005)

$$R(f) \ge \frac{1}{\ln f_{\max}^p(f)}.$$

Consequence for R(f)

Theorem.(O'Donnell-Servedio 2005) For monotone *f*:

 $R(f) \ge \frac{(\ln f_{\Sigma}^{p}(f))^{2}}{4p(1-p)}$

Corollary. (OSSS 2005) For monotone, weakly-symmetric f,

$$R(f) \ge \frac{n^{2/3}}{(4p(1-p))^{1/3}}.$$

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

Proof of influence bound

Goal: f has a variable of p-biased influence at least 1/R(f).

A Strengthening

Fix:

•

- *n*-variate deterministic decision tree T for f
- *p*-biased probability distribution on variables.
- $\delta_i = \operatorname{Prob}[T \text{ reads variable } i]$

Theorem.

$$\sum_{i=1}^{n} \delta_{i} \ln f_{i} \geq \operatorname{Var}[f]$$

Corollary. There is a variable with influence at least $\frac{Var[f]}{R(f)}$.

If p is a critical probability for f, then Var[f] = 1.

Theorem.

$$\sum_{i=1}^{n} \delta_{i} \mathrm{Inf}_{i} \geq \mathrm{Var}[f]$$

Two (related) proofs:

- Combinatorial (injective) (more intuitive)
- Analytic (gives more general results)

Combinatorial proof

$$\mathsf{Var}[f] \le \sum_{i=1}^n \delta_i \mathsf{lnf}_i.$$

(For this talk: assume $p = \frac{1}{2}$.)

Multiply both sides by 2^{2n-1} :

Combinatorial formulation

Proof strategy: Construct an injection

Input

x	x_1	x_2	x ₃	x 4	x_5	<i>x</i> 6	<i>x</i> 7	x_{8}	x_{9}	<i>x</i> ₁₀	x_{11}	<i>x</i> ₁₂
---	-------	-------	----------------	------------	-------	------------	------------	---------	---------	------------------------	----------	------------------------

У	y_1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4	y_5	y_6	y_7	y_8	<i>y</i> 9	<i>y</i> 10	y_{11}	<i>y</i> 12
---	-------	-----------------------	------------	------------	-------	-------	-------	-------	------------	-------------	----------	-------------

f(x) is not equal to f(y).

To construct u, v, i...

1 2 3 4 5 6 7 8 9 10 11 12

u	x_1	y_2	x_{3}	y_4	y_5	y_6	<i>x</i> 7	x_8	<i>x</i> 9	<i>x</i> ₁₀	y_{11}	y_{12}	
---	-------	-------	---------	-------	-------	-------	------------	-------	------------	------------------------	----------	----------	--

V	y_1	<i>x</i> ₂	<i>y</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	<i>y</i> 7	y_8	<i>y</i> 9	<i>y</i> 10	<i>x</i> ₁₁	<i>x</i> ₁₂
---	-------	-----------------------	------------	------------	------------	------------	------------	-------	------------	-------------	------------------------	------------------------

Swap coordinates on some set S and choose i from S.

Swap the first variable read by T on x.

... to produce x^1 and y^1

Continue swapping variables read by T on x ...

... until $f(y^j)$ changes to f(x).

Are we done? f is sensitive to i at v but ...

u?	x_1	y_2	y_3	x_{4}	y_5	y_6	<i>x</i> 7	y_8	<i>x</i> 9	<i>x</i> ₁₀	x_{11}	<i>x</i> ₁₂			
							critical index								
v?	y_1	<i>x</i> ₂	<i>y</i> 3	<i>y</i> 4	<i>x</i> 5	<i>x</i> 6	<i>y</i> 7	<i>x</i> 8	<i>y</i> 9	<i>y</i> 10	y_{11}	y_{12}			

 $\dots T$ may not read i on u.

First swap all variables read by T on x.

 $f(y^6)$ is not equal to f(y).

Then swap back variables read by T on y^6 until f changes back to f(y).

f(u) = f(y) T reads *i* on *u f* is sensitive to *i* at *v*

- Deterministic Decision Trees
- Randomized Decision Trees (RDTs) and a new lower bound
- Proof of lower bound
 - Influences of boolean functions
 - Influences-Decision Tree connection theorem
 - Deducing the lower bound on RDT complexity
 - Proof of Influences-Decision Tree connection theorem
- Final remarks

What was left out ...

- Property Testing
- Fault tolerant decision trees
- Learning theory
- Quantum query complexity
- Jointly computing many independent instances
- . . .