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• Unknown graph G on vertex set {1,2,3,4,5}.

• I want to know: is G connected?

• I can ask: Is (i, j) an edge?

What is the fewest number of questions needed in worst case?



Adversary view

• You (my adversary) answer the questions.

• How many questions can you force me to ask?

Analogous problem for any graph property, e.g.:

• Is G planar?

• Is G 3-colorable?

More generally . . .



Evaluating boolean functions

• Boolean variables x1, x2, . . . , xn with unknown values

• Given boolean function f : {0,1}n −→ {0,1}

• Goal: evaluate f(x1, . . . , xn).

• Elementary step: What is xi?



Evaluating boolean functions

How many questions are needed in worst case?

Note: All other computation is free.



Graph properties
For a graph property over graphs on vertex set V of size v:

• Variables are x{i,j} for i, j ∈ V .

• n =
(
v+1
2

)
.



Boolean decision trees
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Function computed by BDT T

Function fT computed by decision tree T :

• Input x determines a root-to-leaf path.

• Output fT (x) = label of leaf.



Cost of decision tree
The cost of T on input x:

Dx(T ) = depth of path followed by x

= number of queries.

Worst case cost of T: D(T ) = maxx Dx(T ).

Deterministic DT complexity of f :

D(f) = min{D(T ) : T computes f}

.



Evasive functions

Trivial upper bound:

D(f) ≤ n.

f is evasive if

D(f) = n.



Lower bounds by adversary
arguments

Adversary strategy: strategy for answering questions

• OR

• MAJ

• Symmetric functions

• Graph connectivity (Adversary strategy: Just say No)

Can D(f) ever be less n?



Irrelevant variables

• f(x1, . . . , xn) = x7.

What if all variables are relevant?



The addressing function
Variables x1, . . . , xk, y1, . . . , y2k:

f(x1, . . . , xk, y1, . . . , y2k) = yx1,...,xk.

• n = 2k + k

• D(f) = k + 1.

f is highly asymmetric. . .



Automorophism group of f

Γ(f) is Automorphism group of f :

Set of permutations of variables that leave f unchanged.

• For symmetric functions,

Γ(f) is the full symmetric group

• For graph properties on graphs with vertex set V

Γ(f) is subgroup induced by symmetric group on V .



Weakly symmetric functions
f is weakly symmetric if Γ(f) is transitive:

for any two variables some σ in Γ(f) maps one to the other.

E.g. any function coming from a graph property.

• Is every non-constant weakly symmetric functions evasive?

• Is every non-constant graph property evasive?



An example

Digraph property: Does G have a supersink?

• With v − 1 questions narrow to one candidate.

• With 2v − 3 more questions check the candidate.

D(f) ≤ 3v − 4 compared to v(v − 1) variables.

(There are also examples for undirected graph properties.)



Aanderaa-Rosenberg conjecture
A graph property is monotone if it is preserved under addition of edges
(e.g. connectivity).

(1973) Any non-trivial monotone graph property on v vertices has
complexity ω(v2).

Stengthening (attributed to (but denied by) Karp):

Any non-trivial monotone graph property is evasive.



Progress on AR conjecture
Lower bounds for monotone graph properties on v vertices:

v2

16 Rivest-Viullemin (1975) settling AR

v2

9 Kleitman-Kwiatkowski (1980)

v2

4 + o(v2) Kahn-Saks-Sturtevant (1984)



Progress on evasiveness
Specific properties Best-van Emde Boas- Lenstra (1974)

Milner-Welsh (1975)

Bollobás (1976)

Any GP for v a prime power Kahn-Saks-Sturtevant (1984)

Analog for bipartite graph properties Yao (1988)

Additional classes of graph properties Triesch (1994)

Chakrabarti, Khot, Shi (2001)



General lower bounds on D(f)

D(f) ≥ deg(f) (Fourier degree) (Best, van Emde Boas, Lenstra)

Implications:

• Almost all functions f are evasive

• Together with elegant counting argument: When n is a prime power,
every weakly symmetric n-variate f satisfying f(0n) 6= f(1n) is eva-
sive. (Rivest-Viullemin 1975).



A topological connection
Associate f to a collection of subsets of {1, . . . , n}:

∆(f) = {S ⊆ {1, . . . , n} : f(χS) = 0}.

If f is monotone then ∆(f) is an abstract simplicial complex. Then:

D(f) < n implies ∆(f) is collapsible (and thus contractible). (Kahn-
Saks-Sturtevant 1984)

Contrapositive: if ∆(f) is not contractible then f is evasive.
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Randomized decision trees

Questioner may flip coins when choosing next query.

Example. Does 0-1 matrix M have an all 1 row?

On worst case input, expected number of queries is n/2.



RDTs: Model
Two models (equivalent for our purposes):

• Decision tree may have random nodes which are not counted towards
computation cost.

• Randomized Algorithm = probability distribution T̃ over deterministic
decision trees.



RDTs: Model
Las Vegas algorithm:

• Algorithms must always answer correctly

• Algorithm to compute f is a distribution over DDTs that each compute
f .

• Goal: Minimize the expected number of queries used on worst case
input.

• Adversary view: Adversary chooses the input knowing the algorithm,
but not the results of the coin flips.



Iterated majority of 3

• I3M1 is majority of 3

• I3Mk has 3k variables, split into 3 groups xk, yk, zk.

• I3Mk(x
k, yk, zk) = MAJ(I3Mk−1(x

k), I3Mk−1(y
k), I3Mk−1(z

k)).

I3Mk is evasive. (By easy adversary argument, also R-V theorem.



Randomized DT for I3M
To evaluate I3Mk

• Choose 2 groups of variables (out of 3) at random

• Recursively Evaluate I3Mk−1 on 2 selected groups.

• Evaluate I3Mk−1 on remaining group if needed



Randomized DT for I3M
Expected cost:

(
8
3

)k
≈ n.893

Upper bound can be improved (Saks-Wigderson 1986).

Best lower bound:
(
7
3

)k
(Jayram, Kumar, Sivakumar 2003 via information

theory)

Best upper and lower bounds don’t match.



Another example: Iterated ∨-∧
Function Fk has

• F1 has 4 variables, F1(a, b, c, d) = (a ∧ b) ∨ (c ∧ d)

• Fk has 4k variables and is obtained by iterating F1.

Best upper bound (Snir 1983): O(n.754)

Matching lower bound (Saks-Wigderson 1986).



How much does randomization
help?

• For all n, ∃ n-variate evasive f with R(f) ≤ n.754.

• For any f , R(f) ≥ D(f)1/2.



Open problems

• Find largest α such that R(f) ≥ D(f)α for all f

• Conjecture (Saks-Wigderson)

α = .754.

• Conjecture (Yao): For monotone graph properties, randomness does
not help, i.e.

R(f) = Ω(n) = Ω(v2)

.



Lower bounds on R(f) for
monotone graph properties

v easy

v(log v)c Yao 1987

v5/4 King 1988

v4/3 Hajnal 1991



Lower bounds on R(f) for
monotone graph properties

v4/3(log v)1/3 Chakrabarti and Khot 2001

min{v
p, v2

log v} Friedgut, Kahn, Wigderson 2002

v4/3

p1/3 O’Donnell, Saks, Schramm, Servedio 2005.

Critical probability p for monotone f is unique p so that:

if xi = 1 independently with probability p, then Prob [f = 1] is 1
2.



Lower bound for R(f) for weakly
symmetric f

Theorem. For any monotone weakly symmetric n-variate f ,

R(f) =
n2/3

p1/3
.
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Influences
How do we measure the influence of a variable on a boolean function?

f : {−1,1}n −→ {−1,1}

Product distribution on {−1,1}n:

µ =
∏

µi (µi is 1 w.p. pi)

pi = 1/2 for all i: uniform distribution



p-biased influence of variable i
on f

1 2 3 4 5 6 7 8 9 10 11 12

x

y

Infpi (f) is Prob [f(x) 6= f(y)]

when x, y generated by . . .



p-biased influence of variable i
on f

1 2 3 4 5 6 7 8 9 10 11 12

x

y

x1 x2 x3 x4 x5 x6 x8 x9 x10 x11 x12

x1 x2 x3 x4 x5 x6 x8 x9 x10 x11 x12

Infpi (f) is Prob [f(x) 6= f(y)]

For j 6= i, select xj = yj by p-biased coin



p-biased influence of variable i
on f

1 2 3 4 5 6 7 8 9 10 11 12

x

y

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

x1 x2 x3 x4 x5 x6 y7 x8 x9 x10 x11 x12

Infpi (f) is Prob [f(x) 6= f(y)]

Select xi and yi independently by p-biased coin



Max influence and Total
influence

Infpi (f) p-biased influence of i on f

Infpmax(f) Maximum of Infpi (f) over i

InfpΣ(f) Sum of Infpi (f) over i (Total influence).



KKL lower bound on max
influence

Assume uniform distribution.

f is balanced if critical probability is 1/2.

• Elementary: There is always a variable of influence at least 1/n.

• Kahn-Kalai-Linial 1988: . . . always a variable of influence Ω(logn
n ).

This is best possible (tribes function).
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Influences in functions of small
decision tree depth

If f has (randomized) decision tree depth d, then f depends at most 2d

variables.

By KKL, f has a variable of influence Ω( d
2d).

Theorem.(O’Donnell-Saks-Schramm-Servedio 2005)

For balanced f :

There is a variable of influence at least 1
R(f).

(A family of examples shows that this is best possible.)
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Consequence for R(f)

Theorem says:

For balanced f , R(f) ≥ 1
Infmax(f).

Generalization to arbitrary f with critical probability p:

Theorem. (OSSS 2005)

R(f) ≥
1

Infpmax(f)
.



Consequence for R(f)

R(f) ≥
1

Infpmaxf
.

Theorem.(O’Donnell-Servedio 2005) For monotone f :

R(f) ≥
(InfpΣ(f))2

4p(1− p)

Corollary.(OSSS 2005) For monotone, weakly-symmetric f ,

R(f) ≥
n2/3

(4p(1− p))1/3
.
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Proof of influence bound

Goal: f has a variable of p-biased influence at least 1/R(f).



A Strengthening
.

Fix:

• n-variate deterministic decision tree T for f

• p-biased probability distribution on variables.

• δi = Prob [T reads variable i]



Theorem.
n∑

i=1

δiInf i ≥ Var[f ]

Corollary. There is a variable with influence at least Var[f ]
R(f) .

If p is a critical probability for f , then Var[f ] = 1.



Theorem.
n∑

i=1

δiInf i ≥ Var[f ]

Two (related) proofs:

• Combinatorial (injective) (more intuitive)

• Analytic (gives more general results)



Combinatorial proof

Var[f ] ≤
n∑

i=1

δiInf i.

(For this talk: assume p = 1
2.)

Multiply both sides by 22n−1:



Combinatorial formulation
LHS counts: RHS counts:

Pairs x, y

x

y

x1 x2 x3 x4 x5 x6

f(x) 6= f(y)

y1 y2 y3 y4 y5 y6

Triples u, v, i

u

v

u1 u2 u3 u4 u5 u6
6

T (u) reads i

?

f(v) sensitive at i

i=4

v1 v2 v3 v4 v5 v6

Proof strategy: Construct an injection



Input

1 2 3 4 5 6 7 8 9 10 11 12

x

y

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

f(x) is not equal to f(y).



To construct u, v, i. . .

1 2 3 4 5 6 7 8 9 10 11 12

u

v

x1 y2 x3 y4 y5 y6 x7 x8 x9 x10 y11 y12

y1 x2 y3 x4 x5 x6 y7 y8 y9 y10 x11 x12

Swap coordinates on some set S and choose i from S.



Swap the first variable read by T on x.

1 2 3 4 5 6 7 8 9 10 11 12

x1

y1

x1 x2 y3 x4 x5 x6 x7 y8 x9 x10 x11 x12

y1 y2 y3 y4 y5 y6 y7 x8 y9 y10 y11 y12

. . . to produce x1 and y1



Continue swapping variables read by T on x . . .

1 2 3 4 5 6 7 8 9 10 11 12

x4

y4

x1 y2 y3 x4 y5 y6 x7 y8 x9 x10 x11 x12

critical index

y1 x2 y3 y4 x5 x6 y7 x8 y9 y10 y11 y12

. . . until f(yj) changes to f(x).



Are we done? f is sensitive to i at v but . . .

1 2 3 4 5 6 7 8 9 10 11 12

u?

v?

x1 y2 y3 x4 y5 y6 x7 y8 x9 x10 x11 x12

critical index

y1 x2 y3 y4 x5 x6 y7 x8 y9 y10 y11 y12

. . . T may not read i on u.



First swap all variables read by T on x.

1 2 3 4 5 6 7 8 9 10 11 12

x6

y6

x1 y2 y3 y4 y5 y6 x7 y8 x9 y10 x11 x12

y1 x2 y3 x4 x5 x6 y7 x8 y9 x10 y11 y12

f(y6) is not equal to f(y).



Then swap back variables read by T on y6 until f changes back to f(y).

1 2 3 4 5 6 7 8 9 10 11 12

u

v

x1 x2 y3 y4 y5 x6 x7 x8 x9 y10 x11 x12

critical index i

y1 y2 y3 x4 x5 y6 y7 y8 y9 x10 y11 y12

f(u) = f(y) T reads i on u f is sensitive to i at v
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What was left out . . .

• Property Testing

• Fault tolerant decision trees

• Learning theory

• Quantum query complexity

• Jointly computing many independent instances

• . . .


