Combinatorial Patterns for Probabilistically Constrained Optimization Problems

Miguel A. Lejeune
George Washington University

DIMACS-RUTCOR Workshop on Boolean and Pseudo-Boolean Functions in Memory of Peter L. Hammer

January 2009

Problem Formulation

Probabilistically constrained programming problem

$$
\begin{aligned}
& \min g(x) \\
& \text { subject to } A x \geq b \\
& \\
& \quad \mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p \\
& x \in \mathcal{R}_{+} \times \mathcal{Z}_{+}
\end{aligned}
$$

with ξ having a multivariate probability distribution with finite support
\rightarrow Prékopa (1990,1995); Sen (1992); Prékopa et al. (1998);
Dentcheva et al. (2000); Ruszczyński (2002); Cheon et al. (2006); Lejeune, Ruszczyński (2007); Luedtke et al. (2007); Tanner, Ntaimo (2008)
$\min x_{1}+2 x_{2}$
subject to $\mathcal{P}\left\{\begin{array}{l}8-x_{1}-2 x_{2} \geq \xi_{1} \\ 8 x_{1}+6 x_{2} \geq \xi_{2}\end{array}\right\} \geq 0.7$

$$
x_{1}, x_{2} \geq 0
$$

	k	ω_{1}^{k}	ω_{2}^{k}	$F\left(\omega^{k}\right)$
	1	6	3	0.2
Set of realizations	2	2	3	0.1
$\omega^{k} \in \Omega$	3	1	4	0.1
	4	4	5	0.3
	6	3	6	0.3
	7	6	6	0.5
	8	1	9	0.7
	9	4	9	0.7
	10	5	10	0.8

with $p_{k}=0.1, k=1, \ldots, 10$.

Example

Feasibility set is the union of the two following polyhedra:

- $S_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathcal{R}_{+}^{2}: 8-x_{1}-2 x_{2} \geq 6,8 x_{1}+6 x_{2} \geq 8\right\}$,
- $S_{2}=\left\{\left(x_{1}, x_{2}\right) \in \mathcal{R}_{+}^{2}: 8-x_{1}-2 x_{2} \geq 4,8 x_{1}+6 x_{2} \geq 9\right\}$, and is non-convex:

Could also be "disconnected" (Henrion, 2002).

Solution Methods

- p-efficiency concept (Prékopa, 1990): disjunctive problem:
- Identification of finite, unknown number of p-efficient points
- Enumerative algorithm (Prékopa, 1995; Prékopa et al., 1990; Beraldi, Ruszczyński, 2002; Lejeune, 2008) or optimization-based generation (Lejeune, Noyan, 2009)
- Convexification - cone generation algorithm (Dentcheva et al., 2001)
- Column generation algorithm (Lejeune, Ruszczyński, 2007)
- Scenario approach
- List possible realizations of multivariate random vector
- Associate a binary variable with each scenario
- MIP formulation with cover constraint
- Use of structural properties (Ruszczyński, 2002; Cheon et al., 2006; Luedtke et al., 2007)
- Robust approach
- Derivation of conservative and convex approximations (Calafiore, Campi, 2005; Nemirovski, Shapiro, 2005, 2006)

p-Efficiency

Definition (Prékopa, 1990)

Let $p \in[0,1]$.
$v \in \mathcal{R}^{n}$ is a p-efficient point of the discrete probability distribution F if:

$$
F(v) \geq p, \quad \text { and }
$$

there is no $\quad v^{\prime} \leq v, v^{\prime} \neq v$ such that $F\left(v^{\prime}\right) \geq p$.
Identification of finite, unknown number of p-efficient points Disjunctive problem

$$
\min g(x)
$$

subject to $A x \geq b$

$$
\begin{aligned}
& h(x) \in \cup_{e \in S^{p}} K^{e} \\
& x \in \mathcal{R} \times \mathcal{Z}
\end{aligned}
$$

where

$$
K^{e}=v^{e}+\mathcal{R}_{+}, v^{e} \in S^{p}
$$

is the cone associated with v^{e}, S^{p} is the set of p-efficient points.

p-efficiency

MIP reformulation $\quad \min g(x)$
subject to $A x \geq b$

$$
\begin{aligned}
& h_{j}(x) \geq \theta^{e} \cdot v_{j}^{e}, j \in J e \in S^{p} \\
& \sum_{e \in S^{\rho}} \theta^{e} \geq 1 \\
& \theta \in\{0,1\} \\
& x \in \mathcal{R} \times \mathcal{Z}
\end{aligned}
$$

Convexification
$\min g(x)$
subject to $A x \geq b$

$$
h_{j}(x) \geq \sum_{e \in S^{p}} \lambda^{e} \cdot v_{j}^{e}, j \in J e \in S^{p}
$$

$$
\sum_{e \in S^{p}} \lambda^{e}=1
$$

$$
\lambda^{e} \in R_{+}
$$

$$
x \in \mathcal{R} \times \mathcal{Z}
$$

Scenario Approach

- List possible realizations ξ^{s} of the multivariate random vector
- Associate a binary variable θ^{s} with each scenario s :

$$
\theta^{s}= \begin{cases}0 & \text { if all constraints in } s \text { are satisfied } \\ 1 & \text { otherwise }\end{cases}
$$

- MIP reformulation with cover constraint

$$
\begin{aligned}
\min & g(x) \\
\text { subject to } & A x \geq b \\
& h_{j}(x) \geq \xi_{j}^{s} \cdot\left(1-\theta^{s}\right), \quad j \in J, \forall s \\
& \sum_{s} p_{s} \cdot \theta^{s} \leq 1-p \\
& \theta^{s} \in\{0,1\}, \\
& x \in \mathcal{R} \times \mathcal{Z}
\end{aligned} \quad \forall s,
$$

with $p_{s}=$ probability of scenario s

Structure

Solution framework based on combinatorial pattern theory:

$$
\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p
$$

- Binarization of probability distribution F
- Representation of combination (F, p) of probability distribution F and probability level p as partially defined Boolean function (pdBf)
- Compact extension
- Optimization-Based generation of combinatorial patterns
- Derivation of disjunctive normal form (DNF) representing sufficient conditions for probabilistic constraint to hold
- Integrated DNF generation
- Sequential DNF generation
- Deterministic reformulations and solution
- Concurrent pattern generation and solution

Numerical implementation
Conclusion

p-Sufficient and p-Insufficient Realizations

Definition (p-Sufficient Realization)

A realization ω^{k} is p-sufficient if $\mathcal{P}\left(\xi \leq \omega^{k}\right)=F\left(\omega^{k}\right) \geq p$ and is p-insufficient if $F\left(\omega^{k}\right)<p$.

Corollary

The satisfaction of the $|J|$ requirements

$$
h_{j}(x) \geq \omega_{j}^{k}, j \in J
$$

defined by a p-sufficient realization ω^{k} allows attainment of probability level p.

Partition

Partition of Ω with Boolean parameter \mathcal{I}^{k}

$$
\mathcal{I}^{k}=\left\{\begin{array}{ll}
1 & \text { if } F\left(\omega^{k}\right) \geq p \rightarrow p \text { - sufficient realization } \\
0 & \text { otherwise }
\end{array} \rightarrow p\right. \text { - insufficient realization }
$$

Example

	k	ω_{1}^{k}	ω_{2}^{k}	\mathcal{I}^{k}
	1	6	3	0
Set Ω^{-}of	2	2	3	0
p-insufficient realizations	3	1	4	0
	4	4	5	0
	5	3	6	0
pesufficient realizations Ω^{+}of	9	4	6	0
	8	1	9	0
	9	6	8	1
	10	5	9	10

Binarization of Probability Distribution

- Introduction of binary attributes $\beta_{i j}^{k}$ for each $\omega^{k} \in \Omega$
- Definition of their value with respect to cut points $c_{i j}$

$$
\beta_{i j}^{k}=\left\{\begin{array}{ll}
1 & \text { if } \omega_{j}^{k} \geq c_{i j} \\
0 & \text { otherwise }
\end{array} \quad, i=1, \ldots, n_{j}, j \in J\right.
$$

with

$$
c_{i^{\prime} j}<c_{i j} \Rightarrow \beta_{i j}^{k} \leq \beta_{i^{\prime} j}^{k} \quad \text { for any } \quad i^{\prime}<i, j \in J
$$

and C is the set of cut points: $|C|=\sum_{j \in J} n_{j}$.
Each numerical realization $\omega^{k}, k \in \Omega$ is mapped to a binary vector:

$$
\beta^{k}=\left[\beta_{11}^{k}, \beta_{21}^{k}, \ldots, \beta_{i j}^{k}, \ldots\right]
$$

Representation of (F, p) as a pdBf

Associating β^{k} with \mathcal{I}^{k} provides a pdBf representation of (F, p)

Example

$$
C=\left\{c_{11}=5 ; c_{12}=4 ; c_{22}=6 ; c_{32}=10\right\}
$$

k	β_{11}^{k}	β_{12}^{k}	β_{22}^{k}	β_{32}^{k}	\mathcal{I}^{k}	
1	1	0	0	0	0	
2	0	0	0	0	0	
3	0	1	0	0	0	
4	0	1	0	0	0	Binary Image Ω_{B}^{-}of Ω^{-}
5	0	1	1	0	0	
6	0	1	1	0	0	
8	0	1	1	0	0	
7	1	1	1	0	1	
9	0	1	1	0	1	
10	1	1	1	1	1	

Definition of Set of Cut Points

$\underline{\text { Objective: }}$ define conditions for $\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p$ to hold Set of cut points cannot be defined arbitrarily

> Example
> $C=\left\{c_{11}=5 ; c_{12}=4 ; c_{22}=6\right\}$

Necessary Conditions

- Preserves the disjointedness between Ω^{+}and Ω^{-}
- Consistency of the set of cut points:
- basic: immediate: $C=\left\{c_{i j}: c_{i j}=\omega_{j}^{k}, j \in J, k \in \Omega\right\}$
- master: polynomial-time algorithm
- minimal: set covering formulation

Example

BASIC SET OF CUT POINTS

MASTER SET OF CUT POINTS

MINIMAL SET OF CUT POINTS

Necessary Conditions

Consistency of set of cut points is not sufficient.

Example

Consider the minimal set of cut points: $C=\left\{c_{11}=4 ; c_{12}=8\right\}$.

$$
\begin{gathered}
\left\{\begin{array}{l}
\omega_{1}^{k} \geq 4 \\
\omega_{2}^{k} \geq 8
\end{array} \Rightarrow \begin{array}{l}
\text { Satisfied by each } \omega^{k} \in \Omega^{+} \\
\text {Not satisfied by any } \omega^{k} \in \Omega^{-}
\end{array}\right. \\
\mathcal{P}\left\{\begin{array}{l}
8-x_{1}-2 x_{2} \geq \xi_{1} \\
8 x_{1}+6 x_{2} \geq \xi_{2}
\end{array}\right\} \geq 0.7 \Leftrightarrow\left\{\begin{array}{l}
8-x_{1}-2 x_{2} \geq 4 \\
8 x_{1}+6 x_{2} \geq 8
\end{array}\right.
\end{gathered}
$$

Set $8-x_{1}-2 x_{2}=4$ and $8 x_{1}+6 x_{2}=8: \mathcal{P}\left(4 \geq \xi_{1}, 8 \geq \xi_{2}\right)=0.5<p$
Consistency does not guarantee exact representation of all the p-sufficient realizations:

$$
\omega_{j}^{k}=\bigvee_{i=1, \ldots, n_{j}} \beta_{i j}^{k} \cdot c_{i j}, j \in J, \omega^{k} \in \Omega^{+}
$$

Sufficient Conditions

$$
\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p \text { if } P\left(h_{j}(x) \geq \xi_{j}\right) \geq p, j \in J
$$

Definition

A sufficient-equivalent set of cut points C^{E} comprises a cut point $c_{i j}$ for any value ω_{j}^{k} taken by any of the p-sufficient realizations on any of the marginals j :

$$
C^{E}=\left\{c_{i j}: F_{j}\left(c_{i j}\right) \geq p, i=1, \ldots, n_{j}, j \in J, k \in \Omega\right\}
$$

Allows the exact representation of all the p-sufficient realizations, and is thus consistent.

Example

$$
C^{E}=\{\underbrace{4,5,6}_{\xi_{1}} ; \underbrace{8,9,10}_{\xi_{2}}\} .
$$

Coincides here with master set of cut points.

Extension

- Objective: Simple and compact representation of (F, p)
- Definition: f is an extension of $\operatorname{pdBf} g\left(\Omega_{B}^{+}, \Omega_{B}^{-}\right)$if:

$$
\Omega_{B}^{+} \subseteq \Omega_{B}^{+}(f) \text { and } \Omega_{B}^{-} \subseteq \Omega_{B}^{-}(f)
$$

- Existence: Boolean extension f exists if and only if $\Omega_{B}^{+} \bigcap \Omega_{B}^{-}=\emptyset$
- Description: Disjunctive normal form
- Binary mapping of realization: $\omega^{k} \rightarrow \beta^{k}=\left[\beta_{11}^{k}, \ldots, \beta_{i j}^{k}, \ldots\right]$
- Set of binary images: $\Omega_{B}=\Omega_{B}^{+} \cup \Omega_{B}^{-}, \Omega_{B}^{+} \cap \Omega_{B}^{-}=\emptyset$
- Literals $\beta_{i j}, \bar{\beta}_{i j}$
- Pattern: term (clause): $t=\bigwedge_{i j \in P_{t}} \beta_{i j} \bigwedge_{i j \in N_{t}} \bar{\beta}_{i j}, \quad P_{t} \cap N_{t}=\emptyset \quad$ with coverage condition
- Term covers a realization ω^{k} if : $t\left(\omega^{k}\right)=1=\bigwedge_{i j \in P_{t}} \beta_{i j}^{k} \bigwedge_{i j \in N_{t}} \bar{\beta}_{i j}^{k}$,
- Degree of a term: number of literals: $d=\left|P_{t}\right|+\left|N_{t}\right|$,
- Disjunctive Normal Form: $f=\bigvee_{v \in V} t_{s}$.

Properties

Any Boolean extension of a consistent pdBf representing (F, p) is a:

- positive monotone,
- Horn,
- threshold

Boolean function.

Rationale for Optimization-Based Generation

- Patterns included in DNF representing (F, p) are of degree at least equal to $|J|$. Recall:

$$
\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p
$$

- Patterns often generated though term enumeration methods (Boros et al., 1997, 2000; Alexe, Hammer, 2006, 2007; Torvik, Triantaphyllou, 2006)
- Needs considering $\sum_{d^{\prime}=1}^{d} 2^{d^{\prime}}\binom{n}{d^{\prime \prime}}$ terms for patterns of degree d
- Very efficient except for patterns of high degree (larger than 4) (Boros et al., 1997, 2000; Ryoo, 2006, 2008)

Optimization-Based Generation of Patterns - IP I

Consider a sufficient-equivalent set of cut points and pdBf for (F, p).

$$
\begin{array}{cll}
\text { IP I } z=\min \sum_{k \in \Omega_{B}^{+}} y^{k} & \\
\text { subject to } \sum_{j \in J} \sum_{i=1}^{n_{j}} \beta_{i j}^{k} u_{i j}+\sum_{e=1}^{n} \bar{\beta}_{i j}^{k} \bar{u}_{i j}+n y^{k} \geq d, & k \in \Omega_{B}^{+} \\
\sum_{j \in J}^{n_{j}} \sum_{i=1}^{n_{j}} \beta_{i j}^{k} u_{i j}+\sum_{e=1}^{n} \bar{\beta}_{i j}^{k} \bar{u}_{i j} \leq d-1, & k \in \Omega_{B}^{-} \\
u_{\eta_{j}^{k} j} \geq 1-b^{k}, & k \in \Omega_{B}^{+}, j \in J \\
\sum_{k \in \Omega_{B}^{+}} b_{k}=\left|\Omega_{B}^{+}\right|-1 & \\
u_{i j}+\bar{u}_{i j} \leq 1, & i=1, \ldots, n_{j}, j \in J \\
\sum_{j \in J}^{n_{j}} \sum_{i=1}\left(u_{i j}+\bar{u}_{i j}\right)=d & \\
0 \leq b^{k} \leq 1, & k \in \Omega_{B}^{+} \\
|J| \leq d \leq 2 n & i=1, \ldots, n_{j}, j \in J \\
u_{i j}, \bar{u}_{i j} \in\{0,1\}, & k \in \Omega_{B}^{+}
\end{array}
$$

Properties

Theorem (Pattern Generation - IP I)

IP I:
(i) is always feasible;
(ii) has an upper bound equal to $\left|\Omega_{B}^{+}\right|-1$; and
(iii) any of its feasible solutions $(\mathbf{u}, \mathbf{y}, \mathbf{d}, \mathbf{b})$ defines a p-sufficient pattern

$$
t=\bigwedge_{\substack{\mathbf{u}_{\mathrm{i} j}=\mathbf{1} \\ i=1, \ldots, n_{j}, j \in J}} \beta_{i j} \bigwedge_{\substack{\overline{\mathbf{u}}_{\bar{i} j=1}=1 \\ i=1, \ldots, n_{j}, j \in J}} \bar{\beta}_{i j} \text { of degree } d \text { and coverage }\left(\left|\Omega_{B}^{+}\right|-\mathbf{z}\right)
$$

Remarks:

- Complexity: $2 n+\left|\Omega^{+}\right|$integer variables
- Increases with number of cut points and p-sufficient realizations
- Number of p-sufficient realizations is a decreasing function of p
- Does not need to be solved to optimality
- Optimal solution is a p-sufficient strong pattern (Hammer et al., 2004)

Pattern Derivation

Definition (Hammer et al., 2004)

A pattern is prime if the removal of any one of its literals results in the coverage of a realization of opposed "sign".

Observation:
ω_{j} is positive monotone in F :

$$
\mathcal{P}\left(\xi_{j} \leq \omega_{j}^{k}\right) \leq \mathcal{P}\left(\xi_{j} \leq \omega_{j}^{k^{\prime}}\right) \text { for } \omega_{j}^{k} \leq \omega_{j}^{k^{\prime}}, j \in J
$$

$\beta_{i j}$ is positive monotone in the Boolean extension f :

$$
f\left(\beta_{11}, \beta_{21}, \ldots, \beta_{i-1 j}, 0, \beta_{i+1 j}, \ldots\right) \leq f\left(\beta_{11}, \beta_{21}, \ldots, \beta_{i-1 j}, 1, \beta_{i+1 j}, \ldots\right)
$$

\Rightarrow Prime patterns included in a DNF f representing (F, p)

- do not include complemented literals: monotonicity property of Boolean variable (Boros et al., 2000)
- one uncomplemented literal per component ξ_{j}

Optimization-Based Generation of Patterns - IP II

$$
\text { IP II } z=\min \sum_{k \in \Omega_{B}^{+}} y^{k}
$$

subject to $\sum_{j \in J} \sum_{i=1}^{n_{j}} \beta_{i j}^{k} u_{i j}+y^{k} \geq|J|, \quad k \in \Omega_{B}^{+}$

$$
\begin{array}{cl}
\sum_{j \in J} \sum_{i=1}^{n_{i}} \beta_{i j}^{k} u_{i j} \leq|J|-1, \quad k \in \Omega_{B}^{-} \\
u_{\eta_{j}^{k} j} \geq 1-b^{k}, \quad k \in \Omega_{B}^{+}, j \in J \\
\sum_{k \in \Omega_{B}^{+}} b_{k}=\left|\Omega_{B}^{+}\right|-1 &
\end{array}
$$

$$
\sum_{i=1}^{n_{j}} u_{i j}=1, \quad j \in J
$$

$$
0 \leq b^{k} \leq 1, \quad k \in \Omega_{B}^{+}
$$

$$
u_{i j} \in\{0,1\}, \quad j \in J, i=1, \ldots, n_{j}
$$

$$
0 \leq y^{k} \leq|J|, \quad k \in \Omega_{B}^{+}
$$

Properties

Theorem (Pattern Generation - IP II)

IP II:
(i) is always feasible, and
(ii) any of its feasible solutions ($\mathbf{u}, \mathbf{y}, \mathbf{b}$) defines a p-sufficient pattern

$$
t=\bigwedge_{\substack{\mathbf{u}_{\mathbf{i j}=1}=\mathbf{1} \\ j J, i=1, \ldots, n_{j}}} \beta_{i j}
$$

of degree $|J|$.
Comparison:

- IP I: $2 n+\left|\Omega^{+}\right|$integer and $\left|\Omega^{+}\right|+1$ continuous variables
- IP II: n integer and $2\left|\Omega^{+}\right|$continuous variables

DNF Derivation - Integrated Approach: IP III

$$
\begin{array}{cll}
\text { IP III } & \max \sum_{s=1}^{Q} y_{s} & \\
\text { subject to } \sum_{i=1}^{n_{j}} \sum_{j \in J} \beta_{i j}^{k} u_{i j, s}+|J| y_{s}^{k} \geq|J|, & k \in \Omega_{B}^{+}, s=1, \ldots, Q \\
r_{s}^{k} \geq y_{s}^{k}, & k \in \Omega_{B}^{+}, s=1, \ldots, Q \\
\sum_{s=1}^{Q} r_{s}^{k} \leq Q-1, & k \in \Omega_{B}^{+} \\
r_{s}^{k} \geq y_{s}, & k \in \Omega_{B}^{+}, s=1, \ldots, Q \\
u_{\eta_{j}^{k}, s} \geq 1-b_{s}^{k}, & k \in \Omega_{B}^{+}, j \in J, s=1, \ldots, Q \\
y_{s}=\sum_{k \in \Omega_{B}^{+}} b_{s}^{k}+1-\left|\Omega_{B}^{+}\right|, & s=1, \ldots, Q \\
\sum_{i=1}^{n_{j}} u_{i j, s}=1, & j \in J, s=1, \ldots, Q \\
0 \leq b_{s}^{k} \leq 1, & k \in \Omega_{B}^{+}, s=1, \ldots, Q \\
0 \leq r_{s}^{k} \leq 1, & k \in \Omega_{B}^{+}, s=1, \ldots, Q \\
0 \leq y_{s} \leq 1, & s=1, \ldots, Q \\
y_{s}^{k} \in\{0,1\}, & k \in \Omega_{B}^{+}, s=1, \ldots, Q \\
u_{i j, s} \in\{0,1\}, & i=1, \ldots, n_{j}, j \in J, s=1, \ldots, Q
\end{array}
$$

Properties

Theorem (Disjunctive Normal Form Model)

Any feasible solution $(\mathbf{u}, \mathbf{y}, \mathbf{r}, \mathbf{b})$ of IP III defines a DNF

$$
f=\bigvee_{\mathbf{y}_{\mathbf{s}}=\mathbf{0}} t_{s}
$$

including a set of patterns $\mathcal{Q}=\left\{t_{s}: \mathbf{y}_{\mathbf{s}}=0, \forall s\right\}$:
i) covering all p-sufficient realizations: $f\left(\omega^{k}\right)=1, k \in \Omega_{B}^{+}$, and
ii) defining the sufficient conditions for $\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p$ to hold.

Remarks:

- each t_{s} in f is of degree $|J|$;
- each t_{s} in f has coverage $\left|\Omega^{+}\right|-\sum_{k \in \Omega_{B}^{+}} \mathbf{y}_{\mathbf{s}}^{\mathbf{k}}$;
- the optimal solution of IP III defines an irredundant DNF.

DNF Derivation - Sequential Approach

- Iterative procedure
- Ordering of p-sufficient realizations with respect to their cumulative probability
- Concept of maximum positive pattern (Hammer, Bonates, 2006)

Definition

The maximum p-sufficient ω^{k}-pattern is the pattern covering ω^{k} which has the largest coverage.

- Differences with integrated approach:
- Disjunctive normal form is not necessarily minimal
- Solution of a finite sequence of LP problems

Deterministic Reformulation I

f : DNF defining sufficient conditions for satisfiability of

$$
\begin{gathered}
\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p \\
\min g(x) \\
\text { subject to } A x \geq b \\
f(h(x)) \geq 1 \\
x \in \mathcal{R}_{+} \times \mathcal{Z}_{+} \\
f(h(x))=\bigvee_{v=1, \ldots, v} t_{v}(h(x)) \geq 1 \Leftrightarrow \sum_{v=1}^{v} t_{v}(h(x)) \geq 1
\end{gathered}
$$

Deterministic Reformulation II

$$
\begin{gathered}
f(h(x))=1 \Leftrightarrow \bigvee_{v=1, \ldots, v} t_{v}(h(x)) \geq 1 \Leftrightarrow \sum_{v=1}^{v} t_{v}(h(x)) \geq 1 \\
t_{v}=\bigwedge_{i j \in L_{v}} \beta_{i j}: t_{v}(h(x))=1 \Rightarrow h_{j}(x) \geq c_{i j}, i j \in L_{v} \\
\gamma_{v}=\left\{\begin{array}{l}
0, \text { if all conditions defined by } t_{v} \text { are satisfied } \\
1, \text { otherwise }
\end{array}\right. \\
\left\{\begin{array} { l }
{ \gamma _ { v } + t _ { v } (h (x)) = 1 , v = 1 , \ldots , V } \\
{ \sum _ { v = 1 } ^ { v } \gamma _ { v } \leq V - 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
h_{j}(x)+M \gamma_{v} \geq c_{i j}, i j \in L_{v} \\
\sum_{v=1}^{v} \gamma_{v} \leq V-1
\end{array}\right.\right.
\end{gathered}
$$

Concurrent Generation and Solution

$$
\min g(x)
$$

subject to $A x \geq b$

$$
\begin{array}{lr}
\sum_{i=1}^{n_{j}} u_{i j}=1, & j \in J \\
u_{\eta_{k}^{k} j} \geq 1-b^{k}, & \\
\sum_{k \in \Omega_{B}^{+}} b^{k} \leq\left|\Omega_{B}^{+}\right|-1 & \\
h_{j}(x) \geq u_{i j} \cdot c_{i j}, & i=1, \ldots, n_{j}, j \in J \\
0 \leq b^{k} \leq 1, & k \in J \\
u_{i j} \in\{0,1\}, & i=1, \ldots, n_{j}, j \in J \\
x \in \mathcal{R}_{+} \times \mathcal{Z}_{+} &
\end{array}
$$

Optimal solution $\left(\mathbf{x}^{*}, \mathbf{u}^{*}, \mathbf{b}^{*}\right)$ defines a p-sufficient patterrt $=$

$$
\bigwedge_{\substack{\mathbf{u}_{\mathrm{ij}}^{*}=\mathbf{1} \\ i=1, \ldots, n_{j}, j \in J}} \beta_{i j}
$$

representing the minimal conditions for $\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p$ to hold.

Numerical Implementation

Stochastic cash matching (Dentcheva et al., 2004; Henrion, 2004)

$$
\begin{aligned}
& \max \sum_{i=1}^{n}\left(a_{i|J|}-p_{i}\right) x_{i} \\
& \text { subject to } \mathcal{P}\left(K+\sum_{i=1}^{n}\left(a_{i j}-p_{i}\right) x_{i} \geq \xi_{j}, j \in J\right) \geq p \\
& x \in \mathcal{R}_{+}
\end{aligned}
$$

Data: face value, yield structure, maturity of more than 200 bonds Sources: Center for Research and Security prices (CRSP); Mergent Fixed Income Securities Database (FISD).
Generation of 32 problem instances differing along:

- number ($M=150,200$) of bonds
- length of planning horizon (i.e., dimensionality: $|J|=8$, 12 of the random vector ξ)
- value ($p=0.8,0.85,0.9,0.95$) of enforced probability level
- number $(\Omega=1000,2000)$ of realizations

Numerical Results

Sequential procedure
 AMPL modeling, 11.1 solver for MIP

		0.8		0.85		0.9		0.95		
		Ω								
M	\|J		1000	2000	1000	2000	1000	2000	1000	2000
150	8	305.0	369.3	145.3	239.2	68.9	94.3	14.2	20.9	
150	12	299.3	421.7	176.2	295.9	87.9	109.9	23.9	35.8	
200	8	341.9	375.9	146.3	248.9	71.9	100.3	12.2	24.9	
200	12	362.2	418.1	172.9	299.1	92.2	103.9	31.8	49.2	

Conclusions and Extensions

- Novel methodology for probabilistically constrained problems
- Derivation of combinatorial patterns and DNfs representing sufficient conditions for attainment of prescribed probability level
- Binarization of probability distribution
- Representation of (F, p) as pdBf
- Extension of pdBf
- Optimization-based derivation of patterns and DNFs
- Deterministic reformulation
- Combinatorial pattern take into account "interactions" between components ξ_{j} of ξ on satisfiability of joint probabilistic constraint
- Commonalities with Logical Analysis of Data (Hammer, 1986; Crama et al., 1988; Boros et al., 1997, 2000)
- Numerical implementation
- Extensions possible to:
- problems with random technology matrix
- continuous probability distributions approximated by samples
- two-stage stochastic problems.

