Coverable functions

Petr Kučera, joint work with Endre Boros, Ondřej Čepek, Alexandr Kogan

Coverable functions

- Let us recall that given a Boolean function *f*, we denote by:
 - *cnf(f)* minimum number of clauses needed to represent *f* by a CNF.
 - $\sim ess(f) maximum number of pairwise disjoint essential sets of implicates of <math>f$.
- ∼ A function f is coverable, if cnf(f) = ess(f).

Talk outline

- We already know from the previous talk, that not every function is coverable.
- We shall show, that quadratic, acyclic, quasiacyclic, and CQ Horn functions are coverable.
- Before that we shall show, that in case of Horn functions we can restrict our attention to only pure Horn functions.

Negative implicates

- \sim Let *f* be a Horn function.
- ∼ Let \mathcal{X} be an exclusive set of implicates of f, such that no two clauses in $\mathcal{E} = \mathcal{I}(f) \setminus \mathcal{R}(\mathcal{X})$ are resolvable.
- ~ Then there exists an integer k, and pairwise disjoint essential sets $Q_1, \ldots, Q_k \subseteq \mathcal{E}$, such that for every CNF \mathcal{C} representing f:
 - $\sim |\mathcal{C} \cap \mathcal{Q}_j| = 1, j = 1, \dots, k$
 - $\sim C$ does not contain other elements of \mathcal{E} .

Negative implicates

- We can use this proposition to negative implicates, if we put:
 - ~ \mathcal{X} = pure Horn implicates of *f*, and
 - ~ \mathcal{E} = negative implicates of f.
- ✓ Now we can observe that:

$$ess(f) = ess(\mathcal{X}) + k$$

 Therefore we can restrict our attention to only pure Horn functions.

CNF Graph

- ∼ For a Horn CNF φ let $G_{\varphi} = (N, A_{\varphi})$ be the digraph defined as:
 - ~ N is the set of variables of φ .
 - $\sim (x, y) \text{ belongs to } A_{\varphi}, \text{ if there is a clause } C \text{ in } \varphi,$ which contains \overline{x} and y.
- ∼ G_f , where *f* is the function represented by φ , is transitive closure of G_{φ} .

Quadratic functions

- ∼ A quadratic function is function, which can be represented by a CNF φ , in which every clause consists of at most two literals.
- Minimization algorithm for pure Horn quadratic functions:
 - Make φ prime and irredundant.
 - ∼ Construct CNF graph G_{φ} .
 - ~ Find strong components of G_{φ} .
 - ∼ Replace strong components by cycles.

Example

 $\begin{array}{l} \thicksim \quad \text{Let us consider the following CNF:} \\ (\overline{a} \lor b) \land (\overline{b} \lor c) \land (\overline{c} \lor d) \\ \land \quad (\overline{d} \lor c) \land (\overline{c} \lor e) \land (\overline{e} \lor c) \end{array}$

✓ CNF graph follows:

Example

✓ A shortest CNF:

 $(\overline{a} \lor b) \land (\overline{b} \lor c) \land (\overline{c} \lor d) \land (\overline{d} \lor e) \land (\overline{e} \lor c)$

∼ and its CNF graph:

Disjoint essential sets for quadratic functions

- ✓ Let us have a clause ($\overline{x} \lor y$) and let us define essential set \mathcal{E} for this clause.
- ∼ If *x* and *y* belong to different strong components of G_f , we put ($\overline{u} \lor v$) into \mathcal{E} , if *u* belongs to the same strong component as *x* and *v* belongs to the same strong component as *y*.

Disjoint essential sets ...

∼ If x and y belong to the same component of G_f , we put $(\overline{u} \lor y)$ into \mathcal{E} for every u in this component.

- It is easily possible to find vector based definition of these sets as well.
- ✓ If the input CNF is minimum, the sets are disjoint.

Example

✓ For our shortest CNF

 $(\overline{a} \lor b) \land (\overline{b} \lor c) \land (\overline{c} \lor d) \land (\overline{d} \lor e) \land (\overline{e} \lor c)$

✓ we would have:

Essentiality of defined sets I

- ∼ At first let us assume, that x and y belong to different strong components of G_f .
- ✓ We have u in the same SC as x, v in the same SC as y, and $(\overline{u} \lor v) = \mathcal{R}(\overline{u} \lor z, \overline{z} \lor v)$ for some z.
- ✓ If z does not belong to the same SC as x or y, then $(\overline{x} \lor y)$ is redundant.
- ~ Therefore one of parent clauses belongs to \mathcal{E} .

Essentiality of defined sets I

- ∼ At first let us assume, that x and y belong to different strong components of G_f .
- ✓ We have u in the same SC as x, v in the same SC as y, and $(\overline{u} \lor v) = \mathcal{R}(\overline{u} \lor z, \overline{z} \lor v)$ for some z.
- ✓ If z does not belong to the same SC as x or y, then $(\overline{x} \lor y)$ is redundant.
- ~ Therefore one of parent clauses belongs to \mathcal{E} .

Essentiality of defined sets I

- ∼ At first let us assume, that x and y belong to different strong components of G_f .
- ✓ We have u in the same SC as x, v in the same SC as y, and $(\overline{u} \lor v) = \mathcal{R}(\overline{u} \lor z, \overline{z} \lor v)$ for some z.
- ✓ If z does not belong to the same SC as x or y, then $(\overline{x} \lor y)$ is redundant.
- \sim Therefore one of parent clauses belongs to $\mathcal{E}.$

Essentiality II

- ∼ Now let us assume, that x and y belong to the same strong component of G_{f} .
- ∼ We have *u* in this strong component and *z*, for which $(\overline{u} \lor y) = \mathcal{R}(\overline{u} \lor z, \overline{z} \lor y)$.
- ✓ It follows, that *z* belong to the same strong component as well.

Acyclic functions

- \sim A function *f* is acyclic, if its CNF graph is acyclic.
- Prime and irredundant CNF is the only minimum representation of an acyclic function.
- ∼ Given the only prime and irredundant acyclic CNF φ , we define for each clause $C \in \varphi$ an essential set $\mathcal{E}_C = \{C\}$.
- This set is essential due to similar reasons as in the case of quadratic functions.
- ✓ Vector based definition is also possible.

Quasi-acyclic functions

- A function *f* is quasi-acyclic, if every two variables *x* and *y*, which belong to the same strong component of *G_f*, are logically equivalent.
- Definition of essential sets is a combination of cases of quadratic and acyclic function.

CQ functions

- ∼ A Horn CNF φ is CQ, if in every clause $C \in \varphi$ at most one subgoal belongs to the same strong component as its head.
- ∼ A Horn function *f* is CQ, if it can be represented by a CQ CNF.

CQ and essential sets

- Any prime CNF representation of a CQ function is a CQ CNF.
- In order to be able to define disjoint essential sets, we have to investigate structure of minimum CQ CNFs and minimization algorithm for CQ functions.

Decomposition lemma

Let us have:

- \sim a function *f*,
- a chain of exclusive subsets Ø = X₀ ⊆ X₁ ⊆ · · · ⊆ X_t in which R(X_t) = I(f),
- $\sim \text{ minimal subsets } \mathcal{C}_i^* \subseteq \mathcal{X}_i \setminus \mathcal{X}_{i-1}, i = 1, \dots, t, \text{ such that } \mathcal{R}(\mathcal{X}_{i-1} \cup \mathcal{C}_i^*) = \mathcal{R}(\mathcal{X}_i).$

Then:

∼ $C^* = \bigcup_{i=1}^t C_i^*$ is a minimal representation of *f*.

 If we can find these sets effectively and solve corresponding subproblems effectively, we are done.

Clause graph

- ~ Let φ be a pure Horn CNF representing a function f, we define clause graph $D_{\varphi} = (V_{\varphi}, E_{\varphi})$ as follows:
 - $\sim V_{\varphi} = \varphi$
 - ∼ $(A \lor u, B \lor v) \in E_{\varphi}$ if and only if:
 - v can be reached from u by a path in G_{φ} , and
 - ← for every $a \in A$, $(B \lor a)$ is an implicate of f.

Properties of clause graphs

- \sim By $D_f = (V_f, E_f)$ we denote $D_{\mathcal{I}(f)}$.
- By $Cone_H(u)$, where *H* is a digraph and *u* one of its vertices, we denote the set of vertices, from which there is a path to *u* in *H*.
- \sim If $C = \mathcal{R}(C_1, C_2)$, then $(C_1, C) \in E_f$ and $(C_2, C) \in E_f$
- ~ Therefore $Cone_{D_f}(C)$ is an exclusive set.
- ∼ If *K* is a strong component of D_f containing *C*, then $Cone_{D_f}(C) \setminus K$ is again an exclusive set.
- Although the size of D_f may be exponentially larger than φ , it is sufficient to work with D_{\varphi}, which can be constructed in polynomial time.

Back to decomposition lemma

- ∼ Let K_1, \ldots, K_t be strong components of D_f in topological order, and
- \sim let us define $\mathcal{X}_i = \bigcup_{j=1}^i K_j, i = 1, ..., t.$
- ∼ Every X_i , i = 1, ..., t is an exclusive set and we can use it in decomposition lemma.
- ∼ Representation given by $X_i \cap \varphi$ is sufficient for our needs.
- ✓ Now we only have to solve partial problem for each strong component K_i of D_f .

Strong components

- \sim We say, that an implicate $(A \lor u)$ of f is of
 - ✓ type 0, if no element of A belong to the same strong component of G_f as u, and it is of
 - ✓ type 1, if one element of *A* belongs to the same strong component of G_f as *u*.
- ∼ If *K* is a strong component of D_f and *f* is CQ, then all clauses belonging to *K* are of the same type.
- \sim Therefore we can assign this type to *K* as well.
- ✓ If K is of type 0, we can leave the clauses in K ∩ φ as they are, primality and irredundancy of φ is sufficient in this case.

 We shall demonstrate what we can do with strong components of type 1 on the following example:

$$\varphi = (\overline{b} \lor c) \land (\overline{b} \lor e) \land (\overline{a} \lor \overline{c} \lor b)$$
$$\land (\overline{a} \lor \overline{e} \lor b) \land (\overline{a} \lor \overline{d} \lor b) \land (\overline{a} \lor \overline{b} \lor d)$$

 $\sim D_{\varphi}$ has two strong components:

$$K_1 = \{ (\overline{b} \lor c), (\overline{b} \lor e) \}$$

 $K_2 = \{ (\overline{a} \lor \overline{c} \lor b), (\overline{a} \lor \overline{e} \lor b), (\overline{a} \lor \overline{d} \lor b), (\overline{a} \lor \overline{b} \lor d) \}$

 $\sim K_1$ is itself minimum (primality and irredundancy are sufficient for it).

∼ We can find smaller representation of K_2 by finding a smaller representation of strong component of G_{φ} containing *b*, *c*, *d*, and *e*, but blue arcs generated by clauses in K_1 cannot change.

✓ By this we get an equivalent minimum CNF:

$$\varphi' = (\overline{b} \lor c) \land (\overline{b} \lor e) \land (\overline{a} \lor \overline{e} \lor d)$$
$$\land (\overline{a} \lor \overline{d} \lor e) \land (\overline{a} \lor \overline{e} \lor b)$$

 Smallest representation of a strong component with some fixed arcs can be found in polynomial time.

Essential sets

- Based on the minimization algorithm, we can define the essential sets.
- ~ We have to distinguish, whether clause C_i belongs to the strong component $K(C_i)$ of type 0, or 1.
- We give only illustrative pictures of definitions of vectors defining the essential sets to give impression of their complexity.

Conclusions

- There are other classes, about which we can show, that they are coverable. (E.g. interval functions)
- Horn coverable functions form a nontrivial subclass of Horn functions.
- ✓ We still do not know, if
 - we can recognize, whether given Horn CNF represent a coverable function,
 - and what is the complexity of minimization of Horn coverable functions.