Coverable functions

Petr Kučera,

joint work with Endre Boros, Ondřej Čepek, Alexandr Kogan

Coverable functions

\sim Let us recall that given a Boolean function f, we denote by:
$\sim c n f(f)$ - minimum number of clauses needed to represent f by a CNF.
$\sim \operatorname{ess}(f)$ - maximum number of pairwise disjoint essential sets of implicates of f.
\sim A function f is coverable, if $\operatorname{cnf}(f)=\operatorname{ess}(f)$.

Talk outline

~We already know from the previous talk, that not every function is coverable.
~We shall show, that quadratic, acyclic, quasiacyclic, and CQ Horn functions are coverable.
~Before that we shall show, that in case of Horn functions we can restrict our attention to only pure Horn functions.

Negative implicates

\sim Let f be a Horn function.
\sim Let \mathcal{X} be an exclusive set of implicates of f, such that no two clauses in $\mathcal{E}=\mathcal{I}(f) \backslash \mathcal{R}(\mathcal{X})$ are resolvable.
\sim Then there exists an integer k, and pairwise disjoint essential sets $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{k} \subseteq \mathcal{E}$, such that for every CNF \mathcal{C} representing f :
$\sim\left|\mathcal{C} \cap \mathcal{Q}_{j}\right|=1, j=1, \ldots, k$
$\sim \mathcal{C}$ does not contain other elements of \mathcal{E}.

Negative implicates

~We can use this proposition to negative implicates, if we put:
$\sim \mathcal{X}=$ pure Horn implicates of f, and
$\sim \mathcal{E}=$ negative implicates of f.
\sim Now we can observe that:

$$
\operatorname{ess}(f)=\operatorname{ess}(\mathcal{X})+k
$$

~ Therefore we can restrict our attention to only pure Horn functions.

CNF Graph

\sim For a Horn CNF φ let $G_{\varphi}=\left(N, A_{\varphi}\right)$ be the digraph defined as:
$\sim \quad N$ is the set of variables of φ.
$\sim \quad(x, y)$ belongs to A_{φ}, if there is a clause C in φ, which contains \bar{x} and y.
$\sim G_{f}$, where f is the function represented by φ, is transitive closure of G_{φ}.

Quadratic functions

~A quadratic function is function, which can be represented by a CNF φ, in which every clause consists of at most two literals.
~ Minimization algorithm for pure Horn quadratic functions:
\sim Make φ prime and irredundant.
\sim Construct CNF graph G_{φ}.
\sim Find strong components of G_{φ}.
\sim Replace strong components by cycles.

Example

\sim Let us consider the following CNF:

$$
\left.\begin{array}{rl}
(\bar{a} \vee b) & \wedge(\bar{b} \vee c) \\
\wedge(\bar{c} \vee d) \\
\wedge(\bar{d} \vee c) & \wedge(\bar{c} \vee e)
\end{array}\right)(\bar{e} \vee c)
$$

~ CNF graph follows:

Example

~ A shortest CNF:

$$
(\bar{a} \vee b) \wedge(\bar{b} \vee c) \wedge(\bar{c} \vee d) \wedge(\bar{d} \vee e) \wedge(\bar{e} \vee c)
$$

\sim and its CNF graph:

Disjoint essential sets for quadratic functions

\sim Let us have a clause ($\bar{x} \vee y$) and let us define essential set \mathcal{E} for this clause.
\sim If x and y belong to different strong components of G_{f}, we put $(\bar{u} \vee v)$ into \mathcal{E}, if u belongs to the same strong component as x and v belongs to the same strong component as y.

Disjoint essential sets ...

\sim If x and y belong to the same component of G_{f}, we put $(\bar{u} \vee y)$ into \mathcal{E} for every u in this component.

~ It is easily possible to find vector based definition of these sets as well.
\sim If the input CNF is minimum, the sets are disjoint.

Example

~For our shortest CNF

$$
(\bar{a} \vee b) \wedge(\bar{b} \vee c) \wedge(\bar{c} \vee d) \wedge(\bar{d} \vee e) \wedge(\bar{e} \vee c)
$$

\sim we would have:

$$
\begin{aligned}
(\bar{a} \vee b) & \rightarrow\{(\bar{a} \vee b)\} \\
(\bar{b} \vee c) & \rightarrow\{(\bar{b} \vee c)\} \\
(\bar{c} \vee d) & \rightarrow\{(\bar{c} \vee d),(\bar{e} \vee d)\} \\
(\bar{d} \vee e) & \rightarrow\{(\bar{d} \vee e),(\bar{c} \vee e)\} \\
(\bar{e} \vee c) & \rightarrow\{(\bar{e} \vee c),(\bar{d} \vee c)\}
\end{aligned}
$$

Essentiality of defined sets I

\sim At first let us assume, that x and y belong to different strong components of G_{f}.
\sim We have u in the same SC as x, v in the same SC as y, and $(\bar{u} \vee v)=\mathcal{R}(\bar{u} \vee z, \bar{z} \vee v)$ for some z.
\sim If z does not belong to the same SC as x or y, then $(\bar{x} \vee y)$ is redundant.
\sim Therefore one of parent clauses belongs to \mathcal{E}.

Essentiality of defined sets I

\sim At first let us assume, that x and y belong to different strong components of G_{f}.
\sim We have u in the same SC as x, v in the same SC as y, and $(\bar{u} \vee v)=\mathcal{R}(\bar{u} \vee z, \bar{z} \vee v)$ for some z.
\sim If z does not belong to the same SC as x or y, then ($\bar{x} \vee y$) is redundant.
\sim Therefore one of parent clauses belongs to \mathcal{E}.

Essentiality of defined sets I

\sim At first let us assume, that x and y belong to different strong components of G_{f}.
\sim We have u in the same SC as x, v in the same SC as y, and $(\bar{u} \vee v)=\mathcal{R}(\bar{u} \vee z, \bar{z} \vee v)$ for some z.
\sim If z does not belong to the same SC as x or y, then ($\bar{x} \vee y$) is redundant.
\sim Therefore one of parent clauses belongs to \mathcal{E}.

Essentiality II

\sim Now let us assume, that x and y belong to the same strong component of G_{f}.
\sim We have u in this strong component and z, for which $(\bar{u} \vee y)=\mathcal{R}(\bar{u} \vee z, \bar{z} \vee y)$.
\sim It follows, that z belong to the same strong component as well.

Acyclic functions

\sim A function f is acyclic, if its CNF graph is acyclic.
\sim Prime and irredundant CNF is the only minimum representation of an acyclic function.
\sim Given the only prime and irredundant acyclic CNF φ, we define for each clause $C \in \varphi$ an essential set $\mathcal{E}_{C}=\{C\}$.
\sim This set is essential due to similar reasons as in the case of quadratic functions.
\sim Vector based definition is also possible.

Quasi-acyclic functions

\sim A function f is quasi-acyclic, if every two variables x and y, which belong to the same strong component of G_{f}, are logically equivalent.
~ Definition of essential sets is a combination of cases of quadratic and acyclic function.

CQ functions

\sim A Horn CNF φ is CQ, if in every clause $C \in \varphi$ at most one subgoal belongs to the same strong component as its head.
\sim A Horn function f is CQ , if it can be represented by a CQ CNF.

$(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{c} \vee b)$ is CQ

$(\bar{a} \vee \bar{b} \vee c) \wedge(\bar{c} \vee b) \wedge(\bar{c} \vee a)$
is CQ

CQ and essential sets

\sim Any prime CNF representation of a CQ function is a CQ CNF.
\sim In order to be able to define disjoint essential sets, we have to investigate structure of minimum CQ CNFs and minimization algorithm for CQ functions.

Decomposition lemma

Let us have:
\sim a function f,
\sim a chain of exclusive subsets $\emptyset=\mathcal{X}_{0} \subseteq \mathcal{X}_{1} \subseteq \cdots \subseteq \mathcal{X}_{t}$ in which $\mathcal{R}\left(\mathcal{X}_{t}\right)=\mathcal{I}(f)$,
\sim minimal subsets $\mathcal{C}_{i}^{*} \subseteq \mathcal{X}_{i} \backslash \mathcal{X}_{i-1}, i=1, \ldots, t$, such that $\mathcal{R}\left(\mathcal{X}_{i-1} \cup \mathcal{C}_{i}^{*}\right)=\mathcal{R}\left(\mathcal{X}_{i}\right)$.

Then:
$\sim \mathcal{C}^{*}=\bigcup_{i=1}^{t} \mathcal{C}_{i}^{*}$ is a minimal representation of f.
If we can find these sets effectively and solve corresponding subproblems effectively, we are done.

Clause graph

\sim Let φ be a pure Horn CNF representing a function f, we define clause graph $D_{\varphi}=\left(V_{\varphi}, E_{\varphi}\right)$ as follows:
$\sim V_{\varphi}=\varphi$
$\sim(A \vee u, B \vee v) \in E_{\varphi}$ if and only if:
$\sim \quad v$ can be reached from u by a path in G_{φ}, and \sim for every $a \in A,(B \vee a)$ is an implicate of f.

Properties of clause graphs

\sim By $D_{f}=\left(V_{f}, E_{f}\right)$ we denote $D_{\mathcal{I}(f)}$.
$\sim \operatorname{By} \operatorname{Cone}_{H}(u)$, where H is a digraph and u one of its vertices, we denote the set of vertices, from which there is a path to u in H.
\sim If $C=\mathcal{R}\left(C_{1}, C_{2}\right)$, then $\left(C_{1}, C\right) \in E_{f}$ and $\left(C_{2}, C\right) \in E_{f}$
\sim Therefore Cone $_{D_{f}}(C)$ is an exclusive set.
\sim If K is a strong component of D_{f} containing C, then Cone $_{D_{f}}(C) \backslash K$ is again an exclusive set.
\sim Although the size of D_{f} may be exponentially larger than φ, it is sufficient to work with D_{φ}, which can be constructed in polynomial time.

Back to decomposition lemma

\sim Let K_{1}, \ldots, K_{t} be strong components of D_{f} in topological order, and
\sim let us define $\mathcal{X}_{i}=\bigcup_{j=1}^{i} K_{j}, i=1, \ldots, t$.
\sim Every $\mathcal{X}_{i}, i=1, \ldots, t$ is an exclusive set and we can use it in decomposition lemma.
\sim Representation given by $\mathcal{X}_{i} \cap \varphi$ is sufficient for our needs.
~ Now we only have to solve partial problem for each strong component K_{i} of D_{f}.

Strong components

\sim We say, that an implicate $(A \vee u)$ of f is of
\sim type 0 , if no element of A belong to the same strong component of G_{f} as u, and it is of
\sim type 1, if one element of A belongs to the same strong component of G_{f} as u.
\sim If K is a strong component of D_{f} and f is CQ, then all clauses belonging to K are of the same type.
\sim Therefore we can assign this type to K as well.
\sim If K is of type 0 , we can leave the clauses in $K \cap \varphi$ as they are, primality and irredundancy of φ is sufficient in this case.

Type 1 (example)

~We shall demonstrate what we can do with strong components of type 1 on the following example:

$$
\begin{aligned}
\varphi & =(\bar{b} \vee c) \wedge(\bar{b} \vee e) \wedge(\bar{a} \vee \bar{c} \vee b) \\
& \wedge(\bar{a} \vee \bar{e} \vee b) \wedge(\bar{a} \vee \bar{d} \vee b) \wedge(\bar{a} \vee \bar{b} \vee d)
\end{aligned}
$$

Type 1 (example)

$\sim D_{\varphi}$ has two strong components:

$$
\begin{aligned}
& K_{1}=\{(\bar{b} \vee c),(\bar{b} \vee e)\} \\
& K_{2}=\{(\bar{a} \vee \bar{c} \vee b),(\bar{a} \vee \bar{e} \vee b),(\bar{a} \vee \bar{d} \vee b),(\bar{a} \vee \bar{b} \vee d)\}
\end{aligned}
$$

$\sim K_{1}$ is itself minimum (primality and irredundancy are sufficient for it).

Type 1 (example)

\sim We can find smaller representation of K_{2} by finding a smaller representation of strong component of G_{φ} containing b, c, d, and e, but blue arcs generated by clauses in K_{1} cannot change.

Type 1 (example)

\sim By this we get an equivalent minimum CNF:

$$
\begin{aligned}
\varphi^{\prime} & =(\bar{b} \vee c) \wedge(\bar{b} \vee e) \wedge(\bar{a} \vee \bar{e} \vee d) \\
& \wedge(\bar{a} \vee \bar{d} \vee e) \wedge(\bar{a} \vee \bar{e} \vee b) \\
&
\end{aligned}
$$

\sim Smallest representation of a strong component with some fixed arcs can be found in polynomial time.

Essential sets

~ Based on the minimization algorithm, we can define the essential sets.
\sim We have to distinguish, whether clause C_{i} belongs to the strong component $K\left(C_{i}\right)$ of type 0 , or 1 .
~We give only illustrative pictures of definitions of vectors defining the essential sets to give impression of their complexity.

Type 0

Type 1

Conclusions

~ There are other classes, about which we can show, that they are coverable. (E.g. interval functions)
~ Horn coverable functions form a nontrivial subclass of Horn functions.
~We still do not know, if
~ we can recognize, whether given Horn CNF represent a coverable function,
\sim and what is the complexity of minimization of Horn coverable functions.

