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Logic and Cutting Planes
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  

Logic and cutting planes

Prime implicates = undominated implications.  
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  

Logic and cutting planes

Prime implicates = undominated implications.  

This means that resolution is a complete inference method for clauses.
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  

Logic and cutting planes
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Theorem (Quine).  The resolution method generates all prime 
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  

Logic and cutting planes
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Theorem (Quine).  The resolution method generates all prime 
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  

Logic and cutting planes
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Theorem (Quine).  The resolution method generates all prime 
implicates of a set of logical clauses.  

Logic and cutting planes
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Logic and cutting planes

This might be regarded as the fundamental theorem of cutting 
plane theory.  

Theorem (Chvátal).  Every cutting plane for a 0-1 system 
Ax ≥ b can be generated by repeatedly taking nonnegative 
linear combinations and rounding up.  
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Logic and cutting planes

This might be regarded as the fundamental theorem of cutting 
plane theory.  

A key step of the proof uses the resolution method.

Theorem (Chvátal).  Every cutting plane for a 0-1 system 
Ax ≥ b can be generated by repeatedly taking nonnegative 
linear combinations and rounding up.  



Slide 16

Theorem (Chvátal).  Every cutting plane for a 0-1 system 
Ax ≥ b can be generated by repeatedly taking nonnegative 
linear combinations and rounding up.  

Logic and cutting planes

This might be regarded as the fundamental theorem of cutting 
plane theory.  

A key step of the proof uses the resolution method.

This suggests there are deep connections between resolution 
and cutting planes.
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A resolution step generates a rank 1 cut (i.e., a cut generated by 
one step of Chvátal’s method).

Logic and cutting planes
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A resolution step generates a rank 1 cut (i.e., a cut generated by 
one step of Chvátal’s method).

Logic and cutting planes
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A resolution step generates a rank 1 cut (i.e., a cut generated by 
one step of Chvátal’s method).

Logic and cutting planes
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Theorem (JNH).  Input resolution generates precisely those 
clauses that are rank 1 cuts.

Logic and cutting planes
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Input resolution = use at least one of the original clauses to obtain 
each resolvent
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Theorem (JNH).  Input resolution generates precisely those 
clauses that are rank 1 cuts.

Logic and cutting planes
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Theorem (JNH).  Input resolution generates precisely those 
clauses that are rank 1 cuts.

Logic and cutting planes
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By generating enough Chvátal cuts, we obtain the convex hull of 
the 0-1 solutions.

Logic and cutting planes
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By generating enough Chvatal cuts, we obtain the convex hull of 
the 0-1 solutions.

Logic and cutting planes

Can we obtain the convex hull by generating resolvents?
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By generating enough Chvatal cuts, we obtain the convex hull of 
the 0-1 solutions.

Logic and cutting planes

Can we obtain the convex hull by generating resolvents?

That is, do the prime implicates define the convex hull?
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By generating enough Chvatal cuts, we obtain the convex hull of 
the 0-1 solutions.

Logic and cutting planes

Can we obtain the convex hull by generating resolvents?

That is, do the prime implicates define the convex hull?

Not in general.

They do, if and only if the underlying set covering problems 
define convex hulls.
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Theorem (JNH).  The prime implicates of a clause set define an 
integral polytope if and only if all maximal monotone subsets of 
the prime implicates define an integral polytope.

Logic and cutting planes

monotone = every variable has the same sign in all occurrences.

A monotone subset of clauses is a set covering problem (after 
complementing negated variables).  
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Theorem (JNH).  The prime implicates of a clause set define an 
integral polytope if and only if all maximal monotone subsets of 
the prime implicates define an integral polytope.
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Theorem (JNH).  The prime implicates of a clause set define an 
integral polytope if and only if all maximal monotone subsets of 
the prime implicates define an integral polytope.

Logic and cutting planes
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Theorem (JNH).  The prime implicates of a clause set define an 
integral polytope if and only if all maximal monotone subsets of 
the prime implicates define an integral polytope.

Logic and cutting planes
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Theorem (JNH).  The prime implicates of a clause set define an 
integral polytope if and only if all maximal monotone subsets of 
the prime implicates define an integral polytope.

Logic and cutting planes
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Theorem (JNH).  The prime implicates of a clause set define an 
integral polytope if and only if all maximal monotone subsets of 
the prime implicates define an integral polytope.

Generalized by Guenin, and by Nobili & Sassano.

Logic and cutting planes
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Logic of 0-1 Inequalities
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Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.
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Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Can the resolution algorithm be generalized to 0-1 inequalities?
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Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Can the resolution algorithm be generalized to 0-1 inequalities?

Yes.  This results in a logical analog of Chvátal’s theorem.
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Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Can the resolution algorithm be generalized to 0-1 inequalities?

Yes.  This results in a logical analog of Chvátal’s theorem.

Theorem (JNH).  Classical resolution + diagonal summation 
generates all 0-1 prime implicates (up to logical equivalence).
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Logic of 0-1 inequalities

Diagonal summation:
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Logic of 0-1 inequalities

Diagonal summation:
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Logic and Linear Programming
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Logic and linear programming

Theorem:  A renamable Horn set of clauses is satisfiable if and 
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least 
one parent of each resolvent is a unit clause.
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Logic and linear programming

Theorem:  A renamable Horn set of clauses is satisfiable if and 
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least 
one parent of each resolvent is a unit clause.
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Logic and linear programming

Theorem:  A renamable Horn set of clauses is satisfiable if and 
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.
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Logic and linear programming

Theorem:  A renamable Horn set of clauses is satisfiable if and 
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least 
one parent of each resolvent is a unit clause.
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Logic and linear programming

We don’t know a necessary and sufficient condition for 
solubility by unit refutation.

But we can identify sufficient conditions by generalizing Horn 
sets.

For example, to extended Horn sets, which rely on a rounding 
property of linear programming.
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Logic and linear programming

Theorem:   A satisfiable Horn set can be solved by rounding 
down a solution of the linear programming relaxation.
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Logic and linear programming

Theorem:   A satisfiable Horn set can be solved by rounding 
down a solution of the linear programming relaxation.
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Logic and linear programming

Theorem:   A satisfiable Horn set can be solved by rounding 
down a solution of the linear programming relaxation.
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Logic and linear programming

Theorem:   A satisfiable Horn set can be solved by rounding 
down a solution of the linear programming relaxation.
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LP relaxation

Solution: (x1,x2,x3) = (1,1/2,1/2)
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Logic and linear programming

Theorem:   A satisfiable Horn set can be solved by rounding 
down a solution of the linear programming relaxation.
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Solution: (x1,x2,x3) = (1,1/2,1/2)

Round down: (x1,x2,x3) = (1,0,0)
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Logic and linear programming

To generalize this, we use the following:

Theorem (Chandrasekaran):   If Ax ≥ b has integral components and 
T is nonsingular such that:

- T and T−1 are integral
- Each row of T−1 contains at most one negative entry, namely −1
- Each row of AT−1 contains at most one negative entry, namely −1

Then if x solves Ax ≥ b, so does 1T Tx−   
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Logic and linear programming

A clause has the extended star-chain property if it corresponds to 
a set of edge-disjoint flows into the root of an arborescence and a 
flow on one additional chain.
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Logic and linear programming

A clause set is extended Horn if there is an arborescence for which 
every clause in the set has the extended star-chain property.
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Logic and linear programming

Theorem (Chandru and JNH).  A satisfiable extended Horn clause 
set can be solved by rounding a solution of the LP relaxation as
shown:
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Logic and linear programming

Corollary.  A satisfiable extended Horn clause set can be solved by 
assigning values as shown:
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Logic and linear programming

Theorem (Chandru and JNH).  A renamable extended Horn clause 
is satisfiable if and only if it has no unit refutation.
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Logic and linear programming

Theorem (Chandru and JNH).  A renamable extended Horn clause 
is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco & Swaminathan).  These 
results hold when then incoming chains are not edge disjoint.

.
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Logic and linear programming

Theorem (Chandru and JNH).  A renamable extended Horn clause 
is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco & Swaminathan).  These 
results hold when then incoming chains are not edge disjoint.

Corollary (Schlipf, Annexstein, Franco & Swaminathan).  A one-step 
lookahead algorithm solves a satisfiable extended Horn problem 
without knowledge of the arborescence.
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Inference duality
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Inference duality

Consider an optimization problem:

min ( )f x

x D∈
S Constraint set

Variable domain



Slide 61

Inference duality

Consider an optimization problem:

min ( )f x

x D∈
S Constraint set

Variable domain

An inference dual is:

( )
max

( )

  

P

v

f x v

v P,
⇒ ≥
∈ ∈ℝ

S

P

There is a proof P of f(x) ≥ v
from premises in S

Family of admissible proofs
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Inference duality

Linear programming:

min

0

cx

Ax b

x

≥
≥

Inference dual is:

( ) ( )
max

  

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Let Ax ≥ b ⇒ cx ≥ v when uAx ≥ ub
dominates cx ≥ v for some u ≥ 0.

dominates = uA ≤ c and ub ≥ v
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Inference duality

Linear programming:

min
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Ax b
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Inference dual is:
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max

  

P
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Ax b cx v

v P,
≥ ⇒ ≥
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This becomes the classical 
LP dual.

Let Ax ≥ b ⇒ cx ≥ v when uAx ≥ ub
dominates cx ≥ v for some u ≥ 0.

dominates = uA ≤ c and ub ≥ v
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Inference duality

Linear programming:

min

0

cx

Ax b

x

≥
≥

Inference dual is:

( ) ( )
max

  

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the classical 
LP dual.

This is a strong dual because the 
inference method is complete
(Farkas Lemma).

Let Ax ≥ b ⇒ cx ≥ v when uAx ≥ ub
dominates cx ≥ v for some u ≥ 0.

dominates = uA ≤ c and ub ≥ v
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Inference duality

General inequality constraints:

min ( )

( ) 0

f x

g x

x S

≥
∈

Inference dual is:

( ) ( )
max

( ) 0 ( )

  

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0 
implies f(x) ≥ v for some u ≥ 0.

implies = all x ∈ S satisfying ug(x) ≥ 0 
satisfy f(x) ≥ v.
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Inference duality

General inequality constraints:

min ( )

( ) 0

f x

g x

x S

≥
∈

Inference dual is:

( ) ( )
max

( ) 0 ( )

  

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the surrogate dual.

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0 
implies f(x) ≥ v for some u ≥ 0.

implies = all x ∈ S satisfying ug(x) ≥ 0 
satisfy f(x) ≥ v.
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Inference duality

General inequality constraints:

min ( )

( ) 0

f x

g x

x S

≥
∈

Inference dual is:

( ) ( )
max

( ) 0 ( )

  

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0 
dominates f(x) ≥ v for some u ≥ 0.
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Inference duality

This becomes the Lagrangean dual

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0 
dominates f(x) ≥ v for some u ≥ 0.

General inequality constraints:

min ( )

( ) 0

f x

g x

x S

≥
∈

Inference dual is:

( ) ( )
max

( ) 0 ( )

  

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P
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Inference duality

Integer linear programming:

min cx

Ax b

x S

≥
∈

Inference dual is:

Let Ax ≥ b ⇒ cx ≥ v when h(Ax) ≥ h(b) 
dominates cx ≥ v for some 
subadditive and homogeneous 
function h.

( ) ( )
max

  

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P
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Inference duality

Integer linear programming:

min cx

Ax b

x S

≥
∈

Inference dual is:

( ) ( )
max

  

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the subadditive dual.

Let Ax ≥ b ⇒ cx ≥ v when h(Ax) ≥ h(b) 
dominates cx ≥ v for some 
subadditive and homogeneous 
function h.



Slide 71

Inference duality

Integer linear programming:

min cx

Ax b

x S

≥
∈

Inference dual is:
This becomes the subadditive dual.

This is a strong dual because the 
inference method is complete, due to 
Chvátal’s theorem.

Appropriate Chvátal function is 
subadditive and can found by 
Gomory’s cutting plane method.

Let Ax ≥ b ⇒ cx ≥ v when h(Ax) ≥ h(b) 
dominates cx ≥ v for some 
subadditive and homogeneous 
function h.

( ) ( )
max

  

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P
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Inference duality

Inference duality permits a generalization of Benders 
decomposition.
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Inference duality permits a generalization of Benders 
decomposition.

In classical Benders, a Benders cut is a linear combination 
of the subproblem constraints using dual multipliers.
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Inference duality permits a generalization of Benders 
decomposition.

In classical Benders, a Benders cut is a linear combination 
of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for 
which the proof of optimality in the subproblem is still valid.
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Inference duality

Inference duality permits a generalization of Benders 
decomposition.

In classical Benders, a Benders cut is a linear combination 
of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for 
which the proof of optimality in the subproblem is still valid.

For general optimization, a Benders cut does the same, but the 
proof of optimality is a solution of the general inference dual.
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Inference duality

Inference duality permits a generalization of Benders 
decomposition.

In classical Benders, a Benders cut is a linear combination 
of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for 
which the proof of optimality in the subproblem is still valid.

For general optimization, a Benders cut does the same, but the 
proof of optimality is a solution of the general inference dual.

This has led to orders-of-magnitude speedups in solution of 
scheduling and other problems by logic-based Benders 
decomposition.
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Constraint Programming
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Constraint programming uses logical inference to reduce 
backtracking.

Constraint programming
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Inference takes the form of consistency maintenance.
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Constraint programming uses logical inference to reduce 
backtracking.

Inference takes the form of consistency maintenance.

A constraint set S containing variables x1, …, xn is k-consistent if 
- for any subject of variables x1, …, xj, xj+1

- and any partial assignment (x1, …, xj) = (v1, …, vj) that violates no 
constraint in S, 
there is a vj+1 such that (x1, …, xj+1) = (v1, …, vj+1) violates no 
constraint in S.

Constraint programming
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Constraint programming uses logical inference to reduce 
backtracking.

Inference takes the form of consistency maintenance.

A constraint set S containing variables x1, …, xn is k-consistent if 
- for any subject of variables x1, …, xj, xj+1

- and any partial assignment (x1, …, xj) = (v1, …, vj) that violates no 
constraint in S, 
there is a vj+1 such that (x1, …, xj+1) = (v1, …, vj+1) violates no 
constraint in S.

S is strongly k-consistent if it is j-consistent for j = 1, …, k.

Constraint programming
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
branching order), then S can be solved without backtracking.

Constraint programming
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
branching order), then S can be solved without backtracking.

Constraint programming
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
branching order), then S can be solved without backtracking.

Constraint programming
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We will show that this is strongly 3-consistent.

We can therefore solve it without backtracking
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
branching order), then S can be solved without backtracking.
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
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Theorem (Freuder). If constraint set S is strongly k-consistent, and 
its dependency graph has width less than k (with respect to the 
branching order), then S can be solved without backtracking.

Constraint programming
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Theorem.  Application of k-resolution makes a clause set 
strongly k-consistent.

k-resolution = generate only resolvents with fewer than k literals.

Constraint programming
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All resolvents have 3 or more 
literals.

Clause set is therefore strongly 
3-consistent, as claimed.
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Constraint programmers are primarily concerned with domain 
consistency.

Constraint programming
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consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Constraint programming
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consistency.

Constraint programming
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A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.
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Filtering algorithms that achieve or approximate domain 
consistency have been devised for a wide variety of constraints.
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consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Domain consistency = generalized arc consistency = hyperarc
consistency.

Filtering algorithms that achieve or approximate domain 
consistency have been devised for a wide variety of constraints.

The resolution algorithm achieves domain consistency for clause 
sets.

Constraint programming
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Constraint programmers are primarily concerned with domain 
consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Domain consistency = generalized arc consistency = hyperarc
consistency.

Filtering algorithms that achieve or approximate domain 
consistency have been devised for a wide variety of constraints.

The resolution algorithm achieves domain consistency for clause 
sets.

Filtering (= logical inference) is the workhorse of constraint 
programming, as solving relaxations is the workhorse of integer 
programming.

Constraint programming
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Good Logic Models
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Boolean models should be reformulated before solution to 
achieve two goals:

Good logic models
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Boolean models should be reformulated before solution to 
achieve two goals:

• A high degree of consistency (in the constraint programming 
sense)

• We talked about resolution as a means of achieving 
consistency.

Good logic models
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Boolean models should be reformulated before solution to 
achieve two goals:

• A high degree of consistency (in the constraint programming 
sense)

• We talked about resolution as a means of achieving 
consistency for boolean models.

• A tight linear relaxation.

• We talked about logic and cutting planes.

• Logic constraints can also be given convex hull 
formulations…

Good logic models
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Example:  cardinality rules

We have 3 possible sites for factories and 3 possible products.

Rule 1: If at least 2 plants are built, then at least 2 products should 
be made.

Rule 2. Only 1 product should be made, unless plants are built at 
both sites 1 and 2.

Good logic models

1 2 3 1 2 3( 2) ( 2)x x x y y y+ + ≥ ⇒ + + ≥

1 2 3 1 2( 2) ( 2)y y y x x+ + ≥ ⇒ + ≥
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Good logic models

1 2 3 1 2 3( 2) ( 2)x x x y y y+ + ≥ ⇒ + + ≥

Inequality form:

1 2 3 1 2 3

1 2 1 2 3

1 3 1 2 3

2 3 1 2 3

1 2 3 1 2

1 2 3 1 3

1 2 3 2 3

2( ) 2( ) 2

2( ) 2

2( ) 2

2( ) 2

2( ) 1

2( ) 1

2( ) 1

x x x y y y

x x y y y

x x y y y

x x y y y

x x x y y

x x x y y

x x x y y

− + + + + + ≥ −
− + + + + ≥ −
− + + + + ≥ −
− + + + + ≥ −
− − − + + ≥ −
− − − + + ≥ −
− − − + + ≥ −

1 2 1 2

1 2 1 3

1 2 2 3

1 3 1 2

1 3 1 3

1 3 2 3

2 3 1 2

2 3 1 3

2 3 2 3

1

1

1

1

1

1

1

1

1

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
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Good logic models

Inequality form:
1 2 3 1

1 2 1

1 3 1

2 3 1

1 2 3 2

1 2 1

1 3 1

2 3 1

2( ) 3

2( ) 1

2( ) 1

2( ) 1

2( ) 3

2( ) 1

2( ) 1

2( ) 1

y y y x

y y x

y y x

y y x

y y y x

y y x

y y x

y y x

− + + + ≥ −
− + + ≥ −
− + + ≥ −
− + + ≥ −
− + + + ≥ −
− + + ≥ −
− + + ≥ −
− + + ≥ −

1 2 3 1 2( 2) ( 2)y y y x x+ + ≥ ⇒ + ≥
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Good logic models

Theorem (Yan and JNH):  These describe the convex hull of the 
feasible set.

Generalized by Balas, Bockmayr, Pisaruk & Wolsey.


