Some Observations on Boolean Logic and Optimization

John Hooker
Carnegie Mellon University

January 2009

Outline

- Logic and cutting planes
- Logic of 0-1 inequalities
- Logic and linear programming
- Inference duality
- Constraint programming
- Good logic models

Logic and Cutting Planes

Slide 3

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

Prime implicates = undominated implications.

Slide 4

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

Prime implicates $=$ undominated implications.

This means that resolution is a complete inference method for clauses.

Slide 5

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

$$
\begin{aligned}
& x_{1} \vee \bar{X}_{2} \\
& \bar{x}_{1} \quad \vee x_{3} \\
& x_{2} \vee X_{3}
\end{aligned}
$$

Example

Slide 6

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

$$
\begin{array}{|ll|}
\hline x_{1} \vee \bar{x}_{2} \\
\bar{x}_{1} & \vee x_{3} \\
\hline & x_{2} \vee x_{3}
\end{array}
$$

Resolve on x_{1}

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

$$
\begin{aligned}
& x_{1} \vee \bar{x}_{2} \\
& \bar{x}_{1} \\
& \vee x_{3} \\
& x_{2}
\end{aligned} \vee x_{3},
$$

Resolve on x_{1}

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

\[

\]

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

$$
\begin{aligned}
& \begin{array}{ll}
x_{1} \vee \bar{X}_{2} \\
\bar{x}_{1} & \\
& \vee x_{3} \\
& x_{2} \vee x_{3}
\end{array} \\
& x_{1} \vee \bar{x}_{2} \\
& \begin{aligned}
\bar{x}_{1} & \vee x_{3} \\
x_{2} & \vee x_{3} \\
\bar{x}_{2} & \vee x_{3}
\end{aligned} \\
& x_{3} \\
& \text { Resolve on } x_{2}
\end{aligned}
$$

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

$$
\begin{aligned}
& x_{1} \vee \bar{X}_{2} \\
& \bar{x}_{1} \quad \vee x_{3} \quad \bar{x}_{1} \quad \vee x_{3} \\
& X_{2} \vee X_{3} \\
& x_{1} \vee \bar{x}_{2}
\end{aligned}
$$

> Drop redundant clauses

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

\[

\]

$$
X_{1} \vee \bar{X}_{2}
$$

Logic and cutting planes

Theorem (Quine). The resolution method generates all prime implicates of a set of logical clauses.

\[

\]

X_{3}
Prime implicates remain

Logic and cutting planes

Theorem (Chvátal). Every cutting plane for a $0-1$ system $A x \geq b$ can be generated by repeatedly taking nonnegative linear combinations and rounding up.

This might be regarded as the fundamental theorem of cutting plane theory.

Logic and cutting planes

Theorem (Chvátal). Every cutting plane for a $0-1$ system $A x \geq b$ can be generated by repeatedly taking nonnegative linear combinations and rounding up.

This might be regarded as the fundamental theorem of cutting plane theory.

A key step of the proof uses the resolution method.

Logic and cutting planes

Theorem (Chvátal). Every cutting plane for a $0-1$ system $A x \geq b$ can be generated by repeatedly taking nonnegative linear combinations and rounding up.

This might be regarded as the fundamental theorem of cutting plane theory.

A key step of the proof uses the resolution method.
This suggests there are deep connections between resolution and cutting planes.

Slide 16

Logic and cutting planes

A resolution step generates a rank 1 cut (i.e., a cut generated by one step of Chvátal's method).

$$
\begin{array}{llll}
x_{1} \vee \bar{x}_{2} & x_{1}+\left(1-\bar{x}_{2}\right) & \geq 1 & \text { Convert to 0-1 } \\
\bar{x}_{1} & \vee x_{3} & \left(1-x_{1}\right) & +x_{3} \geq 1
\end{array} \text { inequalities }
$$

Logic and cutting planes

A resolution step generates a rank 1 cut (i.e., a cut generated by one step of Chvátal's method).

$$
\begin{array}{llll}
x_{1} \vee \bar{x}_{2} \\
\bar{x}_{1} \\
x_{1} & +\left(1-\bar{x}_{2}\right) & \geq 1 & (1 / 2) \\
& \left(1-x_{1}\right) & x_{3} & \geq 1 \\
& & (1 / 2) \\
& & \left(1-x_{2}\right) \\
& & \geq 0 & (1 / 2) \\
x_{3} & \geq 0 & (1 / 2)
\end{array}
$$

$$
\left(1-\bar{x}_{2}\right)+x_{3} \geq 1 / 2
$$

Take linear combination

Slide 18

Logic and cutting planes

A resolution step generates a rank 1 cut (i.e., a cut generated by one step of Chvátal's method).

$$
\begin{aligned}
& x_{1} \vee \bar{x}_{2} \\
& \bar{x}_{1} \quad \vee x_{3} \\
& x_{1}+\left(1-\bar{x}_{2}\right) \geq 1 \quad(1 / 2) \\
& \left(1-x_{1}\right)+x_{3} \geq 1 \quad(1 / 2) \\
& \left(1-x_{2}\right) \quad \geq 0 \quad(1 / 2) \\
& x_{3} \geq 0 \quad(1 / 2)
\end{aligned}
$$

	$\left(1-\bar{x}_{2}\right)+x_{3} \geq 1 / 2$
$\bar{x}_{2} \vee x_{3} \quad$	$\left(1-\bar{x}_{2}\right)+x_{3} \geq 1$

Resolvent

Slide 19

Logic and cutting planes

Theorem (JNH). Input resolution generates precisely those clauses that are rank 1 cuts.

Result of input resolution
Input resolution = use at least one of the original clauses to obtain each resolvent

Slide 20

Logic and cutting planes

Theorem (JNH). Input resolution generates precisely those clauses that are rank 1 cuts.

$x_{1} \vee \bar{x}_{2}$	$\begin{aligned} & x_{1} \\ & \left(1-x_{1}\right) \end{aligned}$	$+\left(1-x_{2}\right) \quad \geq 1 \quad(1 / 4)$		
			$+x_{3} \geq 1$	(1/4)
$x_{2} \vee x_{3}$		x_{2}	$+x_{3} \geq 1$	(1/2)
		(1- x_{2})	≥ 0	(1/4)
χ_{3}			$x_{3} \geq 0$	(1/4)
Resu	solutio		$x_{3} \geq 1$	$4 \mathrm{Tal}$

Slide 21

Logic and cutting planes

Theorem (JNH). Input resolution generates precisely those clauses that are rank 1 cuts.

Slide 22

Logic and cutting planes

By generating enough Chvátal cuts, we obtain the convex hull of the 0-1 solutions.

Slide 23

Logic and cutting planes

By generating enough Chvatal cuts, we obtain the convex hull of the 0-1 solutions.

Can we obtain the convex hull by generating resolvents?

Logic and cutting planes

By generating enough Chvatal cuts, we obtain the convex hull of the $0-1$ solutions.

Can we obtain the convex hull by generating resolvents?
That is, do the prime implicates define the convex hull?

Slide 25

Logic and cutting planes

By generating enough Chvatal cuts, we obtain the convex hull of the $0-1$ solutions.

Can we obtain the convex hull by generating resolvents?
That is, do the prime implicates define the convex hull?
Not in general.
They do, if and only if the underlying set covering problems define convex hulls.

Logic and cutting planes

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal monotone subsets of the prime implicates define an integral polytope.
monotone = every variable has the same sign in all occurrences.
A monotone subset of clauses is a set covering problem (after complementing negated variables).

Slide 27

Logic and cutting planes

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal monotone subsets of the prime implicates define an integral polytope.
$x_{1} \vee x_{2}$
$x_{1} \quad \vee x_{3}$
$\bar{x}_{2} \vee X_{3}$

Prime
implicates

Slide 28

Logic and cutting planes

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal monotone subsets of the prime implicates define an integral polytope.
$x_{1} \vee x_{2}$
$x_{1} \vee x_{2}$
$x_{1} \quad \vee x_{3}$
$X_{1} \quad \vee X_{3}$
$\bar{x}_{2} \vee x_{3}$

Slide 29

Logic and cutting planes

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal monotone subsets of the prime implicates define an integral polytope.
$x_{1} \vee x_{2}$
$x_{1} \quad \vee x_{3}$ $\bar{x}_{2} \vee x_{3}$

Prime
implicates
$x_{1} \vee x_{2}$
$x_{1} \quad \vee x_{3}$

$$
x_{1} \quad \vee x_{3}
$$

$$
\bar{x}_{2} \vee x_{3}
$$

Maximal monotone subsets

$$
\begin{aligned}
& x_{1}+x_{2} \quad \geq 1 \\
& x_{1}+x_{3} \geq 1
\end{aligned}
$$

$$
x_{1} \quad+x_{3} \geq 1
$$

$$
\left(1-x_{2}\right)+x_{3} \geq 1
$$

These systems define integral polytopes

Slide 30

Logic and cutting planes

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal monotone subsets of the prime implicates define an integral polytope.

$x_{1} \vee x_{2}$	$x_{1} \vee x_{2}$	$x_{1}+x_{2} \quad \geq 1$	$x_{1}+x_{2} \quad \geq 1$
$x_{1} \quad \vee x_{3}$	$x_{1} \vee x_{3}$	$x_{1}+x_{3} \geq 1$	$x_{1} \quad+x_{3} \geq 1$
$\bar{x}_{2} \vee x_{3}$		$x_{1} \quad+x_{3} \geq 1$	$\left(1-x_{2}\right)+x_{3} \geq 1$
Prime	$\bar{x}_{2} \vee x_{3}$	$\left(1-x_{2}\right)+x_{3} \geq 1$	Therefore this
implicates	Maximal monotone subsets	These systems define integral polytopes	system defines an integral polytope

Slide 31

Logic and cutting planes

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal monotone subsets of the prime implicates define an integral polytope.
Generalized by Guenin, and by Nobili \& Sassano.

Slide 32

Logic of 0-1 Inequalities

Slide 33

Logic of 0-1 inequalities

$0-1$ inequalities can be viewed as logical propositions.

Logic of 0-1 inequalities

$0-1$ inequalities can be viewed as logical propositions.
Can the resolution algorithm be generalized to $0-1$ inequalities?

Slide 35

Logic of 0-1 inequalities

$0-1$ inequalities can be viewed as logical propositions.
Can the resolution algorithm be generalized to $0-1$ inequalities?
Yes. This results in a logical analog of Chvátal's theorem.

Logic of 0-1 inequalities

$0-1$ inequalities can be viewed as logical propositions.
Can the resolution algorithm be generalized to 0-1 inequalities?
Yes. This results in a logical analog of Chvátal's theorem.

Theorem (JNH). Classical resolution + diagonal summation generates all 0-1 prime implicates (up to logical equivalence).

Logic of 0-1 inequalities

Diagonal summation:

$$
\begin{array}{rlr}
x_{1}+5 x_{2}+3 x_{3}+x_{4} & \geq 4 & \begin{array}{l}
\text { Each inequality is implied by } \\
2 x_{1}+4 x_{2}+3 x_{3}+x_{4} \geq 4 \\
2 x_{1}+5 x_{2}+2 x_{3}+x_{4} \geq 4 \\
2 x_{1}+5 x_{2}+3 x_{3}
\end{array}
\end{array} \begin{array}{ll}
\text { an inequality in the set to } \\
2 x_{1}+5 x_{2}+3 x_{3}+x_{4} & \text { which 0-1 resolution is } \\
& \\
& \\
& \text { implied. }
\end{array}
$$

Logic of 0-1 inequalities

Diagonal summation:

$$
\begin{aligned}
& x_{1}+5 x_{2}+3 x_{3}+x_{4} \geq 4 \text { Each inequality is implied by } \\
& 2 x_{1}+4 x_{2}+3 x_{3}+x_{4} \geq 4 \text { an inequality in the set to } \\
& 2 x_{1}+5 x_{2}+2 x_{3}+x_{4} \geq 4 \text { which 0-1 resolution is } \\
& \text { implied. }
\end{aligned}
$$

Diagonal sum

Logic and Linear Programming

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and only if it has a unit refutation.

Horn = at most one positive literal per clause
Renamable Horn = Horn after complementing some variables.
Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and only if it has a unit refutation.
Horn = at most one positive literal per clause
Renamable Horn = Horn after complementing some variables.
Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

$$
\begin{aligned}
& x_{1} \\
& \bar{x}_{1} \vee \bar{x}_{2} \\
& \bar{x}_{1} \vee \vee x_{3} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}
\end{aligned}
$$

Slide 42
Horn set

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and only if it has a unit refutation.

Horn = at most one positive literal per clause
Renamable Horn = Horn after complementing some variables.
Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

x_{1}	x_{1}
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \bar{x}_{2}$
$\bar{x}_{1} \vee x_{3}$	$\bar{x}_{1} \vee x_{3}$
$\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$	$\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$

Slide 43
Horn set
Unit resolution

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and only if it has a unit refutation.

Horn = at most one positive literal per clause
Renamable Horn = Horn after complementing some variables.
Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

x_{1}	x_{1}	x_{1}
$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \bar{x}_{2}$	$\bar{x}_{1} \vee \bar{x}_{2}$
$\bar{x}_{1} \vee x_{3}$	$\bar{x}_{1} \vee x_{3}$	$\bar{x}_{1} \vee x_{3}$
$\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$	$\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$	$\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$
Horn set	Unit resolution	Unit resolution

Logic and linear programming

We don't know a necessary and sufficient condition for solubility by unit refutation.
But we can identify sufficient conditions by generalizing Horn sets.

For example, to extended Horn sets, which rely on a rounding property of linear programming.

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding down a solution of the linear programming relaxation.

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding down a solution of the linear programming relaxation.

$$
\begin{aligned}
& x_{1} \\
& \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \\
& \bar{x}_{2} \vee \bar{x}_{3} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} \\
& \text { Horn set }
\end{aligned}
$$

Slide 47

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding down a solution of the linear programming relaxation.

x_{1}	x_{1}	≥ 1
$\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}$	$\left(1-x_{1}\right)+\left(1-x_{2}\right)+x_{3}$	≥ 1
$\bar{x}_{2} \vee \bar{x}_{3}$	$\quad\left(1-x_{2}\right)+\left(1-x_{3}\right) \geq 1$	
$\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}$	$\left(1-x_{1}\right)+x_{2} \quad+\left(1-x_{3}\right) \geq 1$	
Horn set	$0 \leq x_{j} \leq 1$	
	LP relaxation	

Slide 48

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding down a solution of the linear programming relaxation.

$$
\begin{aligned}
& x_{1} \\
& \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \\
& \bar{x}_{2} \vee \bar{x}_{3} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} \\
& \text { Horn set }
\end{aligned}
$$

$$
\begin{array}{lr}
x_{1} & \geq 1 \\
\left(1-x_{1}\right)+\left(1-x_{2}\right)+x_{3} & \geq 1 \\
\left(1-x_{2}\right)+\left(1-x_{3}\right) & \geq 1 \\
\left(1-x_{1}\right)+x_{2} \quad+\left(1-x_{3}\right) & \geq 1 \\
0 \leq x_{j} \leq 1
\end{array}
$$

Solution: $\left(x_{1}, x_{2}, x_{3}\right)=(1,1 / 2,1 / 2)$

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding down a solution of the linear programming relaxation.

$$
\begin{aligned}
& x_{1} \\
& \bar{x}_{1} \vee \bar{x}_{2} \vee x_{3} \\
& \bar{x}_{2} \vee \bar{x}_{3} \\
& \bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} \\
& \text { Horn set }
\end{aligned}
$$

$$
\begin{array}{lr}
x_{1} & \geq 1 \\
\left(1-x_{1}\right)+\left(1-x_{2}\right)+x_{3} & \geq 1 \\
\quad\left(1-x_{2}\right)+\left(1-x_{3}\right) & \geq 1 \\
\left(1-x_{1}\right)+x_{2} \quad+\left(1-x_{3}\right) & \geq 1 \\
0 \leq x_{j} \leq 1 & \\
\text { LP relaxation } &
\end{array}
$$

Solution: $\left(x_{1}, x_{2}, x_{3}\right)=(1,1 / 2,1 / 2)$
Round down: $\left(x_{1}, x_{2}, x_{3}\right)=(1,0,0)$
Slide 50

Logic and linear programming

To generalize this, we use the following:
Theorem (Chandrasekaran): If $A x \geq b$ has integral components and T is nonsingular such that:

- T and T^{-1} are integral
- Each row of T^{-1} contains at most one negative entry, namely -1
- Each row of $A T^{-1}$ contains at most one negative entry, namely -1

Then if x solves $A x \geq b$, so does $T^{-1}\lceil T x\rceil$

Logic and linear programming

A clause has the extended star-chain property if it corresponds to a set of edge-disjoint flows into the root of an arborescence and a flow on one additional chain.

Logic and linear programming

A clause set is extended Horn if there is an arborescence for which every clause in the set has the extended star-chain property.

Logic and linear programming

Theorem (Chandru and JNH). A satisfiable extended Horn clause set can be solved by rounding a solution of the LP relaxation as shown:

Slide 54

$$
\bar{x}_{1} \vee \bar{x}_{3} \vee \bar{x}_{4} \vee \bar{x}_{5} \vee x_{6} \vee x_{7}
$$

Logic and linear programming

Corollary. A satisfiable extended Horn clause set can be solved by assigning values as shown:

Logic and linear programming

Theorem (Chandru and JNH). A renamable extended Horn clause is satisfiable if and only if it has no unit refutation.

Logic and linear programming

Theorem (Chandru and JNH). A renamable extended Horn clause is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco \& Swaminathan). These results hold when then incoming chains are not edge disjoint.

Logic and linear programming

Theorem (Chandru and JNH). A renamable extended Horn clause is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco \& Swaminathan). These results hold when then incoming chains are not edge disjoint.

Corollary (Schlipf, Annexstein, Franco \& Swaminathan). A one-step lookahead algorithm solves a satisfiable extended Horn problem without knowledge of the arborescence.

Inference duality

Inference duality

Consider an optimization problem:

```
min}f(x
S Constraint set
x\inD\longleftarrow` Variable domain
```


Inference duality

Consider an optimization problem:

```
min}f(x
S « Constraint set
x\inD\longleftarrow` Variable domain
```

An inference dual is:
There is a proof P of $f(x) \geq v$
$\max v$ from premises in S
$S \stackrel{P}{\Rightarrow}(f(x) \geq v)$
Family of admissible proofs

Slide 61

Inference duality

Linear programming:
$\min c x$

$$
\begin{aligned}
& A x \geq b \\
& x \geq 0
\end{aligned}
$$

Inference dual is:

$\max v$

$$
(A x \geq b) \stackrel{P}{\Rightarrow}(c x \geq v)
$$

$$
v \in \mathbb{R}, \quad P \in \mathscr{P}
$$

Let $A x \geq b \Rightarrow c x \geq v$ when $u A x \geq u b$ dominates $c x \geq v$ for some $u \geq 0$.
dominates $=u A \leq c$ and $u b \geq v$

Slide 62

Inference duality

Linear programming:
$\min c x$

$$
\begin{aligned}
& A x \geq b \\
& x \geq 0
\end{aligned}
$$

Inference dual is:
$\max v$
$(A x \geq b) \stackrel{P}{\Rightarrow}(c x \geq v)$
$v \in \mathbb{R}, \quad P \in \mathscr{P}$

Let $A x \geq b \Rightarrow c x \geq v$ when $u A x \geq u b$ dominates $c x \geq v$ for some $u \geq 0$.
dominates $=u A \leq c$ and $u b \geq v$

This becomes the classical LP dual.

Slide 63

Inference duality

Linear programming:
$\min c x$

$$
\begin{aligned}
& A x \geq b \\
& x \geq 0
\end{aligned}
$$

Inference dual is:

$\max v$

$$
(A x \geq b) \stackrel{P}{\Rightarrow}(c x \geq v)
$$

$$
v \in \mathbb{R}, \quad P \in \mathscr{P}
$$

Let $A x \geq b \Rightarrow c x \geq v$ when $u A x \geq u b$ dominates $c x \geq v$ for some $u \geq 0$.
dominates $=u A \leq c$ and $u b \geq v$

This becomes the classical LP dual.

This is a strong dual because the inference method is complete (Farkas Lemma).

Slide 64

Inference duality

General inequality constraints:
$\min f(x)$
$g(x) \geq 0$
$x \in S$

Let $g(x) \geq 0 \Rightarrow f(x) \geq v$ when $u g(x) \geq 0$ implies $f(x) \geq v$ for some $u \geq 0$.
implies $=$ all $x \in S$ satisfying $u g(x) \geq 0$ satisfy $f(x) \geq v$.

Inference dual is:

$\max v$

$$
\begin{aligned}
& (g(x) \geq 0) \stackrel{P}{\Rightarrow}(f(x) \geq v) \\
& v \in \mathbb{R}, \quad P \in \mathscr{P}
\end{aligned}
$$

Slide 65

Inference duality

General inequality constraints:
$\min f(x)$
$g(x) \geq 0$
$x \in S$

Inference dual is:
$\max v$

$$
\begin{aligned}
& (g(x) \geq 0) \stackrel{P}{\Rightarrow}(f(x) \geq v) \\
& v \in \mathbb{R}, \quad P \in \mathscr{P}
\end{aligned}
$$

Let $g(x) \geq 0 \Rightarrow f(x) \geq v$ when $u g(x) \geq 0$ implies $f(x) \geq v$ for some $u \geq 0$.
implies $=$ all $x \in S$ satisfying $u g(x) \geq 0$ satisfy $f(x) \geq v$.

This becomes the surrogate dual.

Slide 66

Inference duality

General inequality constraints:

```
min}f(x
\[
g(x) \geq 0
\]
```

$$
x \in S
$$

Inference dual is:
$\max v$

$$
\begin{aligned}
& (g(x) \geq 0) \stackrel{P}{\Rightarrow}(f(x) \geq v) \\
& v \in \mathbb{R}, \quad P \in \mathscr{P}
\end{aligned}
$$

Let $g(x) \geq 0 \Rightarrow f(x) \geq v$ when $u g(x) \geq 0$ dominates $f(x) \geq v$ for some $u \geq 0$.

Slide 67

Inference duality

General inequality constraints:

$$
\begin{array}{ll}
\min f(x) & \text { Let } g(x) \geq 0 \Rightarrow f(x) \geq v \text { when } u g(x) \geq 0 \\
g(x) \geq 0 & \text { dominates } f(x) \geq v \text { for some } u \geq 0 .
\end{array}
$$

$$
x \in S
$$

Inference dual is:
$\max v$

$$
\begin{aligned}
& (g(x) \geq 0) \stackrel{P}{\Rightarrow}(f(x) \geq v) \\
& v \in \mathbb{R}, \quad P \in \mathscr{P}
\end{aligned}
$$

This becomes the Lagrangean dual

Slide 68

Inference duality

Integer linear programming:

$\min c x$
$A x \geq b$
$x \in S$

Inference dual is:

$\max v$

$$
(A x \geq b) \stackrel{P}{\Rightarrow}(c x \geq v)
$$

$$
v \in \mathbb{R}, \quad P \in \mathscr{P}
$$

Let $A x \geq b \Rightarrow c x \geq v$ when $h(A x) \geq h(b)$ dominates $c x \geq v$ for some subadditive and homogeneous function h.

Slide 69

Inference duality

Integer linear programming:

$\min c x$
$A x \geq b$
$x \in S$

Inference dual is:

$\max v$

$$
(A x \geq b) \stackrel{P}{\Rightarrow}(c x \geq v)
$$

$$
v \in \mathbb{R}, \quad P \in \mathscr{P}
$$

Let $A x \geq b \Rightarrow c x \geq v$ when $h(A x) \geq h(b)$ dominates $c x \geq v$ for some subadditive and homogeneous function h.

This becomes the subadditive dual.

Inference duality

Integer linear programming:

$\min c x$
$A x \geq b$
$x \in S$

Inference dual is:

$\max v$

$$
(A x \geq b) \stackrel{P}{\Rightarrow}(c x \geq v)
$$

$$
v \in \mathbb{R}, \quad P \in \mathscr{P}
$$

Slide 71

Let $A x \geq \mathrm{b} \Rightarrow c x \geq v$ when $h(A x) \geq h(b)$ dominates $c x \geq v$ for some subadditive and homogeneous function h.

This becomes the subadditive dual.
This is a strong dual because the inference method is complete, due to Chvátal's theorem.

Appropriate Chvátal function is subadditive and can found by Gomory's cutting plane method.

Inference duality

Inference duality permits a generalization of Benders decomposition.

Inference duality

Inference duality permits a generalization of Benders decomposition.

In classical Benders, a Benders cut is a linear combination of the subproblem constraints using dual multipliers.

Inference duality

Inference duality permits a generalization of Benders decomposition.

In classical Benders, a Benders cut is a linear combination of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for which the proof of optimality in the subproblem is still valid.

Inference duality

Inference duality permits a generalization of Benders decomposition.

In classical Benders, a Benders cut is a linear combination of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for which the proof of optimality in the subproblem is still valid.

For general optimization, a Benders cut does the same, but the proof of optimality is a solution of the general inference dual.

Inference duality

Inference duality permits a generalization of Benders decomposition.

In classical Benders, a Benders cut is a linear combination of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for which the proof of optimality in the subproblem is still valid.

For general optimization, a Benders cut does the same, but the proof of optimality is a solution of the general inference dual.

This has led to orders-of-magnitude speedups in solution of scheduling and other problems by logic-based Benders decomposition.

Constraint Programming

Constraint programming

Constraint programming uses logical inference to reduce backtracking.

Slide 78

Constraint programming

Constraint programming uses logical inference to reduce backtracking.

Inference takes the form of consistency maintenance.

Constraint programming

Constraint programming uses logical inference to reduce backtracking.

Inference takes the form of consistency maintenance.
A constraint set S containing variables x_{1}, \ldots, x_{n} is \boldsymbol{k}-consistent if - for any subject of variables $x_{1}, \ldots, x_{j}, x_{j+1}$

- and any partial assignment $\left(x_{1}, \ldots, x_{j}\right)=\left(v_{1}, \ldots, v_{j}\right)$ that violates no constraint in S,
there is a v_{j+1} such that $\left(x_{1}, \ldots, x_{j+1}\right)=\left(v_{1}, \ldots, v_{j+1}\right)$ violates no constraint in S.

Constraint programming

Constraint programming uses logical inference to reduce backtracking.

Inference takes the form of consistency maintenance.
A constraint set S containing variables x_{1}, \ldots, x_{n} is \boldsymbol{k}-consistent if - for any subject of variables $x_{1}, \ldots, x_{j}, x_{j+1}$

- and any partial assignment $\left(x_{1}, \ldots, x_{j}\right)=\left(v_{1}, \ldots, v_{j}\right)$ that violates no constraint in S,
there is a v_{j+1} such that $\left(x_{1}, \ldots, x_{j+1}\right)=\left(v_{1}, \ldots, v_{j+1}\right)$ violates no constraint in S.
S is strongly k-consistent if it is j-consistent for $j=1, \ldots, k$.

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

$$
\begin{array}{lll}
\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} & \\
x_{1} \vee \bar{x}_{2} & & \\
& & \vee x_{4} \\
& & \\
& & \\
& & x_{4} \vee x_{5}
\end{array}
$$

Dependency graph

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

$$
\begin{array}{lll}
\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} & \\
x_{1} \vee \bar{x}_{2} & & \\
& & \vee x_{4} \\
& & \\
& & \\
& & x_{4} \vee x_{5} \\
& \vee \bar{x}_{5} \vee x_{6}
\end{array}
$$

Dependency graph

Width $=$ max in-degree $=2$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

$$
\begin{aligned}
& \bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} \\
& x_{1} \vee \bar{x}_{2} \quad \vee x_{4}
\end{aligned}
$$

Dependency graph

$$
x_{3} \quad \vee x_{5}
$$

$$
x_{4} \vee \bar{x}_{5} \vee x_{6}
$$

Width $=$ max in-degree $=2$
We will show that this is strongly 3 -consistent.
We can therefore solve it without backtracking
Slide 85

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

$$
\begin{array}{lll}
\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} & \\
x_{1} \vee \bar{x}_{2} & & \\
& & \vee x_{4} \\
& & \\
& & \vee x_{5} \\
& & x_{4} \vee \bar{x}_{5} \vee x_{6}
\end{array}
$$

Dependency graph

Width $=\max$ in-degree $=2$
$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$
Slide 86

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{aligned}
\bar{x}_{2} \quad & \vee x_{4} \\
& x_{3} \\
& \vee x_{5} \\
& x_{4}
\end{aligned} \vee \vee \bar{x}_{5} \vee x_{6} .
$$

Width $=\max$ in-degree $=2$
$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$
Slide 87
0

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{aligned}
\bar{x}_{2} \quad & \vee x_{4} \\
& x_{3} \\
& \vee x_{5} \\
& x_{4}
\end{aligned} \vee \vee \bar{x}_{5} \vee x_{6} .
$$

Width $=\max$ in-degree $=2$
$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$
Slide 88
00

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{array}{lc}
x_{3} & \vee x_{5} \\
& x_{4} \vee \bar{x}_{5} \vee x_{6}
\end{array}
$$

Width $=\max$ in-degree $=2$

$$
\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}
\end{array}
$$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{array}{lc}
x_{3} & \vee x_{5} \\
& x_{4} \vee \bar{x}_{5} \vee x_{6}
\end{array}
$$

Width $=$ max in-degree $=2$
$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{gathered}
x_{5} \\
x_{4} \vee \bar{x}_{5} \vee x_{6}
\end{gathered}
$$

Width $=$ max in-degree $=2$
$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$
Slide 91
000

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{gathered}
x_{5} \\
x_{4} \vee \bar{x}_{5} \vee x_{6}
\end{gathered}
$$

Width $=$ max in-degree $=2$
$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\bar{x}_{5} \vee x_{6} \quad \underbrace{x_{5}}_{x_{2}} \text { Width = max in-degree }=2
$$

$\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}$
Slide 93
$0 \quad 0 \quad 0 \quad 0$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

$$
\begin{aligned}
& x_{5} \vee x_{6} \\
& \bar{x}_{5} \\
& \text { Width }=\text { max in-degree }=2
\end{aligned}
$$

$$
\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}
\end{array}
$$

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}
$$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

Width $=$ max in-degree $=2$

$$
\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}
\end{array}
$$

$$
\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}
$$

Constraint programming

Theorem (Freuder). If constraint set S is strongly k-consistent, and its dependency graph has width less than k (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

Width $=$ max in-degree $=2$

$$
\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}
$$

Constraint programming

Theorem. Application of \boldsymbol{k}-resolution makes a clause set strongly k-consistent.
k-resolution $=$ generate only resolvents with fewer than k literals.

$$
\begin{array}{ll}
\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3} & \text { All resolvents have } 3 \text { or more } \\
x_{1} \vee \bar{x}_{2} & \vee x_{4} \longleftarrow \\
& x_{3} \quad \text { literals. } \\
& \\
& x_{4} \vee x_{5} \vee \bar{x}_{5} \vee x_{6}
\end{array} \begin{aligned}
& \text { Clause set is therefore strongly } \\
& \text { 3-consistent, as claimed. }
\end{aligned}
$$

Constraint programming

Constraint programmers are primarily concerned with domain consistency.

Constraint programming

Constraint programmers are primarily concerned with domain consistency.

A constraint set S is domain consistent if for any given variable x_{j} and any value v_{j} in its domain, $x_{j}=v_{j}$ in some solution of S.

Constraint programming

Constraint programmers are primarily concerned with domain consistency.

A constraint set S is domain consistent if for any given variable x_{j} and any value v_{j} in its domain, $x_{j}=v_{j}$ in some solution of S.
Domain consistency $=$ generalized arc consistency $=$ hyperarc consistency.

Constraint programming

Constraint programmers are primarily concerned with domain consistency.

A constraint set S is domain consistent if for any given variable x_{j} and any value v_{j} in its domain, $x_{j}=v_{j}$ in some solution of S.
Domain consistency $=$ generalized arc consistency $=$ hyperarc consistency.

Filtering algorithms that achieve or approximate domain consistency have been devised for a wide variety of constraints.

Constraint programming

Constraint programmers are primarily concerned with domain consistency.

A constraint set S is domain consistent if for any given variable x_{j} and any value v_{j} in its domain, $x_{j}=v_{j}$ in some solution of S.
Domain consistency $=$ generalized arc consistency $=$ hyperarc consistency.

Filtering algorithms that achieve or approximate domain consistency have been devised for a wide variety of constraints.

The resolution algorithm achieves domain consistency for clause sets.

Constraint programming

Constraint programmers are primarily concerned with domain consistency.

A constraint set S is domain consistent if for any given variable x_{j} and any value v_{j} in its domain, $x_{j}=v_{j}$ in some solution of S.
Domain consistency $=$ generalized arc consistency $=$ hyperarc consistency.

Filtering algorithms that achieve or approximate domain consistency have been devised for a wide variety of constraints.

The resolution algorithm achieves domain consistency for clause sets.

Filtering (= logical inference) is the workhorse of constraint programming, as solving relaxations is the workhorse of integer programming.
Slide 103

Good Logic Models

Good logic models

Boolean models should be reformulated before solution to achieve two goals:

Good logic models

Boolean models should be reformulated before solution to achieve two goals:

- A high degree of consistency (in the constraint programming sense)
- We talked about resolution as a means of achieving consistency.

Good logic models

Boolean models should be reformulated before solution to achieve two goals:

- A high degree of consistency (in the constraint programming sense)
- We talked about resolution as a means of achieving consistency for boolean models.
- A tight linear relaxation.
- We talked about logic and cutting planes.
- Logic constraints can also be given convex hull formulations...

Good logic models

Example: cardinality rules

We have 3 possible sites for factories and 3 possible products.
Rule 1: If at least 2 plants are built, then at least 2 products should be made.

Rule 2. Only 1 product should be made, unless plants are built at both sites 1 and 2 .

$$
\begin{gathered}
\left(x_{1}+x_{2}+x_{3} \geq 2\right) \Rightarrow\left(y_{1}+y_{2}+y_{3} \geq 2\right) \\
\left(y_{1}+y_{2}+y_{3} \geq 2\right) \Rightarrow\left(x_{1}+x_{2} \geq 2\right)
\end{gathered}
$$

Good logic models

$$
\left(x_{1}+x_{2}+x_{3} \geq 2\right) \Rightarrow\left(y_{1}+y_{2}+y_{3} \geq 2\right)
$$

Inequality form:

$$
\begin{aligned}
& -2\left(x_{1}+x_{2}+x_{3}\right)+2\left(y_{1}+y_{2}+y_{3}\right) \geq-2 \\
& -2\left(x_{1}+x_{2}\right)+y_{1}+y_{2}+y_{3} \geq-2 \\
& -2\left(x_{1}+x_{3}\right)+y_{1}+y_{2}+y_{3} \geq-2 \\
& -2\left(x_{2}+x_{3}\right)+y_{1}+y_{2}+y_{3} \geq-2 \\
& -x_{1}-x_{2}-x_{3}+2\left(y_{1}+y_{2}\right) \geq-1 \\
& -x_{1}-x_{2}-x_{3}+2\left(y_{1}+y_{3}\right) \geq-1 \\
& -x_{1}-x_{2}-x_{3}+2\left(y_{2}+y_{3}\right) \geq-1
\end{aligned}
$$

Slide 109

Good logic models

$$
\left(y_{1}+y_{2}+y_{3} \geq 2\right) \Rightarrow\left(x_{1}+x_{2} \geq 2\right)
$$

Inequality form:

$$
\begin{aligned}
& -2\left(y_{1}+y_{2}+y_{3}\right)+x_{1} \geq-3 \\
& -2\left(y_{1}+y_{2}\right)+x_{1} \geq-1 \\
& -2\left(y_{1}+y_{3}\right)+x_{1} \geq-1 \\
& -2\left(y_{2}+y_{3}\right)+x_{1} \geq-1 \\
& -2\left(y_{1}+y_{2}+y_{3}\right)+x_{2} \geq-3 \\
& -2\left(y_{1}+y_{2}\right)+x_{1} \geq-1 \\
& -2\left(y_{1}+y_{3}\right)+x_{1} \geq-1 \\
& -2\left(y_{2}+y_{3}\right)+x_{1} \geq-1
\end{aligned}
$$

Good logic models

Theorem (Yan and JNH): These describe the convex hull of the feasible set.

Generalized by Balas, Bockmayr, Pisaruk \& Wolsey.

Slide 111

