
Slide 1

Some Observations on Boolean Logic
and Optimization

John Hooker
Carnegie Mellon University

January 2009

Slide 2

Outline

• Logic and cutting planes

• Logic of 0-1 inequalities

• Logic and linear programming

• Inference duality

• Constraint programming

• Good logic models

Slide 3

Logic and Cutting Planes

Slide 4

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

Prime implicates = undominated implications.

Slide 5

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

Prime implicates = undominated implications.

This means that resolution is a complete inference method for clauses.

Slide 6

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

Example

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

Slide 7

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

Resolve on x1

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

Slide 8

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

Resolve on x1

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1

2 3

3

2 3

x x

x x

x x

x x

∨
∨
∨

∨

Slide 9

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1

2 3

3

2 3

x x

x x

x x

x x

∨
∨
∨

∨

Resolve on x2

Slide 10

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1

2 3

3

2 3

x x

x x

x x

x x

∨
∨
∨

∨ 1 2

1 3

2

2 3

3

3

x x

x x

x x

x x

x

∨
∨

∨
∨

Resolve on x2

Slide 11

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1

2 3

3

2 3

x x

x x

x x

x x

∨
∨
∨

∨ 1 2

1 3

2

2 3

3

3

x x

x x

x x

x x

x

∨
∨

∨
∨

Drop redundant
clauses

Slide 12

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1

2 3

3

2 3

x x

x x

x x

x x

∨
∨
∨

∨ 1 2

1 3

2

2 3

3

3

x x

x x

x x

x x

x

∨
∨

∨
∨

1 2

3

x x

x

∨

Drop redundant
clauses

Slide 13

Theorem (Quine). The resolution method generates all prime
implicates of a set of logical clauses.

Logic and cutting planes

1 2

3

x x

x

∨

Prime implicates
remain

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1

2 3

3

2 3

x x

x x

x x

x x

∨
∨
∨

∨ 1 2

1 3

2

2 3

3

3

x x

x x

x x

x x

x

∨
∨

∨
∨

Slide 14

Logic and cutting planes

This might be regarded as the fundamental theorem of cutting
plane theory.

Theorem (Chvátal). Every cutting plane for a 0-1 system
Ax ≥ b can be generated by repeatedly taking nonnegative
linear combinations and rounding up.

Slide 15

Logic and cutting planes

This might be regarded as the fundamental theorem of cutting
plane theory.

A key step of the proof uses the resolution method.

Theorem (Chvátal). Every cutting plane for a 0-1 system
Ax ≥ b can be generated by repeatedly taking nonnegative
linear combinations and rounding up.

Slide 16

Theorem (Chvátal). Every cutting plane for a 0-1 system
Ax ≥ b can be generated by repeatedly taking nonnegative
linear combinations and rounding up.

Logic and cutting planes

This might be regarded as the fundamental theorem of cutting
plane theory.

A key step of the proof uses the resolution method.

This suggests there are deep connections between resolution
and cutting planes.

Slide 17

A resolution step generates a rank 1 cut (i.e., a cut generated by
one step of Chvátal’s method).

Logic and cutting planes

1 2

1 3

x x

x x

∨
∨

Convert to 0-1
inequalities

1 2

1 3

(1) 1

(1) 1

x x

x x

+ − ≥
− + ≥

Slide 18

A resolution step generates a rank 1 cut (i.e., a cut generated by
one step of Chvátal’s method).

Logic and cutting planes

1 2

1 3

x x

x x

∨
∨

Take linear
combination

1 2

1 3

2

3

(1/ 2)

(

(1) 1

(1) 1

(1)

1/ 2)

(1/ 2)

(1/ 2

0

0)

x x

x x

x

x

+ − ≥
− + ≥

− ≥
≥

2 3(1) 1/ 2x x− + ≥

Slide 19

A resolution step generates a rank 1 cut (i.e., a cut generated by
one step of Chvátal’s method).

Logic and cutting planes

1 2

1 3

x x

x x

∨
∨

1 2

1 3

2

3

(1/ 2)

(

(1) 1

(1) 1

(1)

1/ 2)

(1/ 2)

(1/ 2

0

0)

x x

x x

x

x

+ − ≥
− + ≥

− ≥
≥

2 3

2 3

(1) 1/ 2

(1) 1

x x

x x

− + ≥
− + ≥ Round up

2 3x x∨

Resolvent

Slide 20

Theorem (JNH). Input resolution generates precisely those
clauses that are rank 1 cuts.

Logic and cutting planes

1 2

3

1 3

2 3

x x

x x

x

x

x

∨
∨
∨

Result of input resolution

Input resolution = use at least one of the original clauses to obtain
each resolvent

Slide 21

Theorem (JNH). Input resolution generates precisely those
clauses that are rank 1 cuts.

Logic and cutting planes

1 2

3

1 3

2 3

x x

x x

x

x

x

∨
∨
∨

1 2

1 3

2 3

2

3

3

(1/ 4)

(1/ 4)

(

(1) 1

(1) 1

1

(1) 0

0

1/ 4

1/ 2)

(1/ 4)

(1/ 4)

x x

x x

x x

x

x

x

+ − ≥
− + ≥

+ ≥
− ≥

≥
≥

Result of input resolution
Take linear
combination

Slide 22

Theorem (JNH). Input resolution generates precisely those
clauses that are rank 1 cuts.

Logic and cutting planes

1 2

3

1 3

2 3

x x

x x

x

x

x

∨
∨
∨

1 2

1 3

2 3

2

3

3

3

(1) 1

(1) 1

1

(1/ 4)

(1/ 4)

(

(1) 0

0

1/

1/ 2)

(1/ 4)

(1/ 4

4

1

)

x x

x x

x x

x

x

x

x

+ − ≥
− + ≥

+ ≥
− ≥

≥
≥
≥Result of input resolution Round up

Slide 23

By generating enough Chvátal cuts, we obtain the convex hull of
the 0-1 solutions.

Logic and cutting planes

Slide 24

By generating enough Chvatal cuts, we obtain the convex hull of
the 0-1 solutions.

Logic and cutting planes

Can we obtain the convex hull by generating resolvents?

Slide 25

By generating enough Chvatal cuts, we obtain the convex hull of
the 0-1 solutions.

Logic and cutting planes

Can we obtain the convex hull by generating resolvents?

That is, do the prime implicates define the convex hull?

Slide 26

By generating enough Chvatal cuts, we obtain the convex hull of
the 0-1 solutions.

Logic and cutting planes

Can we obtain the convex hull by generating resolvents?

That is, do the prime implicates define the convex hull?

Not in general.

They do, if and only if the underlying set covering problems
define convex hulls.

Slide 27

Theorem (JNH). The prime implicates of a clause set define an
integral polytope if and only if all maximal monotone subsets of
the prime implicates define an integral polytope.

Logic and cutting planes

monotone = every variable has the same sign in all occurrences.

A monotone subset of clauses is a set covering problem (after
complementing negated variables).

Slide 28

Theorem (JNH). The prime implicates of a clause set define an
integral polytope if and only if all maximal monotone subsets of
the prime implicates define an integral polytope.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

Prime
implicates

Slide 29

Theorem (JNH). The prime implicates of a clause set define an
integral polytope if and only if all maximal monotone subsets of
the prime implicates define an integral polytope.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1 3

x x

x x

∨
∨

1 3

2 3

x x

x x

∨
∨Prime

implicates
Maximal

monotone
subsets

Slide 30

Theorem (JNH). The prime implicates of a clause set define an
integral polytope if and only if all maximal monotone subsets of
the prime implicates define an integral polytope.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1 3

x x

x x

∨
∨

1 3

2 3

x x

x x

∨
∨Prime

implicates
Maximal

monotone
subsets

1 2

1 3

1

1

x x

x x

+ ≥
+ ≥

1 3

2 3

1

(1) 1

x x

x x

+ ≥
− + ≥

These systems
define integral

polytopes

Slide 31

Theorem (JNH). The prime implicates of a clause set define an
integral polytope if and only if all maximal monotone subsets of
the prime implicates define an integral polytope.

Logic and cutting planes

1 2

1 3

2 3

x x

x x

x x

∨
∨
∨

1 2

1 3

x x

x x

∨
∨

1 3

2 3

x x

x x

∨
∨Prime

implicates
Maximal

monotone
subsets

1 2

1 3

1

1

x x

x x

+ ≥
+ ≥

1 3

2 3

1

(1) 1

x x

x x

+ ≥
− + ≥

These systems
define integral

polytopes

1 2

1 3

2 3

1

1

(1) 1

x x

x x

x x

+ ≥
+ ≥

− + ≥

Therefore this
system defines an
integral polytope

Slide 32

Theorem (JNH). The prime implicates of a clause set define an
integral polytope if and only if all maximal monotone subsets of
the prime implicates define an integral polytope.

Generalized by Guenin, and by Nobili & Sassano.

Logic and cutting planes

Slide 33

Logic of 0-1 Inequalities

Slide 34

Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Slide 35

Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Can the resolution algorithm be generalized to 0-1 inequalities?

Slide 36

Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Can the resolution algorithm be generalized to 0-1 inequalities?

Yes. This results in a logical analog of Chvátal’s theorem.

Slide 37

Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.

Can the resolution algorithm be generalized to 0-1 inequalities?

Yes. This results in a logical analog of Chvátal’s theorem.

Theorem (JNH). Classical resolution + diagonal summation
generates all 0-1 prime implicates (up to logical equivalence).

Slide 38

Logic of 0-1 inequalities

Diagonal summation:

1 2 3 4

1 2 3 4

1 2 3 4

1 2

1 2 3 4

3

5 3 4

2 4 3 4

2 5 2 4

2 5

3

3 4

2 5 5

x x x x

x x x x

x x x x

x x x

x x x x

+ + + ≥
+ + + ≥
+ +

+ + +

≥
+ + ≥

≥

+

Each inequality is implied by
an inequality in the set to
which 0-1 resolution is
implied.

Diagonal sum

Slide 39

Logic of 0-1 inequalities

Diagonal summation:

1

2

3

4

1

2 3 4

1 3 4

1 2 4

1 2 3

2 3 4

5 3 4

2 3 4

2 5 4

2 5 3 4

4

2

0

2 5 3 5

x

x

x

x x x

x x x

x x x

x x

x x

x x

x x

+ + + ≥
+ + + ≥
+ + + ≥
+ ≥

+ +
+ +

+ ≥

Each inequality is implied by
an inequality in the set to
which 0-1 resolution is
implied.

Diagonal sum

Slide 40

Logic and Linear Programming

Slide 41

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least
one parent of each resolvent is a unit clause.

Slide 42

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least
one parent of each resolvent is a unit clause.

1

1 2

1 3

1 2 3

x

x x

x x

x x x

∨
∨

∨ ∨

Horn set

Slide 43

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least
one parent of each resolvent is a unit clause.

1

1 2

1 3

1 2 3

x

x x

x x

x x x

∨
∨

∨ ∨

2

3

1 2

1

1

3

1

x

x

x

x

x

x x

x

∨
∨

∨

∨

Horn set Unit resolution

Slide 44

Logic and linear programming

Theorem: A renamable Horn set of clauses is satisfiable if and
only if it has a unit refutation.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least
one parent of each resolvent is a unit clause.

1

1 2

1 3

1 2 3

x

x x

x x

x x x

∨
∨

∨ ∨

2

3

1 2

1

1

3

1

x

x

x

x

x

x x

x

∨
∨

∨

∨

1

1

3

1

21

2

3x

x

x x

x x

x

x

∨
∨

∨ ∨

Horn set Unit resolution Unit resolution

Slide 45

Logic and linear programming

We don’t know a necessary and sufficient condition for
solubility by unit refutation.

But we can identify sufficient conditions by generalizing Horn
sets.

For example, to extended Horn sets, which rely on a rounding
property of linear programming.

Slide 46

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding
down a solution of the linear programming relaxation.

Slide 47

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding
down a solution of the linear programming relaxation.

1

1 2 3

2 3

1 2 3

x

x x x

x x

x x x

∨ ∨
∨

∨ ∨

Horn set

Slide 48

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding
down a solution of the linear programming relaxation.

1

1 2 3

2 3

1 2 3

x

x x x

x x

x x x

∨ ∨
∨

∨ ∨

Horn set

1

1 2 3

2 3

1 2 3

1

(1) (1) 1

(1) (1) 1

(1) (1) 1

0 1j

x

x x x

x x

x x x

x

≥
− + − + ≥

− + − ≥
− + + − ≥
≤ ≤

LP relaxation

Slide 49

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding
down a solution of the linear programming relaxation.

1

1 2 3

2 3

1 2 3

x

x x x

x x

x x x

∨ ∨
∨

∨ ∨

Horn set

1

1 2 3

2 3

1 2 3

1

(1) (1) 1

(1) (1) 1

(1) (1) 1

0 1j

x

x x x

x x

x x x

x

≥
− + − + ≥

− + − ≥
− + + − ≥
≤ ≤

LP relaxation

Solution: (x1,x2,x3) = (1,1/2,1/2)

Slide 50

Logic and linear programming

Theorem: A satisfiable Horn set can be solved by rounding
down a solution of the linear programming relaxation.

1

1 2 3

2 3

1 2 3

x

x x x

x x

x x x

∨ ∨
∨

∨ ∨

Horn set

1

1 2 3

2 3

1 2 3

1

(1) (1) 1

(1) (1) 1

(1) (1) 1

0 1j

x

x x x

x x

x x x

x

≥
− + − + ≥

− + − ≥
− + + − ≥
≤ ≤

LP relaxation

Solution: (x1,x2,x3) = (1,1/2,1/2)

Round down: (x1,x2,x3) = (1,0,0)

Slide 51

Logic and linear programming

To generalize this, we use the following:

Theorem (Chandrasekaran): If Ax ≥ b has integral components and
T is nonsingular such that:

- T and T−1 are integral
- Each row of T−1 contains at most one negative entry, namely −1
- Each row of AT−1 contains at most one negative entry, namely −1

Then if x solves Ax ≥ b, so does 1T Tx−   

Slide 52

Logic and linear programming

A clause has the extended star-chain property if it corresponds to
a set of edge-disjoint flows into the root of an arborescence and a
flow on one additional chain.

1 3 4 5 6 7x x x x x x∨ ∨ ∨ ∨ ∨

x1

x4

x2

x3

x5

x6

x7

Slide 53

Logic and linear programming

A clause set is extended Horn if there is an arborescence for which
every clause in the set has the extended star-chain property.

1 3 4 5 6 7x x x x x x∨ ∨ ∨ ∨ ∨

x1

x4

x2

x3

x5

x6

x7

Slide 54

Logic and linear programming

Theorem (Chandru and JNH). A satisfiable extended Horn clause
set can be solved by rounding a solution of the LP relaxation as
shown:

1 3 4 5 6 7x x x x x x∨ ∨ ∨ ∨ ∨

x1

x4

x2

x3

x5

x6

x7

down

down

up

Slide 55

Logic and linear programming

Corollary. A satisfiable extended Horn clause set can be solved by
assigning values as shown:

1 3 4 5 6 7x x x x x x∨ ∨ ∨ ∨ ∨

x1

x4

x2

x3

x5

x6

x7

0

0

1

Slide 56

Logic and linear programming

Theorem (Chandru and JNH). A renamable extended Horn clause
is satisfiable if and only if it has no unit refutation.

Slide 57

Logic and linear programming

Theorem (Chandru and JNH). A renamable extended Horn clause
is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco & Swaminathan). These
results hold when then incoming chains are not edge disjoint.

.

Slide 58

Logic and linear programming

Theorem (Chandru and JNH). A renamable extended Horn clause
is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco & Swaminathan). These
results hold when then incoming chains are not edge disjoint.

Corollary (Schlipf, Annexstein, Franco & Swaminathan). A one-step
lookahead algorithm solves a satisfiable extended Horn problem
without knowledge of the arborescence.

Slide 59

Inference duality

Slide 60

Inference duality

Consider an optimization problem:

min ()f x

x D∈
S Constraint set

Variable domain

Slide 61

Inference duality

Consider an optimization problem:

min ()f x

x D∈
S Constraint set

Variable domain

An inference dual is:

()
max

()

P

v

f x v

v P,
⇒ ≥
∈ ∈ℝ

S

P

There is a proof P of f(x) ≥ v
from premises in S

Family of admissible proofs

Slide 62

Inference duality

Linear programming:

min

0

cx

Ax b

x

≥
≥

Inference dual is:

() ()
max

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Let Ax ≥ b ⇒ cx ≥ v when uAx ≥ ub
dominates cx ≥ v for some u ≥ 0.

dominates = uA ≤ c and ub ≥ v

Slide 63

Inference duality

Linear programming:

min

0

cx

Ax b

x

≥
≥

Inference dual is:

() ()
max

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the classical
LP dual.

Let Ax ≥ b ⇒ cx ≥ v when uAx ≥ ub
dominates cx ≥ v for some u ≥ 0.

dominates = uA ≤ c and ub ≥ v

Slide 64

Inference duality

Linear programming:

min

0

cx

Ax b

x

≥
≥

Inference dual is:

() ()
max

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the classical
LP dual.

This is a strong dual because the
inference method is complete
(Farkas Lemma).

Let Ax ≥ b ⇒ cx ≥ v when uAx ≥ ub
dominates cx ≥ v for some u ≥ 0.

dominates = uA ≤ c and ub ≥ v

Slide 65

Inference duality

General inequality constraints:

min ()

() 0

f x

g x

x S

≥
∈

Inference dual is:

() ()
max

() 0 ()

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0
implies f(x) ≥ v for some u ≥ 0.

implies = all x ∈ S satisfying ug(x) ≥ 0
satisfy f(x) ≥ v.

Slide 66

Inference duality

General inequality constraints:

min ()

() 0

f x

g x

x S

≥
∈

Inference dual is:

() ()
max

() 0 ()

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the surrogate dual.

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0
implies f(x) ≥ v for some u ≥ 0.

implies = all x ∈ S satisfying ug(x) ≥ 0
satisfy f(x) ≥ v.

Slide 67

Inference duality

General inequality constraints:

min ()

() 0

f x

g x

x S

≥
∈

Inference dual is:

() ()
max

() 0 ()

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0
dominates f(x) ≥ v for some u ≥ 0.

Slide 68

Inference duality

This becomes the Lagrangean dual

Let g(x) ≥ 0 ⇒ f(x) ≥ v when ug(x) ≥ 0
dominates f(x) ≥ v for some u ≥ 0.

General inequality constraints:

min ()

() 0

f x

g x

x S

≥
∈

Inference dual is:

() ()
max

() 0 ()

P

v

g x f x v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Slide 69

Inference duality

Integer linear programming:

min cx

Ax b

x S

≥
∈

Inference dual is:

Let Ax ≥ b ⇒ cx ≥ v when h(Ax) ≥ h(b)
dominates cx ≥ v for some
subadditive and homogeneous
function h.

() ()
max

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Slide 70

Inference duality

Integer linear programming:

min cx

Ax b

x S

≥
∈

Inference dual is:

() ()
max

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

This becomes the subadditive dual.

Let Ax ≥ b ⇒ cx ≥ v when h(Ax) ≥ h(b)
dominates cx ≥ v for some
subadditive and homogeneous
function h.

Slide 71

Inference duality

Integer linear programming:

min cx

Ax b

x S

≥
∈

Inference dual is:
This becomes the subadditive dual.

This is a strong dual because the
inference method is complete, due to
Chvátal’s theorem.

Appropriate Chvátal function is
subadditive and can found by
Gomory’s cutting plane method.

Let Ax ≥ b ⇒ cx ≥ v when h(Ax) ≥ h(b)
dominates cx ≥ v for some
subadditive and homogeneous
function h.

() ()
max

P

v

Ax b cx v

v P,
≥ ⇒ ≥

∈ ∈ℝ P

Slide 72

Inference duality

Inference duality permits a generalization of Benders
decomposition.

Slide 73

Inference duality

Inference duality permits a generalization of Benders
decomposition.

In classical Benders, a Benders cut is a linear combination
of the subproblem constraints using dual multipliers.

Slide 74

Inference duality

Inference duality permits a generalization of Benders
decomposition.

In classical Benders, a Benders cut is a linear combination
of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for
which the proof of optimality in the subproblem is still valid.

Slide 75

Inference duality

Inference duality permits a generalization of Benders
decomposition.

In classical Benders, a Benders cut is a linear combination
of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for
which the proof of optimality in the subproblem is still valid.

For general optimization, a Benders cut does the same, but the
proof of optimality is a solution of the general inference dual.

Slide 76

Inference duality

Inference duality permits a generalization of Benders
decomposition.

In classical Benders, a Benders cut is a linear combination
of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for
which the proof of optimality in the subproblem is still valid.

For general optimization, a Benders cut does the same, but the
proof of optimality is a solution of the general inference dual.

This has led to orders-of-magnitude speedups in solution of
scheduling and other problems by logic-based Benders
decomposition.

Slide 77

Constraint Programming

Slide 78

Constraint programming uses logical inference to reduce
backtracking.

Constraint programming

Slide 79

Constraint programming uses logical inference to reduce
backtracking.

Inference takes the form of consistency maintenance.

Constraint programming

Slide 80

Constraint programming uses logical inference to reduce
backtracking.

Inference takes the form of consistency maintenance.

A constraint set S containing variables x1, …, xn is k-consistent if
- for any subject of variables x1, …, xj, xj+1

- and any partial assignment (x1, …, xj) = (v1, …, vj) that violates no
constraint in S,
there is a vj+1 such that (x1, …, xj+1) = (v1, …, vj+1) violates no
constraint in S.

Constraint programming

Slide 81

Constraint programming uses logical inference to reduce
backtracking.

Inference takes the form of consistency maintenance.

A constraint set S containing variables x1, …, xn is k-consistent if
- for any subject of variables x1, …, xj, xj+1

- and any partial assignment (x1, …, xj) = (v1, …, vj) that violates no
constraint in S,
there is a vj+1 such that (x1, …, xj+1) = (v1, …, vj+1) violates no
constraint in S.

S is strongly k-consistent if it is j-consistent for j = 1, …, k.

Constraint programming

Slide 82

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

Slide 83

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

1 2 3

1 2 4

3 5

4 5 6

x x x

x x x

x x

x x x

∨ ∨
∨ ∨

∨
∨ ∨

x1

x2 x4

x3

x6

x5

Dependency graph

Slide 84

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

1 2 3

1 2 4

3 5

4 5 6

x x x

x x x

x x

x x x

∨ ∨
∨ ∨

∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

Slide 85

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

1 2 3

1 2 4

3 5

4 5 6

x x x

x x x

x x

x x x

∨ ∨
∨ ∨

∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

We will show that this is strongly 3-consistent.

We can therefore solve it without backtracking

Slide 86

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

1 2 3

1 2 4

3 5

4 5 6

x x x

x x x

x x

x x x

∨ ∨
∨ ∨

∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0

x x x x x x

Slide 87

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

2 4

3 5

4 5 6

x x

x x

x x x

∨
∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0

x x x x x x

Slide 88

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

2 4

3 5

4 5 6

x x

x x

x x x

∨
∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0

x x x x x x

Slide 89

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

3 5

4 5 6

x x

x x x

∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0

x x x x x x

Slide 90

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

3 5

4 5 6

x x

x x x

∨
∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0

x x x x x x

Slide 91

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

5

4 5 6

x

x x x∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0

x x x x x x

Slide 92

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

5

4 5 6

x

x x x∨ ∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0 0

x x x x x x

Slide 93

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

5

5 6

x

x x∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0 0

x x x x x x

Slide 94

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

5

5 6

x

x x∨

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0 0 1

x x x x x x

Slide 95

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

6x

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0 0 1

x x x x x x

Slide 96

Theorem (Freuder). If constraint set S is strongly k-consistent, and
its dependency graph has width less than k (with respect to the
branching order), then S can be solved without backtracking.

Constraint programming

6x

x1

x2 x4

x3

x6

x5

Width = max in-degree = 2

Dependency graph

1 2 3 4 5 6

0 0 0 0 1 1

x x x x x x

Slide 97

Theorem. Application of k-resolution makes a clause set
strongly k-consistent.

k-resolution = generate only resolvents with fewer than k literals.

Constraint programming

1 2 3

1 2 4

3 5

4 5 6

x x x

x x x

x x

x x x

∨ ∨
∨ ∨

∨
∨ ∨

All resolvents have 3 or more
literals.

Clause set is therefore strongly
3-consistent, as claimed.

Slide 98

Constraint programmers are primarily concerned with domain
consistency.

Constraint programming

Slide 99

Constraint programmers are primarily concerned with domain
consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Constraint programming

Slide 100

Constraint programmers are primarily concerned with domain
consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Domain consistency = generalized arc consistency = hyperarc
consistency.

Constraint programming

Slide 101

Constraint programmers are primarily concerned with domain
consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Domain consistency = generalized arc consistency = hyperarc
consistency.

Filtering algorithms that achieve or approximate domain
consistency have been devised for a wide variety of constraints.

Constraint programming

Slide 102

Constraint programmers are primarily concerned with domain
consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Domain consistency = generalized arc consistency = hyperarc
consistency.

Filtering algorithms that achieve or approximate domain
consistency have been devised for a wide variety of constraints.

The resolution algorithm achieves domain consistency for clause
sets.

Constraint programming

Slide 103

Constraint programmers are primarily concerned with domain
consistency.

A constraint set S is domain consistent if for any given variable xj

and any value vj in its domain, xj = vj in some solution of S.

Domain consistency = generalized arc consistency = hyperarc
consistency.

Filtering algorithms that achieve or approximate domain
consistency have been devised for a wide variety of constraints.

The resolution algorithm achieves domain consistency for clause
sets.

Filtering (= logical inference) is the workhorse of constraint
programming, as solving relaxations is the workhorse of integer
programming.

Constraint programming

Slide 104

Good Logic Models

Slide 105

Boolean models should be reformulated before solution to
achieve two goals:

Good logic models

Slide 106

Boolean models should be reformulated before solution to
achieve two goals:

• A high degree of consistency (in the constraint programming
sense)

• We talked about resolution as a means of achieving
consistency.

Good logic models

Slide 107

Boolean models should be reformulated before solution to
achieve two goals:

• A high degree of consistency (in the constraint programming
sense)

• We talked about resolution as a means of achieving
consistency for boolean models.

• A tight linear relaxation.

• We talked about logic and cutting planes.

• Logic constraints can also be given convex hull
formulations…

Good logic models

Slide 108

Example: cardinality rules

We have 3 possible sites for factories and 3 possible products.

Rule 1: If at least 2 plants are built, then at least 2 products should
be made.

Rule 2. Only 1 product should be made, unless plants are built at
both sites 1 and 2.

Good logic models

1 2 3 1 2 3(2) (2)x x x y y y+ + ≥ ⇒ + + ≥

1 2 3 1 2(2) (2)y y y x x+ + ≥ ⇒ + ≥

Slide 109

Good logic models

1 2 3 1 2 3(2) (2)x x x y y y+ + ≥ ⇒ + + ≥

Inequality form:

1 2 3 1 2 3

1 2 1 2 3

1 3 1 2 3

2 3 1 2 3

1 2 3 1 2

1 2 3 1 3

1 2 3 2 3

2() 2() 2

2() 2

2() 2

2() 2

2() 1

2() 1

2() 1

x x x y y y

x x y y y

x x y y y

x x y y y

x x x y y

x x x y y

x x x y y

− + + + + + ≥ −
− + + + + ≥ −
− + + + + ≥ −
− + + + + ≥ −
− − − + + ≥ −
− − − + + ≥ −
− − − + + ≥ −

1 2 1 2

1 2 1 3

1 2 2 3

1 3 1 2

1 3 1 3

1 3 2 3

2 3 1 2

2 3 1 3

2 3 2 3

1

1

1

1

1

1

1

1

1

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

x x y y

− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −
− − + + ≥ −

Slide 110

Good logic models

Inequality form:
1 2 3 1

1 2 1

1 3 1

2 3 1

1 2 3 2

1 2 1

1 3 1

2 3 1

2() 3

2() 1

2() 1

2() 1

2() 3

2() 1

2() 1

2() 1

y y y x

y y x

y y x

y y x

y y y x

y y x

y y x

y y x

− + + + ≥ −
− + + ≥ −
− + + ≥ −
− + + ≥ −
− + + + ≥ −
− + + ≥ −
− + + ≥ −
− + + ≥ −

1 2 3 1 2(2) (2)y y y x x+ + ≥ ⇒ + ≥

Slide 111

Good logic models

Theorem (Yan and JNH): These describe the convex hull of the
feasible set.

Generalized by Balas, Bockmayr, Pisaruk & Wolsey.

