Some Observations on Boolean Logic and Optimization

John Hooker Carnegie Mellon University

January 2009

Outline

- Logic and cutting planes
- Logic of 0-1 inequalities
- Logic and linear programming
- Inference duality
- Constraint programming
- Good logic models

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Prime implicates = undominated implications.

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Prime implicates = undominated implications.

This means that resolution is a complete inference method for clauses.

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

$$\begin{array}{c}
\mathbf{X}_1 \lor \overline{\mathbf{X}}_2 \\
\overline{\mathbf{X}}_1 & \lor \mathbf{X}_3 \\
\mathbf{X}_2 \lor \mathbf{X}_3
\end{array}$$

Example

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

$$\begin{array}{c}
\mathbf{X}_{1} \lor \overline{\mathbf{X}}_{2} \\
\overline{\mathbf{X}}_{1} \lor \mathbf{X}_{3} \\
\mathbf{X}_{2} \lor \mathbf{X}_{3}
\end{array}$$

Resolve on x_1

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Resolve on x_1

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Resolve on x_2

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Drop redundant clauses

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Theorem (Quine). The resolution method generates all **prime implicates** of a set of logical clauses.

Prime implicates remain

Theorem (Chvátal). Every cutting plane for a 0-1 system $Ax \ge b$ can be generated by repeatedly taking nonnegative linear combinations and rounding up.

This might be regarded as the fundamental theorem of cutting plane theory.

Theorem (Chvátal). Every cutting plane for a 0-1 system $Ax \ge b$ can be generated by repeatedly taking nonnegative linear combinations and rounding up.

This might be regarded as the fundamental theorem of cutting plane theory.

A key step of the proof uses the **resolution method**.

Theorem (Chvátal). Every cutting plane for a 0-1 system $Ax \ge b$ can be generated by repeatedly taking nonnegative linear combinations and rounding up.

This might be regarded as the fundamental theorem of cutting plane theory.

A key step of the proof uses the **resolution method**.

This suggests there are deep connections between resolution and cutting planes.

A resolution step generates a **rank 1 cut** (i.e., a cut generated by one step of Chvátal's method).

$$X_1 \lor \overline{X}_2$$
 $X_1 + (1 - \overline{X}_2) \ge 1$ Convert to 0-1 $\overline{X}_1 \lor X_3$ $(1 - X_1)$ $+ X_3 \ge 1$ inequalities

A resolution step generates a **rank 1 cut** (i.e., a cut generated by one step of Chvátal's method).

 $(1-\overline{x}_2)+x_3\geq 1/2$

Take linear combination

A resolution step generates a **rank 1 cut** (i.e., a cut generated by one step of Chvátal's method).

	$(1-x_2) + x_3 \ge 1/2$	
$\vee X_3$	$(1-\overline{x}_2)+x_3 \ge 1$	Round up
Resolvent		

 \overline{X}_{2}

Theorem (JNH). **Input resolution** generates precisely those clauses that are rank 1 cuts.

Input resolution = use at least one of the original clauses to obtain each resolvent

Slide 20

Theorem (JNH). **Input resolution** generates precisely those clauses that are rank 1 cuts.

Theorem (JNH). **Input resolution** generates precisely those clauses that are rank 1 cuts.

$X_1 \vee \overline{X}_2$	$x_1 + (1 - x_2) \ge 1 (1/4)$	
$\overline{X}_1 $	$(1-x_1) + x_3 \ge 1 (1/4)$	
X V X	$x_2 + x_3 \ge 1 (1/2)$	
$\lambda_2 \vee \lambda_3$	$(1-x_2) \ge 0 (1/4)$	
∧ 3 ∖	$x_{3} \ge 0$ (1/4)	_
	$x_{3} \ge 1/4$	•
Result of input	resolution $x_3 \ge 1$ Roun	id up

By generating enough Chvátal cuts, we obtain the **convex hull** of the 0-1 solutions.

By generating enough Chvatal cuts, we obtain the **convex hull** of the 0-1 solutions.

Can we obtain the convex hull by generating **resolvents**?

By generating enough Chvatal cuts, we obtain the **convex hull** of the 0-1 solutions.

Can we obtain the convex hull by generating **resolvents**?

That is, do the **prime implicates** define the convex hull?

By generating enough Chvatal cuts, we obtain the **convex hull** of the 0-1 solutions.

Can we obtain the convex hull by generating **resolvents**?

That is, do the **prime implicates** define the convex hull?

Not in general.

They do, if and only if the underlying **set covering problems** define convex hulls.

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal **monotone** subsets of the prime implicates define an integral polytope.

monotone = every variable has the same sign in all occurrences.

A monotone subset of clauses is a set covering problem (after complementing negated variables).

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal **monotone** subsets of the prime implicates define an integral polytope.

$$\begin{array}{ccc}
\mathbf{X}_1 \lor \mathbf{X}_2 \\
\mathbf{X}_1 & \lor \mathbf{X}_3 \\
& \overline{\mathbf{X}}_2 \lor \mathbf{X}_3
\end{array}$$

Prime implicates

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal **monotone** subsets of the prime implicates define an integral polytope.

$\boldsymbol{X}_1 \vee \boldsymbol{X}_2$	$X_1 \lor X_2$		
$X_1 \vee X_3$	X ₁	$\vee X_3$	
$\overline{X}_2 \lor X_3$	X ₁	∨ X ₃	
Prime implicates		$\overline{X}_2 \lor X_3$	
implicated	Maximal		
	moi	notone	
	SU	bsets	

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal **monotone** subsets of the prime implicates define an integral polytope.

$X_1 \lor X_2$	$X_1 \lor X_2$	$x_1 + x_2 \ge 1$		
$X_1 \vee X_3$	$X_1 \vee X_3$	$x_1 + x_3 \ge 1$		
$\overline{X}_2 \lor X_3$	$X_1 \lor X_3$	$x_1 + x_3 \ge 1$		
Prime	$\overline{X}_2 \lor X_3$	$(1-x_2)+x_3 \ge 1$		
Implicates	Maximal monotone subsets	These systems define integral polytopes		

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal **monotone** subsets of the prime implicates define an integral polytope.

$X_1 \vee X_2$	$X_1 \lor X_2$		$X_{1} + 2$	$x_2 \ge 1$	$X_1 + X_2$	≥1	
$X_1 \vee X_3$	<i>X</i> ₁	$\vee X_3$	X ₁	$+ x_{3} \ge 1$	X ₁	$+ x_{3} \ge 1$	
$\overline{X}_2 \lor X_3$					(1-	$x_2) + x_3 \ge 1$	
	X ₁	$\vee X_3$	X ₁	+ x ₃ ≥1			
Prime implicates	$\overline{\textit{X}}_2 \lor \textit{X}_3$		$(1-x_2)+x_3\geq 1$		Ther	Therefore this	
	Max mon sub	kimal otone sets	The defi p	se systems ne integral olytopes	system integr	n defines an al polytope	

Theorem (JNH). The prime implicates of a clause set define an integral polytope if and only if all maximal **monotone** subsets of the prime implicates define an integral polytope.

Generalized by Guenin, and by Nobili & Sassano.

Logic of 0-1 Inequalities

Logic of 0-1 inequalities

0-1 inequalities can be viewed as **logical propositions**.

Logic of 0-1 inequalities

0-1 inequalities can be viewed as **logical propositions**.

Can the **resolution algorithm** be generalized to 0-1 inequalities?

Logic of 0-1 inequalities

0-1 inequalities can be viewed as **logical propositions**.

Can the **resolution algorithm** be generalized to 0-1 inequalities?

Yes. This results in a logical analog of Chvátal's theorem.
Logic of 0-1 inequalities

0-1 inequalities can be viewed as logical propositions.Can the resolution algorithm be generalized to 0-1 inequalities?Yes. This results in a logical analog of Chvátal's theorem.

Theorem (JNH). Classical resolution + **diagonal summation** generates all 0-1 prime implicates (up to logical equivalence).

Logic of 0-1 inequalities

Diagonal summation:

$$x_{1} + 5x_{2} + 3x_{3} + x_{4} \ge 4$$

$$2x_{1} + 4x_{2} + 3x_{3} + x_{4} \ge 4$$

$$2x_{1} + 5x_{2} + 2x_{3} + x_{4} \ge 4$$

$$2x_{1} + 5x_{2} + 3x_{3} = 24$$

$$2x_{1} + 5x_{2} + 3x_{3} + x_{4} \ge 5$$

Diagonal sum

Logic of 0-1 inequalities

Diagonal summation:

$$x_{1} + 5x_{2} + 3x_{3} + x_{4} \ge 4$$

$$2x_{1} + 4x_{2} + 3x_{3} + x_{4} \ge 4$$

$$2x_{1} + 5x_{2} + 2x_{3} + x_{4} \ge 4$$

$$2x_{1} + 5x_{2} + 3x_{3} + 0x_{4} \ge 4$$

$$2x_{1} + 5x_{2} + 3x_{3} + x_{4} \ge 5$$

Diagonal sum

luality is implied by lity in the set to resolution is

J

Theorem: A **renamable Horn** set of clauses is satisfiable if and only if it has a **unit refutation**.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

Theorem: A **renamable Horn** set of clauses is satisfiable if and only if it has a **unit refutation**.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

$$\begin{array}{l} \mathbf{X}_{1} \\ \overline{\mathbf{X}}_{1} \lor \overline{\mathbf{X}}_{2} \\ \overline{\mathbf{X}}_{1} & \lor \mathbf{X}_{3} \\ \overline{\mathbf{X}}_{1} \lor \mathbf{X}_{2} \lor \overline{\mathbf{X}}_{3} \\ \end{array}
 \begin{array}{l} \text{Horn set} \end{array}$$

Theorem: A **renamable Horn** set of clauses is satisfiable if and only if it has a **unit refutation**.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

Theorem: A **renamable Horn** set of clauses is satisfiable if and only if it has a **unit refutation**.

Horn = at most one positive literal per clause

Renamable Horn = Horn after complementing some variables.

Unit refutation = resolution proof of unsatisfiability in which at least one parent of each resolvent is a unit clause.

We don't know a **necessary and sufficient condition** for solubility by unit refutation.

But we can identify sufficient conditions by **generalizing Horn** sets.

For example, to **extended Horn sets**, which rely on a rounding property of linear programming.

$$\begin{array}{c} x_{1} \\ \overline{x}_{1} \lor \overline{x}_{2} \lor x_{3} \\ \overline{x}_{2} \lor \overline{x}_{3} \\ \overline{x}_{1} \lor x_{2} \lor \overline{x}_{3} \\ \end{array}$$
Horn set

X ₁	X ₁	≥1	
$\overline{X}_1 \vee \overline{X}_2 \vee X_3$	$(1-x_1)+(1-x_2)$	$(X_2) + X_3 \ge 1$	
$\overline{X}_2 \vee \overline{X}_3$	(1 – x	$(x_2) + (1 - x_3) \ge 1$	
$\overline{X}_1 \vee \overline{X}_2 \vee \overline{X}_3$	$(1-x_1)+x_2$	$+(1-x_3)\geq 1$	1
Horn set	$0 \le x_j \le 1$		
	LP relaxation		

X ₁	X ₁	≥1
$\overline{X}_1 \vee \overline{X}_2 \vee X_3$	$(1-x_1)+(1-x_2)+x_3$	≥1
$\overline{X}_2 \vee \overline{X}_3$	$(1-x_2)+(1-x_2)$	$(\mathbf{x}_3) \ge 1$
$\overline{X}_1 \vee \overline{X}_2 \vee \overline{X}_3$	$(1 - x_1) + x_2 + (1 - $	$(x_3) \ge 1$
Horn set	$0 \le x_j \le 1$	
	LP relaxation	
	Solution: $(x_1, x_2, x_3) = (1$,1/2,1/2

X ₁	X ₁	≥1
$\overline{X}_1 \vee \overline{X}_2 \vee X_3$	$(1-x_1)+(1-x_2)+x_3$	≥1
$\overline{X}_2 \vee \overline{X}_3$	$(1-x_2)+(1-x_2)$	x ₃)≥1
$\overline{X}_1 \vee \overline{X}_2 \vee \overline{X}_3$	$(1-x_1)+x_2 + (1-x_1)$	x ₃)≥1
Horn set	$0 \le x_j \le 1$	
	LP relaxation	
	Solution: $(x_1, x_2, x_3) = (1, 1)$	1/2,1/2)
	Round down: (x_1, x_2, x_3)	= (1,0,0)

To generalize this, we use the following:

Theorem (Chandrasekaran): If $Ax \ge b$ has integral components and *T* is nonsingular such that:

- T and T^{-1} are integral
- Each row of T^{-1} contains at most one negative entry, namely -1
- Each row of AT^{-1} contains at most one negative entry, namely -1

Then if x solves $Ax \ge b$, so does $T^{-1} \lceil Tx \rceil$

A clause has the **extended star-chain property** if it corresponds to a set of edge-disjoint flows into the root of an arborescence and a flow on one additional chain.

A clause set is **extended Horn** if there is an arborescence for which every clause in the set has the extended star-chain property.

Theorem (Chandru and JNH). A satisfiable extended Horn clause set can be solved by rounding a solution of the LP relaxation as shown:

Corollary. A satisfiable extended Horn clause set can be solved by assigning values as shown:

Theorem (Chandru and JNH). A **renamable** extended Horn clause is satisfiable if and only if it has no unit refutation.

Theorem (Chandru and JNH). A **renamable** extended Horn clause is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco & Swaminathan). These results hold when then incoming chains are not edge disjoint.

Theorem (Chandru and JNH). A **renamable** extended Horn clause is satisfiable if and only if it has no unit refutation.

Theorem (Schlipf, Annexstein, Franco & Swaminathan). These results hold when then incoming chains are not edge disjoint.

Corollary (Schlipf, Annexstein, Franco & Swaminathan). A one-step lookahead algorithm solves a satisfiable extended Horn problem without knowledge of the arborescence.

Consider an optimization problem:

Consider an optimization problem:

 $\begin{array}{c} \min f(x) \\ S & \longleftarrow \\ x \in D & \longleftarrow \\ \end{array} \\ \begin{array}{c} \text{Constraint set} \\ \text{Variable domain} \end{array}$

An inference dual is:

Linear programming:

min cx $Ax \ge b$ $x \ge 0$

Let $Ax \ge b \Rightarrow cx \ge v$ when $uAx \ge ub$ dominates $cx \ge v$ for some $u \ge 0$. dominates = $uA \le c$ and $ub \ge v$

Inference dual is:

max v

$$(Ax \ge b) \stackrel{P}{\Rightarrow} (cx \ge v)$$
$$v \in \mathbb{R}, P \in \mathscr{P}$$

Linear programming:

min cx $Ax \ge b$ $x \ge 0$

Let $Ax \ge b \Rightarrow cx \ge v$ when $uAx \ge ub$ dominates $cx \ge v$ for some $u \ge 0$.

dominates = $uA \le c$ and $ub \ge v$

Inference dual is:

max v

 $(Ax \ge b) \stackrel{P}{\Rightarrow} (cx \ge v)$ $v \in \mathbb{R}, P \in \mathscr{P}$

This becomes the **classical LP dual.**

Linear programming:

min cx $Ax \ge b$ $x \ge 0$

Let $Ax \ge b \Rightarrow cx \ge v$ when $uAx \ge ub$ dominates $cx \ge v$ for some $u \ge 0$.

dominates = $uA \le c$ and $ub \ge v$

Inference dual is:

max v

$$(Ax \ge b) \stackrel{P}{\Rightarrow} (cx \ge v)$$
$$v \in \mathbb{R}, P \in \mathscr{P}$$

This becomes the **classical LP dual.**

This is a **strong dual** because the inference method is **complete** (Farkas Lemma).

General inequality constraints:

 $\min f(x)$ $g(x) \ge 0$ $x \in S$

Let $g(x) \ge 0 \Rightarrow f(x) \ge v$ when $ug(x) \ge 0$ **implies** $f(x) \ge v$ for some $u \ge 0$. *implies* = all $x \in S$ satisfying $ug(x) \ge 0$ satisfy $f(x) \ge v$.

Inference dual is:

max v

 $(g(x) \ge 0) \stackrel{P}{\Rightarrow} (f(x) \ge v)$ $v \in \mathbb{R}, P \in \mathscr{P}$

General inequality constraints:

 $\min f(x)$ $g(x) \ge 0$ $x \in S$

Let $g(x) \ge 0 \Rightarrow f(x) \ge v$ when $ug(x) \ge 0$ **implies** $f(x) \ge v$ for some $u \ge 0$. *implies* = all $x \in S$ satisfying $ug(x) \ge 0$ satisfy $f(x) \ge v$.

Inference dual is:

max v

This becomes the surrogate dual.

 $(g(x) \ge 0) \stackrel{P}{\Rightarrow} (f(x) \ge v)$ $v \in \mathbb{R}, P \in \mathscr{P}$

General inequality constraints:

 $\min f(x)$ $g(x) \ge 0$ $x \in S$

Let $g(x) \ge 0 \Rightarrow f(x) \ge v$ when $ug(x) \ge 0$ dominates $f(x) \ge v$ for some $u \ge 0$.

Inference dual is:

max v

$$(g(x) \ge 0) \stackrel{P}{\Rightarrow} (f(x) \ge v) v \in \mathbb{R}, P \in \mathscr{P}$$

General inequality constraints:

 $\min f(x)$ $g(x) \ge 0$ $x \in S$

Let $g(x) \ge 0 \Rightarrow f(x) \ge v$ when $ug(x) \ge 0$ dominates $f(x) \ge v$ for some $u \ge 0$.

Inference dual is:

max v

This becomes the Lagrangean dual

 $(g(x) \ge 0) \stackrel{P}{\Rightarrow} (f(x) \ge v)$ $v \in \mathbb{R}, P \in \mathscr{P}$

Integer linear programming:

min <i>cx</i>
$Ax \ge b$
x∈ S

Let $Ax \ge b \Rightarrow cx \ge v$ when $h(Ax) \ge h(b)$ dominates $cx \ge v$ for some **subadditive** and homogeneous function *h*.

Inference dual is:

max v

$$(Ax \ge b) \stackrel{P}{\Rightarrow} (cx \ge v)$$
$$v \in \mathbb{R}, P \in \mathscr{P}$$

Integer linear programming:

min <i>cx</i>
$Ax \ge b$
x∈ S

Let $Ax \ge b \Rightarrow cx \ge v$ when $h(Ax) \ge h(b)$ dominates $cx \ge v$ for some **subadditive** and homogeneous function *h*.

Inference dual is:

max v

 $(Ax \ge b) \stackrel{P}{\Rightarrow} (cx \ge v)$ $v \in \mathbb{R}, P \in \mathscr{P}$

This becomes the **subadditive dual**.

Integer linear programming:

min cx $Ax \ge b$ $x \in S$

Inference dual is:

max v

$$(Ax \ge b) \stackrel{P}{\Rightarrow} (cx \ge v)$$
$$v \in \mathbb{R}, P \in \mathscr{P}$$

Slide 71

Let $Ax \ge b \Rightarrow cx \ge v$ when $h(Ax) \ge h(b)$ dominates $cx \ge v$ for some **subadditive** and homogeneous function *h*.

This becomes the **subadditive dual**.

This is a **strong dual** because the inference method is complete, due to Chvátal's theorem.

Appropriate Chvátal function is subadditive and can found by Gomory's cutting plane method.

Inference duality permits a generalization of **Benders** decomposition.
Inference duality permits a generalization of **Benders** decomposition.

In classical Benders, a **Benders cut** is a linear combination of the subproblem constraints using dual multipliers.

Inference duality permits a generalization of **Benders** decomposition.

In classical Benders, a **Benders cut** is a linear combination of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for which the proof of optimality in the subproblem is **still valid**.

Inference duality permits a generalization of **Benders** decomposition.

In classical Benders, a **Benders cut** is a linear combination of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for which the proof of optimality in the subproblem is **still valid**.

For general optimization, a Benders cut does the same, but the proof of optimality is a solution of the general **inference dual**.

Inference duality permits a generalization of **Benders** decomposition.

In classical Benders, a **Benders cut** is a linear combination of the subproblem constraints using dual multipliers.

The Benders cut rules out solutions of the master problem for which the proof of optimality in the subproblem is **still valid**.

For general optimization, a Benders cut does the same, but the proof of optimality is a solution of the general **inference dual**.

This has led to orders-of-magnitude speedups in solution of scheduling and other problems by **logic-based Benders decomposition**.

Constraint programming uses **logical inference** to reduce backtracking.

Constraint programming uses **logical inference** to reduce backtracking.

Inference takes the form of **consistency maintenance**.

Constraint programming uses **logical inference** to reduce backtracking.

Inference takes the form of **consistency maintenance**.

A constraint set *S* containing variables $x_1, ..., x_n$ is *k*-consistent if - for any subject of variables $x_1, ..., x_j, x_{j+1}$ - and any partial assignment $(x_1, ..., x_j) = (v_1, ..., v_j)$ that violates no constraint in *S*, there is a v_{j+1} such that $(x_1, ..., x_{j+1}) = (v_1, ..., v_{j+1})$ violates no constraint in *S*.

Constraint programming uses **logical inference** to reduce backtracking.

Inference takes the form of **consistency maintenance**.

A constraint set *S* containing variables $x_1, ..., x_n$ is *k*-consistent if - for any subject of variables $x_1, ..., x_j, x_{j+1}$ - and any partial assignment $(x_1, ..., x_j) = (v_1, ..., v_j)$ that violates no constraint in *S*, there is a v_{j+1} such that $(x_1, ..., x_{j+1}) = (v_1, ..., v_{j+1})$ violates no constraint in *S*.

S is **strongly** *k*-consistent if it is *j*-consistent for j = 1, ..., k.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

$$\overline{X}_{1} \lor X_{2} \lor \overline{X}_{3} \\
x_{1} \lor \overline{X}_{2} \qquad \lor X_{4} \\
x_{3} \qquad \lor X_{5} \\
x_{4} \lor \overline{X}_{5} \lor X_{6}$$

Dependency graph

Width = max in-degree = 2

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

We will show that this is strongly 3-consistent.

We can therefore solve it without backtracking

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6$$

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

Width = max in-degree = 2

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

Width = max in-degree = 2

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \\
 0 \quad 0 \\$$

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then S can be solved without backtracking.

Dependency graph

Theorem (Freuder). If constraint set *S* is strongly *k*-consistent, and its **dependency graph** has width less than *k* (with respect to the branching order), then *S* can be solved without backtracking.

Dependency graph

Theorem. Application of *k*-resolution makes a clause set strongly *k*-consistent.

k-resolution = generate only resolvents with fewer than k literals.

All resolvents have 3 or more literals.

Constraint programmers are primarily concerned with **domain consistency**.

Constraint programmers are primarily concerned with **domain consistency**.

A constraint set S is **domain consistent** if for any given variable x_j and any value v_j in its domain, $x_j = v_j$ in some solution of S.

Constraint programmers are primarily concerned with **domain consistency**.

A constraint set S is **domain consistent** if for any given variable x_j and any value v_j in its domain, $x_j = v_j$ in some solution of S.

Domain consistency = generalized arc consistency = hyperarc consistency.

Constraint programmers are primarily concerned with **domain consistency**.

A constraint set S is **domain consistent** if for any given variable x_j and any value v_j in its domain, $x_j = v_j$ in some solution of S.

Domain consistency = generalized arc consistency = hyperarc consistency.

Filtering algorithms that achieve or approximate domain consistency have been devised for a wide variety of constraints.

Constraint programmers are primarily concerned with **domain consistency**.

A constraint set S is **domain consistent** if for any given variable x_j and any value v_j in its domain, $x_j = v_j$ in some solution of S.

Domain consistency = generalized arc consistency = hyperarc consistency.

Filtering algorithms that achieve or approximate domain consistency have been devised for a wide variety of constraints.

The **resolution algorithm** achieves domain consistency for clause sets.

Constraint programmers are primarily concerned with **domain consistency**.

A constraint set S is **domain consistent** if for any given variable x_j and any value v_j in its domain, $x_j = v_j$ in some solution of S.

Domain consistency = generalized arc consistency = hyperarc consistency.

Filtering algorithms that achieve or approximate domain consistency have been devised for a wide variety of constraints.

The **resolution algorithm** achieves domain consistency for clause sets.

Filtering (**= logical inference**) is the workhorse of constraint programming, as solving relaxations is the workhorse of integer programming.

Good Logic Models

Boolean models should be **reformulated** before solution to achieve two goals:

Boolean models should be **reformulated** before solution to achieve two goals:

• A high degree of **consistency** (in the constraint programming sense)

• We talked about **resolution** as a means of achieving consistency.

Boolean models should be **reformulated** before solution to achieve two goals:

• A high degree of **consistency** (in the constraint programming sense)

• We talked about **resolution** as a means of achieving consistency for boolean models.

- A tight **linear relaxation**.
 - We talked about logic and cutting planes.
 - Logic constraints can also be given **convex hull formulations**...

Example: cardinality rules

We have 3 possible sites for factories and 3 possible products.

Rule 1: If at least 2 plants are built, then at least 2 products should be made.

Rule 2. Only 1 product should be made, unless plants are built at both sites 1 and 2.

$$(x_1 + x_2 + x_3 \ge 2) \Longrightarrow (y_1 + y_2 + y_3 \ge 2)$$
$$(y_1 + y_2 + y_3 \ge 2) \Longrightarrow (x_1 + x_2 \ge 2)$$
Good logic models

$$(x_1 + x_2 + x_3 \ge 2) \Longrightarrow (y_1 + y_2 + y_3 \ge 2)$$

Inequality form:

$$-2(x_{1} + x_{2} + x_{3}) + 2(y_{1} + y_{2} + y_{3}) \ge -2$$

$$-2(x_{1} + x_{2}) + y_{1} + y_{2} + y_{3} \ge -2$$

$$-2(x_{1} + x_{3}) + y_{1} + y_{2} + y_{3} \ge -2$$

$$-2(x_{2} + x_{3}) + y_{1} + y_{2} + y_{3} \ge -2$$

$$-x_{1} - x_{2} - x_{3} + 2(y_{1} + y_{2}) \ge -1$$

$$-x_{1} - x_{2} - x_{3} + 2(y_{1} + y_{3}) \ge -1$$

$$-x_{1} - x_{2} - x_{3} + 2(y_{2} + y_{3}) \ge -1$$

$$-x_{1} - x_{2} + y_{1} + y_{2} \ge -1$$

$$-x_{1} - x_{2} + y_{1} + y_{3} \ge -1$$

$$-x_{1} - x_{2} + y_{2} + y_{3} \ge -1$$

$$-x_{1} - x_{3} + y_{1} + y_{2} \ge -1$$

$$-x_{1} - x_{3} + y_{1} + y_{3} \ge -1$$

$$-x_{1} - x_{3} + y_{2} + y_{3} \ge -1$$

$$-x_{2} - x_{3} + y_{1} + y_{2} \ge -1$$

$$-x_{2} - x_{3} + y_{1} + y_{3} \ge -1$$

$$-x_{2} - x_{3} + y_{1} + y_{3} \ge -1$$

Slide 109

Good logic models

$$(y_1 + y_2 + y_3 \ge 2) \Longrightarrow (x_1 + x_2 \ge 2)$$

Inequality form:

 $-2(y_1 + y_2 + y_3) + x_1 \ge -3$ $-2(y_1 + y_2) + x_1 \ge -1$ $-2(y_1 + y_3) + x_1 \ge -1$ $-2(y_2 + y_3) + x_1 \ge -1$ $-2(y_1 + y_2 + y_3) + x_2 \ge -3$ $-2(y_1 + y_2) + x_1 \ge -1$ $-2(y_1 + y_3) + x_1 \ge -1$ $-2(y_2 + y_3) + x_1 \ge -1$

Good logic models

Theorem (Yan and JNH): These describe the convex hull of the feasible set.

Generalized by Balas, Bockmayr, Pisaruk & Wolsey.