An Improved Branch-and-Bound Method for Maximum Monomial Agreement

Noam Goldberg RUTCOR
Rutgers University
Joint work with:
Jonathan Eckstein, MSIS and RUTCOR
Rutgers University

January 20, 2009

Outline

1 Introduction

- Problem setting
- Definitions: monomials and their coverage

■ Maximum Monomial Agreement (MMA) - statement of the problem

- Motivation: applications in machine learning and data mining

2 Solution technique
■ Branch-and-bound overview

- Branch-and-bound for MMA
- Improving the upper bound
- Improving on the branching scheme

3 Computational results
4 Conclusion and ongoing work

Problem setting

We are given:

- a set of binary data $A \in\{0,1\}^{m \times n}$
\square binary classes: $\Omega^{+} \subset\{1, \ldots, m\}$ and $\Omega^{-}=\{1, \ldots, m\} \backslash \Omega^{+}$
■ each observation i has weight $w(i)$.

$w(i)$		$a_{i 1}$	$a_{i 2}$	$a_{i 3}$	$a_{i 4}$
$+/-$					
0.2374	1	0	0	1	+
1.7456	1	1	1	0	+
0.4357	0	0	0	1	+
1.4357	1	1	0	0	-
0.5127	1	1	0	1	-

Definitions

A monomial (a.k.a. a term)

$$
p_{J, C}(x)=\prod_{j \in J} x_{j} \prod_{c \in C}\left(1-x_{c}\right)
$$

where J and C are disjoint subsets of $\{1, \ldots, n\}$

A monomial's coverage

Given $A \in\{0,1\}^{m \times n}$ where A_{i} is the $i^{\text {th }}$ row of A

$$
\operatorname{Cover}_{A}(J, C)=\left\{i \in\{1, \ldots, m\} \mid p_{J, C}\left(A_{i}\right)=1\right\}
$$

Statement of the problem

Maximum Monomial Agreement (MMA)

Given $A \in\{0,1\}^{m \times n}, w:\{1, \ldots, m\} \rightarrow \mathbf{R}, \Omega^{+} \subseteq\{1, \ldots, m\}$, $\Omega^{-}=\{1, \ldots, m\} \backslash \Omega^{+}$, find a monomial corresponding to $J, C \subseteq$ $\{1, \ldots, n\}, J \cap C=\emptyset$ such that:

$$
f(J, C)=\left|w\left(\operatorname{Cover}(J, C) \cap \Omega^{+}\right)-w\left(\operatorname{Cover}(J, C) \cap \Omega^{-}\right)\right|
$$

is maximized.

- A monomial classifier's accuracy is maximized by the above objective.
■ It is precisely the objective of the "weak learner" subproblem within boosting (e.g., LP-Boost) when combining monomials.

Motivation

- Weighted voting classification methods:

1 combine simple classifiers $h_{p}:\{0,1\}^{n} \rightarrow\{-1,0,1\}$ for $p \in \mathcal{P}$
2 find a separating hyperplane $g(x)=\alpha_{0}+\sum_{p} \alpha_{p} h_{p}(x)$ in $[0,1]^{|\mathcal{P}|}$, e.g., maximizing the L_{1} margin
3 classify any $x \in\{0,1\}^{n}$ based on $\operatorname{sgn}(g(x))$

- A boosting algorithm iteratively finds g by linearly combining the classifiers h_{p} computed by a "base learner" / subroutine. Note: the weight of observation $i, w(i)$, is a dual variable value of an LP.

Our solution approach

- The MMA problem is $\mathcal{N} \mathcal{P}$-hard (Kearns, Schapire \& Sellie 1994)

■ Solving the problem exactly using a B\&B algorithm can improve on classification performance when used with robust boosting algorithm (Goldberg \& Shan 2007)
■ We also solve the problem using a branch-and-bound algorithm.

- We improve the simple upper bound used in the previous branch-and-bound algorithm (GS 2007).
- We consider more sophisticated dynamic branching schemes.

- Solution technique

- Branch-and-bound overview

Branch-and-bound overview

A branch-and-bound algorithm is an enumeration (search tree) scheme whose practical efficiency depends on the ability to prune the search space as quickly as possible. More concretely the ability to prune depends on:

- effective heuristics for branching - recursively partitioning the search space into subproblems
- the quality of bound on the objective function of descendent subproblems
- the queueing discipline of "open subproblems"

- Solution technique

- Branch-and-bound for MMA

Our solution technique

■ We define a subproblem as a partition of the variable indices $\{1, \ldots, n\}$ into (J,C,E,F), where:

- J - the set of variables fixed to be in the monomial
- C - the set of variables fixed to be complemented in the monomial
- E - the set of variables fixed to be excluded from the monomial
- F - the set of free variables
- At the root we start with all variables free - $(\emptyset, \emptyset, \emptyset,\{1, \ldots, n\})$
- We branch by removing one or more variables from F, adding each to one of J, C or E.

$2 \times|F|$ branching (based on G \& S)

Figure: Branching of subproblem (J, C, E, F) into $2 \times|F|$ children. In the previous algorithm the ordering f_{1}, f_{2}, f_{3} is lexical (i.e., it is static).

Simple upper bound (GS 2007)

$$
u_{\mathrm{gs}}(J, C)=\max \left\{w\left(\operatorname{Cover}(J, C) \cap \Omega^{+}\right), w\left(\operatorname{Cover}(J, C) \cap \Omega^{-}\right)\right\}
$$

For example:

- $f(J, C)=1$

- may be optimistic...

Simple upper bound (GS 2007)

$$
u_{\mathrm{gs}}(J, C)=\max \left\{w\left(\operatorname{Cover}(J, C) \cap \Omega^{+}\right), w\left(\operatorname{Cover}(J, C) \cap \Omega^{-}\right)\right\}
$$

For example:

- $f(J, C)=1$
- but $u_{g s}(J, C)=3$.
- may be optimistic...

Inseparability

Definition

Two binary vectors $x, y \in\{0,1\}^{n}$ are inseparable with respect to a set $E \subseteq\{1, \ldots, n\}$, if, for all $j \in\{1, \ldots, n\} \backslash E$, one has $x_{j}=y_{j}$.

■ Example: If $\{2,4\} \subseteq E$, then A_{1} and A_{2} are inseparable

A_{2}| 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |

$\complement_{\text {Solution technique }}$

- Branch-and-bound for MMA

Inseparability equivalence classes

■ E induces a partition of the observations into equivalence classes V_{ℓ}^{E}, for $\ell=1, \ldots, q(E)$

- For given E the objective of any monomial restricted to V_{ℓ}^{E} is (tightly) bounded by $\left|w_{\ell}^{+}(J, C, E)-w_{\ell}^{-}(J, C, E)\right|$ where $w_{l}^{+}(J, C, E)$ is the sum of weights of positive observations in $\operatorname{Cover}(J, C) \cap V_{\ell}^{E}$

$$
E=\emptyset, F=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}
$$

$\complement_{\text {Solution technique }}$

- Branch-and-bound for MMA

Inseparability equivalence classes

■ E induces a partition of the observations into equivalence classes V_{ℓ}^{E}, for $\ell=1, \ldots, q(E)$

- For given E the objective of any monomial restricted to V_{ℓ}^{E} is (tightly) bounded by $\left|w_{\ell}^{+}(J, C, E)-w_{\ell}^{-}(J, C, E)\right|$ where $w_{\ell}^{+}(J, C, E)$ is the sum of weights of positive observations in $\operatorname{Cover}(J, C) \cap V_{\ell}^{E}$

$$
E=\left\{f_{1}\right\}, F=\left\{f_{2}, f_{3}, f_{4}\right\}
$$

$\complement_{\text {Solution technique }}$

- Branch-and-bound for MMA

Inseparability equivalence classes

■ E induces a partition of the observations into equivalence classes V_{ℓ}^{E}, for $\ell=1, \ldots, q(E)$

- For given E the objective of any monomial restricted to V_{ℓ}^{E} is (tightly) bounded by $\left|w_{\ell}^{+}(J, C, E)-w_{\ell}^{-}(J, C, E)\right|$ where $w_{\ell}^{+}(J, C, E)$ is the sum of weights of positive observations in $\operatorname{Cover}(J, C) \cap V_{\ell}^{E}$

$$
E=\left\{f_{1}, f_{2}\right\}, F=\left\{f_{3}, f_{4}\right\}
$$

An improved upper bound

$$
\begin{aligned}
& u(J, C, E)=\max \left\{\begin{array}{l}
\sum_{\ell=1}^{q(E)}\left(w_{\ell}^{+}(J, C, E)-w_{\ell}^{-}(J, C, E)\right)_{+}, \\
\sum_{\ell=1}^{q(E)}\left(w_{\ell}^{-}(J, C, E)-w_{\ell}^{+}(J, C, E)\right)_{+}
\end{array}\right\} \\
& =u_{\mathrm{gs}}(J, C)-\sum_{\ell=1}^{q(E)} \min \left\{w_{\ell}^{+}(J, C, E), w_{\ell}^{-}(J, C, E)\right\}
\end{aligned}
$$

Back to our example:

- $f(J, C)=1$
- $u_{g s}(J, C)=3$

which is tight

An improved upper bound

$$
\begin{aligned}
& u(J, C, E)=\max \left\{\begin{array}{l}
\sum_{\ell=1}^{q(E)}\left(w_{\ell}^{+}(J, C, E)-w_{\ell}^{-}(J, C, E)\right)_{+}, \\
\sum_{\ell=1}^{q(E)}\left(w_{\ell}^{-}(J, C, E)-w_{\ell}^{+}(J, C, E)\right)_{+}
\end{array}\right\} \\
& =u_{\mathrm{gs}}(J, C)-\sum_{\ell=1}^{q(E)} \min \left\{w_{\ell}^{+}(J, C, E), w_{\ell}^{-}(J, C, E)\right\}
\end{aligned}
$$

Back to our example:

- $f(J, C)=1$
- $u_{g s}(J, C)=3$
- $u(J, C, E)=$ $(1-1)+(2-1)=1$ which is tight

$\complement_{\text {Solution technique }}$

- Branch-and-bound for MMA

Branching on a k-set of variables

■ Branching on all of F entails a large branching factor
■ Given k, we find $\left\{f_{1}, \ldots, f_{k}\right\} \subseteq F$ that maximizes the inseparability $\phi(J, C, \cdot)$. Recall:

$$
u(J, C, E)=u_{\mathrm{gs}}(J, C)-\phi(J, C, E)
$$

where

$$
\phi(J, C, E)=\sum_{\ell=1}^{q(E)} \min \left\{w_{\ell}^{+}(J, C, E), w_{\ell}^{-}(J, C, E)\right\}
$$

- This problem itself is $N P$-hard
- $\phi(J, C, \cdot)$ is supermodular

■ Use a reverse greedy heuristic to find $\left\{f_{1}, \ldots, f_{k}\right\}$ and then partition into subproblems corresponding to excluding $\emptyset,\left\{f_{1}\right\},\left\{f_{1}, f_{2}\right\}, \ldots,\left\{f_{1}, \ldots, f_{k}\right\}$.

Three way branching $(k=1)$

Figure: Branching of subproblem ($J, C, E, F)$ into three children.

When branching on a single variable:

- we select the variable j that minimizes the maximum bound of the associated children (breaking ties lexicographically).
- it is less computationally intensive per search node than branching on k-sets

Computational results - cont'd

Dataset , \# Features		$\begin{gathered} u_{\text {gs }} \text { bound } \\ k=\|F\| \end{gathered}$		$k=\|F\|$		$k=\lceil\|F\| / 2\rceil$		lex strong branching$k=1$	
		CPU Sec	BB Nodes	$\begin{array}{r} \text { CPU } \\ \text { Sec } \end{array}$	BB Nodes	$\begin{array}{r} \mathrm{CPU} \\ \mathrm{Sec} \end{array}$	BB Nodes	$\begin{array}{r} \text { CPU } \\ \text { Sec } \end{array}$	Nodes
SPECTHRT	1-15	0.6	7791.5	0.2	21.5	0.2	22.4	0.1	50.5
$n=22$	16-30	1.8	22751.1	0.4	74.6	0.4	78.5	0.3	162.9
CLEVHRT	1-15	29.7	89551.2	16.9	626.2	17.3	654.7	9.5	1638.3
$n=35$	16-30	99.8	317537.9	40.7	1872.3	41.2	1941.6	23.6	4831.6
HEPATITIS	1-15	17.3	83365.6	7.2	442.5	7.3	464.7	3.2	917.1
$n=37$	16-30	Q LIMIT		13.5	970.9	13.8	1021.5	7.3	2650.3
PIMA	1-15	Q LIMIT		89.2	1290.5	90.0	1323.2	66.0	4606.3
$n=33$	16-30	Q LIMIT		269.9	5499.3	269.6	5582.7	224.7	20907.1
CMC	1-15	Q LIMIT		1161.0	969.3	1158.6	972.7	496.9	3647.3
$n=58$	16-30	Q LIMIT		LIMIT		LIMIT		1738.6	19437.3
HUNGHRT	1-15	Q LIMIT		LIMIT		LIMIT		264.0	14169.3
$n=72$	16-30	Q LIMIT		LIMIT		LIMIT		763.6	47657.2

Table: Runtime and node averages over the specified LP-Boost (Demiriz, Bennett and Shawe-Taylor 2002) iterations, applying our algorithm to (binarized) UCI datasets. "Q LIMIT" indicates an iteration encountered the 500,000-node queue limit, and "LIMIT" indicates an iteration encountered the 1 -hr time limit.

Computational results

CLEVHRT Search Nodes

Computational results - cont'd

CLEVHRT CPU Time

Computational results - cont'd

PIMA Search Nodes

Computational results - cont'd

PIMA CPU Time

Computational results - cont'd

HEPATITIS Search Nodes

Computational results - cont'd

HEPATITIS CPU Time

Conclusions and future work

- Three way branching is faster than both the previous (G\&S) algorithm and k-set branching
■ k-set branching seems to have the fewest search nodes, particularly for $k \geq\lceil|F| / 2\rceil$
- Extend the problem and algorithm in order to incorporate within a new boosting formulation with a discrete information complexity penalty (" L_{0} regularization").

Thank you!

To contact me:
Noam Goldberg
Email: ngoldberg@rutcor.rutgers.edu

