Noam Goldberg RUTCOR Rutgers University

Joint work with: Jonathan Eckstein, MSIS and RUTCOR Rutgers University

January 20, 2009

Outline

1 Introduction

- Problem setting
- Definitions: monomials and their coverage
- Maximum Monomial Agreement (MMA) statement of the problem
- Motivation: applications in machine learning and data mining

2 Solution technique

- Branch-and-bound overview
- Branch-and-bound for MMA
 - Improving the upper bound
 - Improving on the branching scheme
- 3 Computational results
- 4 Conclusion and ongoing work

Introduction

Problem setting

Problem setting

We are given:

- \blacksquare a set of binary data $A \in \{0,1\}^{m \times n}$
- binary classes: $\Omega^+ \subset \{1, \ldots, m\}$ and $\Omega^- = \{1, \ldots, m\} \setminus \Omega^+$

• each observation i has weight w(i).

w(i)	a _{i1}	a _{i2}	ai3	s a _i 4	+/-
0.2374	1	0	0	1	+
1.7456	1	1	1	0	+
0.4357	0	0	0	1	+
1.4357	1	1	0	0	—
0.5127	1	1	0	1	—

- Introduction
 - Definitions: monomials and their coverage

Definitions

A monomial (a.k.a. a term)

$$p_{J,C}(x) = \prod_{j \in J} x_j \prod_{c \in C} (1-x_c)$$

where J and C are disjoint subsets of $\{1, \ldots, n\}$

A monomial's coverage

Given $A \in \{0,1\}^{m \times n}$ where A_i is the i^{th} row of A

$$Cover_A(J, C) = \{i \in \{1, ..., m\} \mid p_{J,C}(A_i) = 1\}$$

- Introduction

Maximum Monomial Agreement (MMA) – statement of the problem

Statement of the problem

Maximum Monomial Agreement (MMA)

Given $A \in \{0,1\}^{m \times n}$, $w : \{1,\ldots,m\} \to \mathbb{R}$, $\Omega^+ \subseteq \{1,\ldots,m\}$, $\Omega^- = \{1,\ldots,m\} \setminus \Omega^+$, find a monomial corresponding to $J, C \subseteq \{1,\ldots,n\}$, $J \cap C = \emptyset$ such that:

$$f(J, C) = \left| w(\mathsf{Cover}(J, C) \cap \Omega^+) - w(\mathsf{Cover}(J, C) \cap \Omega^-) \right|$$

is maximized.

- A monomial classifier's accuracy is maximized by the above objective.
- It is precisely the objective of the "weak learner" subproblem within boosting (e.g., LP-Boost) when combining monomials.

Motivation

- Weighted voting classification methods:
 - **1** combine simple classifiers $h_p : \{0,1\}^n \to \{-1,0,1\}$ for $p \in \mathcal{P}$
 - 2 find a separating hyperplane $g(x) = \alpha_0 + \sum_p \alpha_p h_p(x)$ in $[0,1]^{|\mathcal{P}|}$, e.g., maximizing the L_1 margin
 - 3 classify any $x \in \{0,1\}^n$ based on sgn(g(x))
- A boosting algorithm iteratively finds g by linearly combining the classifiers h_p computed by a "base learner" / subroutine.
 Note: the weight of observation i, w(i), is a dual variable value of an LP.

Solution technique

Our solution approach

- The MMA problem is *NP*-hard (Kearns, Schapire & Sellie 1994)
- Solving the problem exactly using a B&B algorithm can improve on classification performance when used with robust boosting algorithm (Goldberg & Shan 2007)
- We also solve the problem using a branch-and-bound algorithm.
 - We improve the simple upper bound used in the previous branch-and-bound algorithm (GS 2007).
 - We consider more sophisticated dynamic branching schemes.

Solution technique

Branch-and-bound overview

Branch-and-bound overview

A branch-and-bound algorithm is an enumeration (search tree) scheme whose practical efficiency depends on the ability to prune the search space as quickly as possible. More concretely the ability to prune depends on:

- effective heuristics for branching recursively partitioning the search space into subproblems
- the quality of bound on the objective function of descendent subproblems
- the queueing discipline of "open subproblems"

Solution technique

Branch-and-bound for MMA

Our solution technique

- We define a subproblem as a partition of the variable indices {1,..., n} into (J, C, E, F), where:
 - J the set of variables fixed to be in the monomial
 - *C* the set of variables fixed to be **complemented in** the monomial
 - *E* the set of variables fixed to be **excluded** from the monomial
 - F the set of **free** variables
- At the root we start with all variables free $(\emptyset, \emptyset, \emptyset, \{1, \dots, n\})$
- We branch by removing one or more variables from *F*, adding each to one of *J*, *C* or *E*.

$2 \times |F|$ branching (based on G & S)

Figure: Branching of subproblem (J, C, E, F) into $2 \times |F|$ children. In the previous algorithm the ordering f_1, f_2, f_3 is lexical (i.e., it is static).

Solution technique

Branch-and-bound for MMA

Simple upper bound (GS 2007)

$$u_{gs}(J, C) = \max\{w(\operatorname{Cover}(J, C) \cap \Omega^+), w(\operatorname{Cover}(J, C) \cap \Omega^-)\}$$

For example:

- f(J, C) = 1
- but $u_{gs}(J, C) = 3$.
- may be optimistic...

Solution technique

Branch-and-bound for MMA

Simple upper bound (GS 2007)

$$u_{gs}(J, C) = \max\{w(\operatorname{Cover}(J, C) \cap \Omega^+), w(\operatorname{Cover}(J, C) \cap \Omega^-)\}$$

For example:

- f(J, C) = 1
- but $u_{gs}(J, C) = 3$.
- may be optimistic...

└-Solution technique

Branch-and-bound for MMA

Inseparability

Definition

Two binary vectors $x, y \in \{0, 1\}^n$ are *inseparable* with respect to a set $E \subseteq \{1, ..., n\}$, if, for all $j \in \{1, ..., n\} \setminus E$, one has $x_j = y_j$.

• Example: If $\{2,4\} \subseteq E$, then A_1 and A_2 are inseparable

Solution technique

Branch-and-bound for MMA

Inseparability equivalence classes

- *E* induces a partition of the observations into equivalence classes V_{ℓ}^{E} , for $\ell = 1, ..., q(E)$
- For given E the objective of any monomial restricted to V^E_ℓ is (tightly) bounded by |w⁺_ℓ(J, C, E) w⁻_ℓ(J, C, E)| where w⁺_ℓ(J, C, E) is the sum of weights of positive observations in Cover(J, C) ∩ V^E_ℓ

 $E = \emptyset$, $F = \{f_1, f_2, f_3, f_4\}$

Solution technique

Branch-and-bound for MMA

Inseparability equivalence classes

- *E* induces a partition of the observations into equivalence classes V_{ℓ}^{E} , for $\ell = 1, ..., q(E)$
- For given E the objective of any monomial restricted to V^E_ℓ is (tightly) bounded by |w⁺_ℓ(J, C, E) w⁻_ℓ(J, C, E)| where w⁺_ℓ(J, C, E) is the sum of weights of positive observations in Cover(J, C) ∩ V^E_ℓ

$$E = \{f_1\}, F = \{f_2, f_3, f_4\}$$

Solution technique

Branch-and-bound for MMA

Inseparability equivalence classes

- *E* induces a partition of the observations into equivalence classes V_{ℓ}^{E} , for $\ell = 1, ..., q(E)$
- For given E the objective of any monomial restricted to V^E_ℓ is (tightly) bounded by |w⁺_ℓ(J, C, E) w⁻_ℓ(J, C, E)| where w⁺_ℓ(J, C, E) is the sum of weights of positive observations in Cover(J, C) ∩ V^E_ℓ

$$E = \{f_1, f_2\}, F = \{f_3, f_4\}$$

Solution technique

Branch-and-bound for MMA

An improved upper bound

$$u(J, C, E) = \max \left\{ \begin{array}{l} \sum_{\ell=1}^{q(E)} \left(w_{\ell}^{+}(J, C, E) - w_{\ell}^{-}(J, C, E) \right)_{+}, \\ \sum_{\ell=1}^{q(E)} \left(w_{\ell}^{-}(J, C, E) - w_{\ell}^{+}(J, C, E) \right)_{+} \end{array} \right\}$$
$$= u_{gs}(J, C) - \sum_{\ell=1}^{q(E)} \min\{w_{\ell}^{+}(J, C, E), w_{\ell}^{-}(J, C, E)\}$$

Back to our example:

- f(J, C) = 1
- $u_{gs}(J, C) = 3$

• u(J, C, E) =(1-1) + (2-1) = 1 which is tight

└-Solution technique

Branch-and-bound for MMA

An improved upper bound

$$u(J, C, E) = \max \left\{ \begin{array}{l} \sum_{\ell=1}^{q(E)} \left(w_{\ell}^{+}(J, C, E) - w_{\ell}^{-}(J, C, E) \right)_{+}, \\ \sum_{\ell=1}^{q(E)} \left(w_{\ell}^{-}(J, C, E) - w_{\ell}^{+}(J, C, E) \right)_{+} \end{array} \right\}$$
$$= u_{gs}(J, C) - \sum_{\ell=1}^{q(E)} \min\{w_{\ell}^{+}(J, C, E), w_{\ell}^{-}(J, C, E)\}$$

Back to our example:

- $\bullet f(J,C) = 1$
- $u_{gs}(J, C) = 3$

•
$$u(J, C, E) =$$

(1-1)+(2-1) = 1
which is tight

Solution technique

Branch-and-bound for MMA

Branching on a *k*-set of variables

- Branching on all of F entails a large branching factor
- Given k, we find {f₁,..., f_k} ⊆ F that maximizes the inseparability φ(J, C, ·). Recall:

$$u(J, C, E) = u_{gs}(J, C) - \phi(J, C, E)$$

where

$$\phi(J, C, E) = \sum_{\ell=1}^{q(E)} \min\{w_{\ell}^{+}(J, C, E), w_{\ell}^{-}(J, C, E)\}$$

- This problem itself is NP-hard
- $\phi(J, C, \cdot)$ is supermodular
- Use a reverse greedy heuristic to find {f₁,..., f_k} and then partition into subproblems corresponding to excluding Ø, {f₁}, {f₁, f₂},..., {f₁,..., f_k}.

Solution technique

Branch-and-bound for MMA

Three way branching (k = 1)

Figure: Branching of subproblem (J, C, E, F) into three children.

When branching on a single variable:

- we select the variable j that minimizes the maximum bound of the associated children (breaking ties lexicographically).
- it is less computationally intensive per search node than branching on k-sets

Computational results

Computational results - cont'd

		ugs bound						lex strong branching	
		$\breve{k} = F $		k = F		$k = \left\lceil F / 2 \right\rceil$		k = 1	
	LP-								
Dataset	Boost	CPU	BB	CPU	BB	CPU	BB	CPU	BB
, # Features	Iters	Sec	Nodes	Sec	Nodes	Sec	Nodes	Sec	Nodes
SPECTHRT	1-15	0.6	7791.5	0.2	21.5	0.2	22.4	0.1	50.5
n = 22	16-30	1.8	22751.1	0.4	74.6	0.4	78.5	0.3	162.9
CLEVHRT	1-15	29.7	89551.2	16.9	626.2	17.3	654.7	9.5	1638.3
n = 35	16-30	99.8	317537.9	40.7	1872.3	41.2	1941.6	23.6	4831.6
HEPATITIS	1-15	17.3	83365.6	7.2	442.5	7.3	464.7	3.2	917.1
n = 37	16-30	Q LIMIT		13.5	970.9	13.8	1021.5	7.3	2650.3
PIMA	1-15	Q LIMIT		89.2	1290.5	90.0	1323.2	66.0	4606.3
n = 33	16-30	Q LIMIT		269.9	5499.3	269.6	5582.7	224.7	20907.1
CMC	1-15	Q LIMIT		1161.0	969.3	1158.6	972.7	496.9	3647.3
n = 58	16-30	Q LIMIT		LIMIT		LIMIT		1738.6	19437.3
HUNGHRT	1-15	Q LIMIT		LIMIT		LIMIT		264.0	14169.3
n = 72	16-30	Q LIMIT		LIMIT		LIMIT		763.6	47657.2

Table: Runtime and node averages over the specified LP-Boost (Demiriz, Bennett and Shawe-Taylor 2002) iterations, applying our algorithm to (binarized) UCI datasets. "Q LIMIT" indicates an iteration encountered the 500,000-node queue limit, and "LIMIT" indicates an iteration encountered the 1-hr time limit.

Computational results

HEPATITIS CPU Time

Conclusion and ongoing work

Conclusions and future work

- Three way branching is faster than both the previous (G&S) algorithm and k-set branching
- *k*-set branching seems to have the fewest search nodes, particularly for $k \ge \lceil |F|/2 \rceil$
- Extend the problem and algorithm in order to incorporate within a new boosting formulation with a discrete information complexity penalty ("L₀ regularization").

Conclusion and ongoing work

Thank you!

To contact me:

Noam Goldberg Email: ngoldberg@rutcor.rutgers.edu