Adding Unsafe Constraints to Improve Satisfiability Performance

John Franco
Computer Science, University of Cincinnati
based on work of Michal Kouril

Constraints are Clauses

A variable looks like this: v_{9}, takes a value from $\{0,1\}$
A positive literal: v_{9}, a negative literal: $\neg v_{9}$
A clause looks like this: $\left(\neg v_{1} \vee \neg v_{2} \vee v_{5} \vee v_{9}\right)$
An instance of SAT looks like this:

$$
\left(v_{1} \vee \neg v_{2} \vee v_{7}\right) \wedge\left(\neg v_{2} \vee v_{6}\right) \wedge\left(\neg v_{2} \vee \neg v_{4} \vee \neg v_{5}\right) \wedge\left(v_{10}\right) \ldots
$$

Clause width: \# literals; k-SAT: fixed width k
An important splitting operation in solvers:

$$
\begin{array}{ll}
\left(\neg v_{1} \vee \neg v_{2} \vee v_{i}\right) \wedge\left(\neg v_{i} \vee v_{3}\right) \wedge\left(\neg v_{2} \vee v_{4}\right) \\
\left(v_{3}\right) \wedge\left(\neg v_{2} \vee v_{4}\right) & \left(\neg v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{2} \vee v_{4}\right)
\end{array}
$$

A Search Space

What Makes a Problem Hard?

Useful clauses are not learned early enough:

What Makes a Problem Hard?

 Is any particular structure bad?

What Makes a Problem Hard?

This can be flattened

Some FV Problems Have This Structure

> Variables: at time i,
> $v_{1}^{i}=$ value of bit 1,
> $v_{2}^{i}=$ value of bit 2

Does the 2-bit counter above reach state 11 in exactly 3 time steps?

The Propositional Formula

Force the property to hold:

$$
\neg\left(v_{1}^{0} \wedge v_{2}^{0}\right) \wedge \neg\left(v_{1}^{1} \wedge v_{2}^{1}\right) \wedge \neg\left(v_{1}^{2} \wedge v_{2}^{2}\right) \wedge\left(v_{1}^{3} \wedge v_{2}^{3}\right)
$$

Express the starting state:

$$
\neg v_{1}^{0} \wedge \neg v_{2}^{0}
$$

Force legal transitions (repetitions of the transition relation):

$$
\begin{aligned}
& \left(v_{2}^{1} \equiv \neg v_{2}^{0}\right) \wedge\left(v_{1}^{1} \equiv v_{1}^{0} \oplus v_{2}^{0}\right) \wedge\left(v_{2}^{2} \equiv \neg v_{2}^{1}\right) \wedge \\
& \left(v_{1}^{2} \equiv v_{1}^{1} \oplus v_{2}^{1}\right) \wedge\left(v_{2}^{3} \equiv \neg v_{2}^{2}\right) \wedge\left(v_{1}^{3} \equiv v_{1}^{2} \oplus v_{2}^{2}\right)
\end{aligned}
$$

Satisfied only by:

$$
v_{1}^{0}=0, v_{2}^{0}=0, v_{1}^{1}=1, v_{2}^{1}=0, v_{1}^{2}=0, v_{2}^{2}=1, v_{1}^{3}=1, v_{2}^{3}=1
$$

The Propositional Formula

Three repetitions of a function

$$
f_{i}=\neg v_{i+1} \wedge v_{i+3} \wedge\left(v_{i} \equiv v_{i+2}\right)
$$

How Can We Make the Problem Easier?

 Install the inferred constraints earlyInstall safe, uninferred constraints that are obtained fron an analysis of the problem

- for example, take advantage of problem symmetry

Install unsafe, uninferred constraints that are obtained from an analysis of solutions to smaller problems in the family

- run the search to some depth past the hump
- retract the unsafe constraints and search deeper

Example - Van der Waerden Numbers

Let $S_{n}=\{1, \ldots n\}$.
Let proposition $P_{n, k}(l)$ be true if and only if all partitions of S_{n} into k classes contain at least one arithmetic progression of length l in at least one class.
Then $W(k, l)$ is the minimum n for which $P_{n, k}(l)$ is true.
Example, all do: $k=2, l=3, n=9$
$\{\{1,2,3,4,5\}\{6,7,8,9\}\},\{\{1,3,4,7\}\{2,5,6,8,9\}\}$
Example, one does not: $k=2, l=3, n=8$ $\{\{1,2,5,6\}\{3,4,7,8\}\}$

Example - Van der Waerden Numbers

There is no known closed form expression for $W(k, l)$ Table shows all known Van der Waerden numbers. $W(2,6)$ determined in 2007, all others before 1979.

$k \backslash l$	3	4	5	6
2	9	35	178	1132
3	27			
4	76			

Previous Bounds

$k \backslash l$	3	4	5	6	7
2	9	35	178	>341	>614
3	27	>193	>676	>2236	
4	76	>416			
5	>125	>880			

Formulas $\uparrow \quad$ Analysis

$k \backslash l$	3	4	5	6
2	9	35	178	>695
3	27	>291	>1209	>8885
4	76	>1047	>10436	>90306
5	>125	>2253	>24044	>177955

Formula for $W(2,6)$

Variables

v_{i}

Meaning

$$
\begin{aligned}
& v_{i} \equiv 1 \text { if } i+n / 2 \in C_{1} \\
& v_{i} \equiv 0 \text { if } i+n / 2 \in C_{2}
\end{aligned}
$$

Meaning
no arithmetic progression of length 6 in C_{1} $-n / 2<i \leq n / 2-5$ $t=\lfloor(n / 2-i) / 5\rfloor$
no arithmetic progression of length 6 in C_{2}

$$
\begin{gathered}
-n / 2<i \leq n / 2-5 \\
t=\lfloor(n / 2-i) / 5\rfloor
\end{gathered}
$$

Analyze Solutions to Smaller Instances

1010001110100100011101101000111010
Analysis of solutions to $W(2,4)$ and $W(2,5)$

Limited length patterns of reverse symmetry

Unsafe Constraints 1

For $W(2, l)$ formula there exists at least one solution with a reflected pattern of length $W(2, l) /(2(l-1))$ with the middle positioned somewhere between $W(2, l) /(l-1)$ and $W(2, l) *(l-2) /(l-1)$.

Design a filter for variable assignment patterns that are not reverse symmetric.

Clauses

$$
\begin{aligned}
& \quad\left(v_{-i} \vee v_{i+1}\right) \quad 0 \leq i<s / 2 \\
& \left(\neg v_{-i} \vee \neg v_{i+1}\right)
\end{aligned}
$$

Meaning
force $v_{-i} \equiv \bar{v}_{i+1}$.

Unsafe Constraints 2

Some small assignment patterns do not occur in solutions. Construct constraints to filter them.
This action is opposite to that of forcing patterns to occur which is the objective of unsafe constraints 1.

Clauses

$$
\begin{aligned}
& \left(v_{i}, \neg v_{i+t}, v_{i+2 t}, \neg v_{i+3 t}, v_{i+4 t}, \neg v_{i+5 t}\right) \\
& \left(\neg v_{i}, v_{i+t}, \neg v_{i+2 t}, v_{i+3 t}, \neg v_{i+4 t}, v_{i+5 t}\right) \\
& \left(v_{i}, v_{i+t}, \neg v_{i+2 t}, \neg v_{i+3 t}, v_{i+4 t}, \neg v_{i+5 t}, \neg v_{i+6 t}, v_{i+7 t}\right) \\
& \left(\neg v_{i}, \neg v_{i+t}, v_{i+2 t}, v_{i+3 t}, \neg v_{i+4 t}, v_{i+5 t}, v_{i+6 t}, \neg v_{i+7 t}\right) \\
& \left(v_{i}, \neg v_{i+t}, \neg v_{i+2 t}, v_{i+3 t}, \neg v_{i+4 t}, \neg v_{i+5 t}, v_{i+6 t}, v_{i+7 t}\right) \\
& \left(\neg v_{i}, v_{i+t}, v_{i+2 t}, \neg v_{i+3 t}, v_{i+4 t}, v_{i+5 t}, \neg v_{i+6 t}, \neg v_{i+7 t}\right) \\
& \left(v_{i}, v_{i+t}, \neg v_{i+2 t}, \neg v_{i+3 t}, \neg v_{i+4 t}, v_{i+5 t}, v_{i+6 t}, \neg v_{i+7 t}\right) \\
& \left(\neg v_{i}, \neg v_{i+t}, v_{i+2 t}, v_{i+3 t}, v_{i+4 t}, \neg v_{i+5 t}, \neg v_{i+6 t}, v_{i+7 t}\right) \\
& \left(\neg v_{i}, v_{i+t}, v_{i+2 t}, \neg v_{i+3 t}, \neg v_{i+4 t}, \neg v_{i+5 t}, v_{i+6 t}, v_{i+7 t}\right) \\
& \left(v_{i}, \neg v_{i+t}, \neg v_{i+2 t}, v_{i+3 t}, v_{i+4 t}, v_{i+5 t}, \neg v_{i+6 t}, \neg v_{i+7 t}\right)
\end{aligned}
$$

Filters
010101
101010
00110110 11001001
01101100
10010011
00111001
11000110
10011100
01100011

Unsafe Constraints 3

Analytic solutions to $W(2,6)$ formulas have been found for various values of n including 565 and 695 .
Take solution for $n=565$ and re-index the assigned variables

$$
v_{-282}, \ldots, v_{0}, v_{1}, \ldots v_{282}
$$

to

$$
v_{-564}, v_{-562}, \ldots, v_{0}, v_{2}, \ldots, v_{562}, v_{564}
$$

and add free variables

$$
v_{-565}, v_{-563}, \ldots, v_{1}, \ldots, v_{563}, v_{565}
$$

This does not introduce any arithmetic progression among the even indexed variables.
Constraints are the assignment to the even indexed variables.

Results

Any of the constraint sets works

- improves performance of off-the-shelf solvers by orders of magnitude
- all constraint sets give the same result: a bound of 1132 on $W(2,6)$
- These ideas were later used to get the exact number $W(2,6)=1132$

How to Apply This to FV?

If a solution is found - use it
If no solution is found - need to build confidence Try several different unsafe constraint sets Gradually remove some of the constraints Retract unsafe constraints earlier Parallelization helps realize search breadth

If applied to an optimization problem - approximation?

What Are the Problems?

This is too ad-hoc at the moment
A good confidence measure is needed
Need to know when to retract unsafe constraints

