Competitive Evaluation of Threshold Functions and Game Trees in the Priced Information Model

Ferdinando Cicalese

Martin Milanič

University of Salerno

Bielefeld University

DIMACS-RUTCOR Workshop on Boolean and Pseudo-Boolean Functions In Memory of Peter L. Hammer January 19, 2009

Input:

- a function f over the variables x_1, \ldots, x_n
- each variable has a positive cost of reading its value
- an unknown assignment $x_1 = a_1, \ldots, x_n = a_n$

Goal:

- Determine *f*(*a*₁,...*a_n*)
 - adaptively reading the values of the variables
 - incurring little cost

The function evaluation problem

f = (x and y) or (x and z)

• *x*, *y*, *z*: binary variables

 for some inputs it is possible to evaluate f without reading all variables

Example:

•
$$(x, y, z) = (0, 1, 1)$$

It is enough to know the value of x

The function evaluation problem

f = (x and y) or (x and z)

- *x*, *y*, *z*: binary variables
- for some inputs it is possible to evaluate *f* without reading all variables

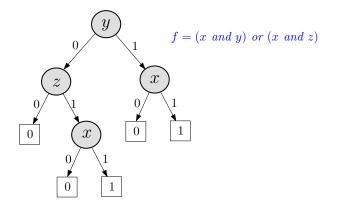
Example:

• (x, y, z) = (0, 1, 1)

It is enough to know the value of x

Algorithms for evaluating f

- Dynamically select the next variable based on the values of the variables read so far
- Stop when the value of f is determined



Evasive Functions

- For any possible algorithm, all the variables must be read in the worst case.
- f = (x and y) or (x and z)
- Some important functions are evasive (e.g. game trees, AND/OR trees and threshold trees).
- Worst case analysis cannot distinguish among the performance of different algorithms.
- Instead, we use competitive analysis (Charikar et al. 2002)

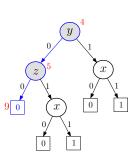
Evasive Functions

- For any possible algorithm, all the variables must be read in the worst case.
- f = (x and y) or (x and z)
- Some important functions are evasive (e.g. game trees, AND/OR trees and threshold trees).
- Worst case analysis cannot distinguish among the performance of different algorithms.
- Instead, we use competitive analysis (Charikar et al. 2002)

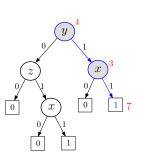
f = (x and y) or (x and z)cost(x) = 3, cost(y) = 4, cost(z) = 5

Asignment (x, y, z)	Value of f	Cheapest Proof	Cost
(0,0,0)	0	{ x }	3
(1,1,0)	1	{ x , y }	3+4=7

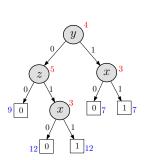
(x, y, z)	f(x, y, z)	Cost of	Algorithm	Ratio
		Cheapest	Cost	
		Proof		
(0,0,0)	0	3	9	3



(x, y, z)	f(x, y, z)	Cost of	Algorithm	Ratio
		Cheapest	Cost	
		Proof		
(0,0,0)	0	3	9	3
(1,1,0)	1	7	7	1



(x, y, z)	f(x, y, z)	Cost of	Algorithm	Ratio
		Cheapest	Cost	
		Proof		
(0,0,0)	0	3	9	3
(1,0,0)	0	9	9	1
(0,1,0)	0	3	7	7/3
(0,0,1)	0	3	12	4
(1,1,0)	1	7	7	1
(1,0,1)	1	8	12	3/2
(0,1,1)	0	3	7	7/3
(1,1,1)	1	7	7	1



Measures of algorithm's performance

Competitive ratio of algorithm A for (f, c):

 $\max_{\substack{\text{all assignments } \sigma}} \frac{\text{cost of } A \text{ to evaluate } f \text{ on } \sigma}{\text{cost of cheapest proof of } f \text{ on } \sigma}$

In this talk:

Extremal competitive ratio of A for f:

max all assignments σ, all cost vectors c cost of A to evaluate f on (σ, c) cost of cheapest proof of f on (σ, c)

Measures of algorithm's performance

Competitive ratio of algorithm A for (f, c):

 $\max_{\substack{\text{all assignments } \sigma}} \frac{\text{cost of } A \text{ to evaluate } f \text{ on } \sigma}{\text{cost of cheapest proof of } f \text{ on } \sigma}$

In this talk:

Extremal competitive ratio of A for f:

 $\begin{array}{l} {\color{black} \textbf{max}} \\ {\color{black} \textit{all assignments } \sigma,} \\ {\color{black} \textit{all cost vectors } c} \end{array}$

cost of A to evaluate f on (σ, c)

cost of cheapest proof of f on (σ, c)

Extremal competitive ratio of f:

that evaluate f

 $\min_{all \ deterministic \ algorithms \ A} \left\{ extremal \ competitive \ ratio \ of \ A \ for \ f \right\}$

Given:

a function f over the variables x_1, x_2, \ldots, x_n

Combinatorial Goal:

• Determine the extremal competitive ratio of f

Algorithmic Goal:

- Devise an algorithm for evaluating *f* that:
 - 1. achieves the optimal (or close to optimal) extremal competitive ratio
 - 2. is efficient (runs in time polynomial in the size of f)

The algorithm knows the reading costs.

Given:

a function f over the variables x_1, x_2, \ldots, x_n

Combinatorial Goal:

• Determine the extremal competitive ratio of f

Algorithmic Goal:

- Devise an algorithm for evaluating f that:
 - 1. achieves the optimal (or close to optimal) extremal competitive ratio
 - 2. is efficient (runs in time polynomial in the size of f)

The algorithm knows the reading costs.

Applications of the function evaluation problem:

• Reliability testing / diagnosis

Telecommunications: testing connectivity of networks Manufacturing: testing machines before shipping

Databases

Query optimization

Artificial Intelligence

Finding optimal derivation strategies in knowledge-based systems

- Decision-making strategies (AND-OR trees)
- Computer-aided game playing for two-player zero-sum games with perfect information, e.g. chess (game trees)

Related work - other models/measures

Non-uniform costs & competitive analysis

Charikar et al. [STOC 2000, JCSS 2002]

Unknown costs

Cicalese and Laber [SODA 2006]

Restricted costs (selection and sorting)

Gupta and Kumar [FOCS 2001], Kannan and Khanna [SODA 2003]

Randomized algorithms

Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004]

Stochastic models

Random input, uniform probabilities

Tarsi [JACM 1983], Boros and Ünlüyurt [AMAI 1999]

Charikar et al. [STOC 2000, JCSS 2002], Greiner et al. [Al 2005]

Random input, arbitrary probabilities

Kaplan et al. [STOC 2005]

Random costs

Angelov et al. [LATIN 2008]

Good algorithms are expected to test...

- cheap variables
- important variables ???

We use

a linear program that captures the impact of the variables (C.-Laber 2008) Good algorithms are expected to test...

- cheap variables
- important variables ???

We use

a linear program that captures the impact of the variables (C.-Laber 2008)

The minimal proofs

f - a function over $V = \{x_1, \ldots, x_n\}$

R - range of f

Definition

Let $r \in R$. A minimal proof for f(x) = r is a minimal set of variables $P \subseteq V$ such that there is an assignment σ of values to the variables in P such that f_{σ} is constantly equal to r.

Example: $f(x_1, x_2, x_3) = (x_1 \text{ and } x_2) \text{ or } (x_1 \text{ and } x_3), R = \{0, 1\}$ minimal proofs for f(x) = 1: $\{\{x_1, x_2\}, \{x_1, x_3\}\}$ minimal proofs for f(x) = 0: $\{\{x_1\}, \{x_2, x_3\}\}$

The minimal proofs

f - a function over $V = \{x_1, \ldots, x_n\}$

R - range of f

Definition

Let $r \in R$. A minimal proof for f(x) = r is a minimal set of variables $P \subseteq V$ such that there is an assignment σ of values to the variables in P such that f_{σ} is constantly equal to r.

Example: $f(x_1, x_2, x_3) = (x_1 \text{ and } x_2) \text{ or } (x_1 \text{ and } x_3), R = \{0, 1\}$ minimal proofs for f(x) = 1: $\{\{x_1, x_2\}, \{x_1, x_3\}\}$ minimal proofs for f(x) = 0: $\{\{x_1\}, \{x_2, x_3\}\}$

The Linear Program (C.-Laber 2008)

$$\mathsf{LP}(f) \begin{cases} \begin{array}{c} \textit{Minimize } \sum_{x \in V} \mathsf{s}(x) \\ \text{s.t.} \\ \sum_{x \in P} \mathsf{s}(x) \geq 1 & \text{for every minimal proof } P \text{ of } f \\ \mathsf{s}(x) \geq 0 & \text{for every } x \in V \end{array} \end{cases}$$

Intuitively, s(x) measures the **impact** of variable x.

The feasible solutions to the LP(f) are precisely the fractional hitting sets of the set of minimal proofs of f.

The Linear Program (C.-Laber 2008)

$$\mathsf{LP}(f) \begin{cases} \begin{array}{c} \textit{Minimize } \sum_{x \in V} \mathsf{s}(x) \\ \text{s.t.} \\ \sum_{x \in P} \mathsf{s}(x) \geq 1 & \text{for every minimal proof } P \text{ of } f \\ \mathsf{s}(x) \geq 0 & \text{for every } x \in V \end{array} \end{cases}$$

Intuitively, s(x) measures the **impact** of variable x.

The feasible solutions to the LP(f) are precisely the fractional hitting sets of the set of minimal proofs of f.

LP(f): example

 $f(x_1, x_2, x_3) = (x_1 \text{ and } x_2) \text{ or } (x_1 \text{ and } x_3)$ minimal proofs for f = 1: $\{\{x_1, x_2\}, \{x_1, x_3\}\}$ minimal proofs for f = 0: $\{\{x_1\}, \{x_2, x_3\}\}$

	(Minimize $s_1 + s_2 + s_3$
	s.t.
	$s_1 + s_2 \ge 1$
LP(f)	$s_1 + s_3 \ge 1$
	s ₁ ≥ 1
	$s_2 + s_3 \ge 1$
	$s_1, s_2, s_3 \ge 0$

Optimal solution: s = (1, 1/2, 1/2)

LPA(f: function)

While the value of f is unknown

Select a feasible solution s() of **LP**(f)

Read the variable *u* which minimizes c(x)/s(x)(cost/impact) c(x) = c(x) - s(x)c(u)/s(u)

 $f \leftarrow$ restriction of f after reading u

End While

The LPA bounds the extremal competitive ratio

The selection of solution s determines both the **computational efficiency** and the **performance** (extremal competitive ratio) of the algorithm.

Key Lemma (C.-Laber 2008)

Let K be a positive number. If

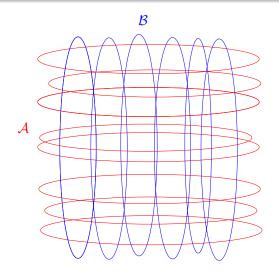
ObjectiveFunctionValue(s) $\leq K$,

for every selected solution s

then

ExtremalCompetitiveRatio(f) \leq K.

Cross-intersecting families



• cross-intersecting: $A \in A, B \in B \Rightarrow A \cap B \neq \emptyset$

$$f: S_1 \times \cdots \times S_n \to S$$
, a function over $V = \{x_1, \ldots, x_n\}$

R - range of f

For $r \in R$, let $\mathcal{P}(r)$ denote the set of **minimal proofs for** f(x) = r.

Then:

for every r ≠ r', the families P(r) and P(r') are cross-intersecting

The Linear Program and cross-intersection

$$\mathsf{LP}(f) \begin{cases} \begin{array}{c} \text{Minimize } \sum_{x \in V} \mathsf{s}(x) \\ \text{s.t.} \\ \sum_{x \in P} \mathsf{s}(x) \geq 1 & \text{for every } P \in \mathcal{P} \\ \mathsf{s}(x) \geq 0 & \text{for every } x \in V \end{array} \end{cases}$$

 $\mathcal{P} = \cup_{r \in \mathcal{R}} \mathcal{P}(r)$

union of pairwise cross-intersecting families

For every function $f : S_1 \times \cdots \times S_n \to S$, the **LP**(f) seeks a minimal fractional hitting set of a union of pairwise cross-intersecting families.

Cross-Intersecting Lemma (C.-Laber 2008)

Let \mathcal{A} and \mathcal{B} be two non-empty **cross-intersecting** families of subsets of V.

Then, there is a fractional hitting set s of $\mathcal{A} \cup \mathcal{B}$ such that

$$\|\mathbf{s}\|_{1} = \sum_{x \in V} \mathbf{s}(x) \le \max\{|\mathbf{P}| : \mathbf{P} \in \mathcal{A} \cup \mathcal{B}\}.$$

- geometric proof
- generalizes to any number of pairwise cross-intersecting families

Applications of the cross-intersecting lemma

- $f: S_1 \times \cdots \times S_n \to S$, nonconstant: *ExtremalCompetitiveRatio*(f) $\leq PROOF(f)$ (*PROOF*(f) = size of the largest minimal proof of f)
- Monotone Boolean functions: ExtremalCompetitiveRatio(f) = PROOF(f)
- Image: Game trees: ExtremalCompetitiveRatio(f) ≤ TBA

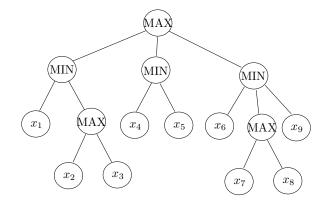
Applications of the cross-intersecting lemma

- $f: S_1 \times \cdots \times S_n \to S$, nonconstant: *ExtremalCompetitiveRatio*(f) $\leq PROOF(f)$ (*PROOF*(f) = size of the largest minimal proof of f)
- Monotone Boolean functions: ExtremalCompetitiveRatio(f) = PROOF(f)
- Game trees: ExtremalCompetitiveRatio(f) ≤ TBA

Applications of the cross-intersecting lemma

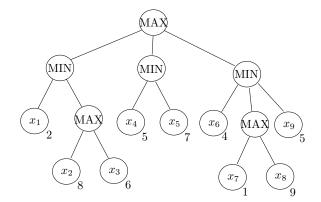
- $f: S_1 \times \cdots \times S_n \to S$, nonconstant: *ExtremalCompetitiveRatio*(f) $\leq PROOF(f)$ (*PROOF*(f) = size of the largest minimal proof of f)
- Monotone Boolean functions: ExtremalCompetitiveRatio(f) = PROOF(f)
- **Game trees:** *ExtremalCompetitiveRatio*(f) \leq *TBA*

Game trees



game tree

Game trees



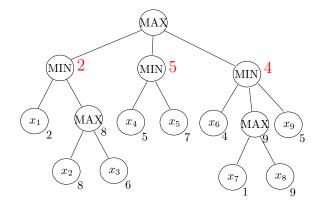
game tree

Game trees



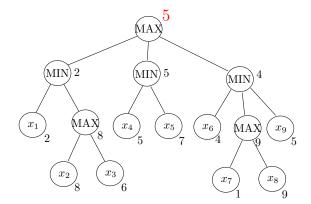
game tree

Game trees



game tree

Game trees

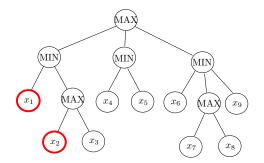


game tree

Minterm: minimal set $A \subseteq V$ of variables such that

value of $f \ge$ value of A := min value of variables in A

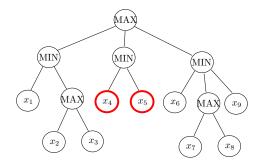
Minterms can prove a lower bound for the value of *f*.



Minterm: minimal set $A \subseteq V$ of variables such that

value of $f \ge$ value of A := min value of variables in A

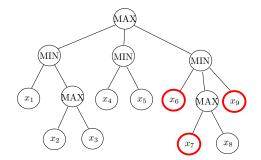
Minterms can prove a lower bound for the value of *f*.



Minterm: minimal set $A \subseteq V$ of variables such that

value of $f \ge$ value of A := min value of variables in A

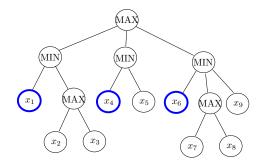
Minterms can prove a lower bound for the value of *f*.



Maxterm: minimal set $B \subseteq V$ of variables such that

value of $f \leq$ value of B := max value of variables in B

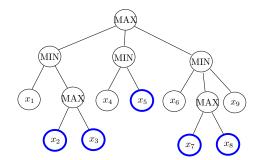
Maxterms can prove an upper bound for the value of *f*.



Maxterm: minimal set $B \subseteq V$ of variables such that

value of $f \leq$ value of B := max value of variables in B

Maxterms can prove an upper bound for the value of *f*.



Lower bound for the extremal competitive ratio

- *k*(*f*) = max{|*A*| : *A* minterm of *f*}
- *l*(*f*) = max{|*B*| : *B* maxterm of *f*}

Theorem (Cicalese-Laber 2005)

Let f be a game tree with no minterms or maxterms of size 1. Then,

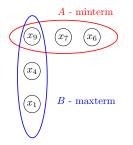
ExtremalCompetitiveRatio(f) $\geq \max\{k(f), l(f)\}$.

Minimal proofs of game trees

To prove that the value of *f* is **b**, we need:

- a minterm of value **b** [proves $f \ge b$]
- a maxterm of value **b** [proves $f \leq \mathbf{b}$]

Every minimal proof = union of a minterm and a maxterm



A first upper bound

It follows that

PROOF(f) = size of the largest minimal proof of f = k(f) + l(f) - 1.

Theorem (Cicalese-Laber 2008)

 $f : S_1 \times \cdots \times S_n \to S$, nonconstant: ExtremalCompetitiveRatio(f) \leq PROOF(f)

For a game tree f, ExtremalCompetitiveRatio $(f) \le k(f) + I(f) - 1$.

Lower bound: $max\{k(f), l(f)\}$

A first upper bound

It follows that

PROOF(f) = size of the largest minimal proof of f = k(f) + l(f) - 1.

Theorem (Cicalese-Laber 2008)

 $f : S_1 \times \cdots \times S_n \rightarrow S$, nonconstant: ExtremalCompetitiveRatio $(f) \leq PROOF(f)$

For a game tree f, ExtremalCompetitiveRatio $(f) \le k(f) + l(f) - 1$.

Lower bound: $max\{k(f), l(f)\}$

A first upper bound

It follows that

PROOF(f) = size of the largest minimal proof of f = k(f) + l(f) - 1.

Theorem (Cicalese-Laber 2008)

 $f : S_1 \times \cdots \times S_n \rightarrow S$, nonconstant: ExtremalCompetitiveRatio $(f) \leq PROOF(f)$

For a game tree f, ExtremalCompetitiveRatio $(f) \le k(f) + l(f) - 1$.

Lower bound: $\max\{k(f), l(f)\}$

Yes:

Claim

For every restriction f' of f, there is a fractional hitting set s of the set of minimal proofs of f' such that

 $\|\mathbf{s}\|_{1} \leq \max\{k(f), l(f)\}.$

By the Key Lemma,

ExtremalCompetitiveRatio(f) \leq max{k(f), l(f)}

Yes:

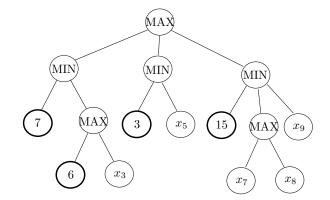
Claim

For every restriction f' of f, there is a fractional hitting set s of the set of minimal proofs of f' such that

 $\|s\|_{1} \leq \max\{k(f), l(f)\}.$

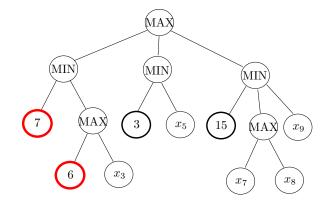
By the Key Lemma,

ExtremalCompetitiveRatio(f) \leq max{k(f), l(f)}

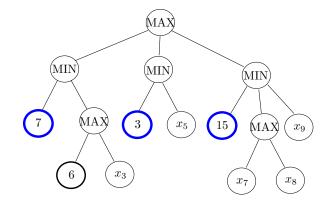


restriction of f

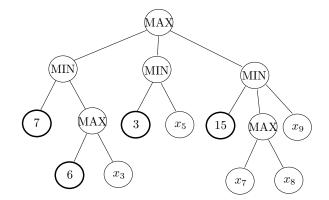
 $f'(x_3, x_5, x_7, x_8, x_9)$



$$\tilde{f}(\boldsymbol{x}_3, \boldsymbol{x}_5, \boldsymbol{x}_7, \boldsymbol{x}_8, \boldsymbol{x}_9) \geq 6$$

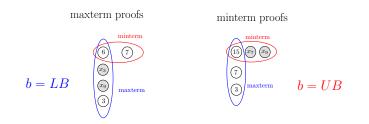


$$\tilde{f}(x_3, x_5, x_7, x_8, x_9) \leq 15$$

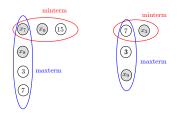


$$ilde{f}(x_3,x_5,x_7,x_8,x_9) \in [6,15] = [LB,UB]$$

Minimal proofs of a restriction of a game tree

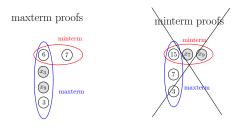


combined proofs

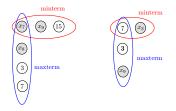


 $LB \le b \le UB$

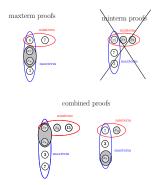
Case 1: No maxterm has been fully evaluated yet



combined proofs



Case 1: No maxterm has been fully evaluated yet



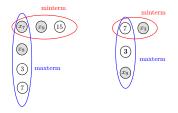
Let s be (the characteristic vector of) a minimal hitting set of the shaded sets.

$$\|s\|_1 \le k(f) \le \max\{k(f), l(f)\}$$

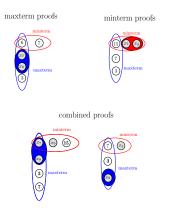
Case 2: There is a fully evaluated maxterm



combined proofs



Case 2: There is a fully evaluated maxterm



- R: the family of the minterm proofs
- B: the family of the maxterm parts of the non-minterm proofs

Case 2: There is a fully evaluated maxterm

- R and B are non-empty sets
- R and B are cross-intersecting
- every minimal proof contains a member of $\mathbf{R} \cup \mathbf{B}$

By the **Cross-intersecting lemma**, there exists a feasible solution s to the **LP**(f') such that

 $\|s\|_{1} \le \max\{|P| : P \in \mathbf{R} \cup \mathbf{B}\} \le \max\{k(f), l(f)\}.$

- R and B are non-empty sets
- R and B are cross-intersecting
- every minimal proof contains a member of $\mathbf{R} \cup \mathbf{B}$

By the **Cross-intersecting lemma**, there exists a feasible solution s to the **LP**(f') such that

 $\|s\|_{1} \leq \max\{|P| : P \in \mathbf{R} \cup \mathbf{B}\} \leq \max\{k(f), l(f)\}.$

The extremal competitive ratio for game trees

Theorem

Let f be a game tree with no minterms or maxterms of size 1. Then,

ExtremalCompetitiveRatio(f) = max{k(f), l(f)}.

Suppose that the cost of reading a variable can depend on the variable's value:

$$c(x) = \begin{cases} 50, & \text{if } x = 0; \\ 1000, & \text{if } x = 1. \end{cases}$$

TheoremLet f be a monotone Boolean function or a game tree. Then,ExtremalCompetitiveRatio $(f, r) = r \cdot ECR(f) - r + 1$,where $r = \max_{x \in V} \frac{c_{max}(x)}{c_{min}(x)}$.

Suppose that the cost of reading a variable can depend on the variable's value:

$$c(x) = \begin{cases} 50, & \text{if } x = 0; \\ 1000, & \text{if } x = 1. \end{cases}$$

Theorem

Let f be a monotone Boolean function or a game tree. Then,

ExtremalCompetitiveRatio $(f, r) = r \cdot ECR(f) - r + 1$,

where

$$r = \max_{x \in V} rac{c_{max}(x)}{c_{min}(x)}$$
 .

LPA does not depend on the structure of f

It can be used to derive upper bounds on the extremal competitive ratios of **very different functions**:

- f = minimum of a list:ExtremalCompetitiveRatio $(f) \le n - 1$ [Cicalese-Laber 2005]
- *f* = the sorting function: ExtremalCompetitiveRatio(*f*) ≤ *n* − 1
 [Cicalese-Laber 2008]
- $f: S_1 \times \cdots \times S_n \to S$, nonconstant: *ExtremalCompetitiveRatio*(f) $\leq PROOF(f)$ [Cicalese-Laber 2008]
- f = monotone Boolean function:
 ExtremalCompetitiveRatio(f) = PROOF(f) [Cicalese-Laber 2008]
- $f = \text{game tree: } ExtremalCompetitiveRatio(f) \le max\{k(f), l(f)\}$

We have seen:

- the Linear Programming Approach for the development of competitive algorithms for the function evaluation problem,
- the extremal competitive ratio for game trees,
- the more general model of value dependent costs.

Part II

Threshold functions and Extended threshold tree functions

Cicalese–Milanič Threshold Functions and Game Trees

Are there efficient algorithms with optimal competitiveness?

- game trees: there is a polynomial-time algorithm
- monotone Boolean functions ??? OPEN QUESTION
- subclasses of monotone Boolean functions:
 - AND/OR trees = game trees with 0-1 values [Charikar et al. 2002]
 - threshold tree functions [Cicalese-Laber 2005]

- threshold functions (a quadratic algorithm)
- extended threshold tree functions (a pseudo-polynomial algorithm)

Are there efficient algorithms with optimal competitiveness?

- game trees: there is a polynomial-time algorithm
- monotone Boolean functions ??? OPEN QUESTION
- subclasses of monotone Boolean functions:
 - AND/OR trees = game trees with 0-1 values [Charikar et al. 2002]
 - threshold tree functions [Cicalese-Laber 2005]

- threshold functions (a quadratic algorithm)
- extended threshold tree functions (a pseudo-polynomial algorithm)

Are there efficient algorithms with optimal competitiveness?

- game trees: there is a polynomial-time algorithm
- monotone Boolean functions ??? OPEN QUESTION
- subclasses of monotone Boolean functions:
 - AND/OR trees = game trees with 0-1 values [Charikar et al. 2002]
 - threshold tree functions [Cicalese-Laber 2005]

- threshold functions (a quadratic algorithm)
- extended threshold tree functions (a pseudo-polynomial algorithm)

Are there efficient algorithms with optimal competitiveness?

- game trees: there is a polynomial-time algorithm
- monotone Boolean functions ??? OPEN QUESTION
- subclasses of monotone Boolean functions:
 - AND/OR trees = game trees with 0-1 values [Charikar et al. 2002]
 - threshold tree functions [Cicalese-Laber 2005]

- threshold functions (a quadratic algorithm)
- extended threshold tree functions (a pseudo-polynomial algorithm)

Algorithmic issues: the state of the art

Are there efficient algorithms with optimal competitiveness?

- game trees: there is a polynomial-time algorithm
- monotone Boolean functions ??? OPEN QUESTION
- subclasses of monotone Boolean functions:
 - AND/OR trees = game trees with 0-1 values [Charikar et al. 2002]
 - threshold tree functions [Cicalese-Laber 2005]

This talk:

- threshold functions (a quadratic algorithm)
- extended threshold tree functions (a pseudo-polynomial algorithm)

Algorithmic issues: the state of the art

Are there efficient algorithms with optimal competitiveness?

- game trees: there is a polynomial-time algorithm
- monotone Boolean functions ??? OPEN QUESTION
- subclasses of monotone Boolean functions:
 - AND/OR trees = game trees with 0-1 values [Charikar et al. 2002]
 - threshold tree functions [Cicalese-Laber 2005]

This talk:

- threshold functions (a quadratic algorithm)
- extended threshold tree functions (a pseudo-polynomial algorithm)

 $f: \{0,1\}^n \to \{0,1\} \text{ is a threshold function if } \exists w_1, \dots, w_n, t \text{ integers s.t.}$ $f(x_1, \dots, x_n) = \begin{cases} 1 & \text{if } \sum_i x_i w_i \ge t \\ 0 & \text{otherwise} \end{cases}$

Separating structure

 $(w_1, \ldots, w_n; t)$ is a separating structure of f

We assume that $1 \le w_i \le t$ for all *i*.

 $f: \{0,1\}^n \to \{0,1\}$ is a threshold function if $\exists w_1, \ldots, w_n, t$ integers s.t.

$$f(\mathbf{x}_1, \dots, \mathbf{x}_n) = \begin{cases} 1 & \text{if } \sum_i \mathbf{x}_i \mathbf{w}_i \ge t \\ 0 & \text{otherwise} \end{cases}$$

Separating structure

 $(w_1, \ldots, w_n; t)$ is a separating structure of f

We assume that $1 \le w_i \le t$ for all *i*.

- Switching networks
- Automatic diagnosis
- Mutually exclusive mechanisms
- Decision-making strategies
- Neural networks
- Weighted majority games

• Separating structures for *f* and feasible solutions for LP(*f*)

• Quadratic $\gamma(f)$ -competitive algo for threshold functions

- The range of separating structures of f
- Extended threshold tree functions
 - Pseudo-polytime γ(f)-competitive algo for extended threshold tree functions
 - The HLP_f for studying function evaluation

• Separating structures for *f* and feasible solutions for LP(*f*)

• Quadratic $\gamma(f)$ -competitive algo for threshold functions

- The range of separating structures of f
- Extended threshold tree functions
 - Pseudo-polytime $\gamma(f)$ -competitive algo for extended threshold tree functions
 - The *HLP*_f for studying function evaluation

• Separating structures for *f* and feasible solutions for LP(*f*)

• Quadratic $\gamma(f)$ -competitive algo for threshold functions

- The range of separating structures of f
- Extended threshold tree functions
 - Pseudo-polytime γ(f)-competitive algo for extended threshold tree functions
 - The HLP_f for studying function evaluation

• Separating structures for *f* and feasible solutions for **LP**(*f*)

Quadratic \(\gamma(f)\)-competitive algo for threshold functions

- The range of separating structures of f
- Extended threshold tree functions
 - Pseudo-polytime γ(f)-competitive algo for extended threshold tree functions
 - The *HLP_f* for studying function evaluation

f threshold function with separating structure $(w_1, ..., w_n; t)$. X is a minterm (prime implicant) of *f* $\sum_{X} w_i \ge t \text{ and } \sum_{X \setminus \{j\}} w_i < t \text{ for every } j \in X$

X is a maxterm (prime implicate) of f

$$\sum_{V \setminus X} w_i < t$$
 and $\sum_{V \setminus X \cup \{j\}} w_i \ge t$ for every $j \in X$

Technical assumption

 $t \leq \frac{1}{2} (\sum_{i} w_{i} + 1)$, i.e., *f* is dual major then every maxterm contains a minterm

f threshold function with separating structure $(w_1, \ldots, w_n; t)$.

X is a minterm (prime implicant) of f

$$\sum_X w_i \geq t \quad ext{and} \quad \sum_{X \setminus \{j\}} w_i < t ext{ for every } j \in X$$

X is a maxterm (prime implicate) of f

$$\sum_{V\setminus X} w_i < t$$
 and $\sum_{V\setminus X\cup\{j\}} w_i \ge t$ for every $j\in X$

Technical assumption

 $t \leq \frac{1}{2}(\sum_{i} w_{i} + 1)$, i.e., *f* is dual major then every maxterm contains a minterm

f threshold function with separating structure $(w_1, \ldots, w_n; t)$.

X is a minterm (prime implicant) of f

$$\sum_{X} w_i \ge t$$
 and $\sum_{X \setminus \{j\}} w_i < t$ for every $j \in X$

X is a maxterm (prime implicate) of f

$$\sum_{V\setminus X} w_i < t$$
 and $\sum_{V\setminus X\cup\{j\}} w_i \geq t$ for every $j\in X$

Technical assumption

 $t \leq \frac{1}{2}(\sum_{i} w_{i} + 1)$, i.e., *f* is dual major then every maxterm contains a minterm

f threshold function with separating structure $(w_1, \ldots, w_n; t)$.

X is a minterm (prime implicant) of f

$$\sum_{X} w_i \ge t$$
 and $\sum_{X \setminus \{j\}} w_i < t$ for every $j \in X$

X is a maxterm (prime implicate) of f

$$\sum_{V\setminus X} w_i < t$$
 and $\sum_{V\setminus X\cup\{j\}} w_i \ge t$ for every $j\in X$

Technical assumption

$$t \leq \frac{1}{2}(\sum_{i} w_{i} + 1)$$
, i.e., *f* is dual major then every maxterm contains a minterr

f threshold function with separating structure $(w_1, \ldots, w_n; t)$.

X is a minterm (prime implicant) of f

$$\sum_{X} w_i \ge t$$
 and $\sum_{X \setminus \{j\}} w_i < t$ for every $j \in X$

X is a maxterm (prime implicate) of f

$$\sum_{V\setminus X} w_i < t$$
 and $\sum_{V\setminus X\cup\{j\}} w_i \ge t$ for every $j\in X$

Technical assumption

 $t \leq \frac{1}{2}(\sum_{i} w_{i} + 1)$, i.e., *f* is dual major then every maxterm contains a minterm

Every separating structure $(w_1, \ldots, w_n; t)$ for f induces a feasible solution $\mathbf{s} = (s(x_1), \ldots, s(x_n))$ for LP(f).

•
$$s(x_i) = w_i/t$$

X is a minterm of f

$$\sum_{i\in X} s(x_i) = \sum_{i\in X} \frac{w_i}{t} \ge 1.$$

• Y is a maxterm of f

$$\exists X \subseteq Y \text{ s.t. } X \text{ is a minterm } \Rightarrow \sum_{i \in Y} s(x_i) \ge \sum_{i \in X} s(x_i) \ge 1.$$

Every separating structure $(w_1, \ldots, w_n; t)$ for f induces a feasible solution $\mathbf{s} = (s(x_1), \ldots, s(x_n))$ for LP(f).

- $s(x_i) = w_i/t$
- X is a minterm of f

$$\sum_{i\in X} \mathbf{s}(\mathbf{x}_i) = \sum_{i\in X} \frac{w_i}{t} \ge 1.$$

Y is a maxterm of f

$$\exists X \subseteq Y \text{ s.t. } X \text{ is a minterm } \Rightarrow \sum_{i \in Y} s(x_i) \ge \sum_{i \in Y} s(x_i) \ge 1.$$

Every separating structure $(w_1, \ldots, w_n; t)$ for f induces a feasible solution $\mathbf{s} = (s(x_1), \ldots, s(x_n))$ for LP(f).

- $s(x_i) = w_i/t$
- X is a minterm of f

$$\sum_{i\in X} \mathbf{s}(\mathbf{x}_i) = \sum_{i\in X} \frac{w_i}{t} \ge 1.$$

Y is a maxterm of f

$$\exists X \subseteq Y \text{ s.t. } X \text{ is a minterm } \Rightarrow \sum_{i \in Y} s(x_i) \ge \sum_{i \in X} s(x_i) \ge 1.$$

Every separating structure $(w_1, \ldots, w_n; t)$ for f induces a feasible solution **s** for **LP**(f) s.t.

$$\|\mathbf{s}\|_1 = val(\mathbf{w}; t) = 1/t \sum w_i.$$

How bad can the best separating structure be for the purpose of the \mathcal{LPA} ?

Every separating structure $(w_1, \ldots, w_n; t)$ for f induces a feasible solution **s** for **LP**(f) s.t.

$$\|\mathbf{s}\|_1 = val(\mathbf{w}; t) = 1/t \sum w_i.$$

How bad can the best separating structure be for the purpose of the \mathcal{LPA} ?

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $val(\mathbf{w}; t) = \sum w_i/t \le \max\{k(f), l(f)\}.$

induces an optimal implementation of the \mathcal{LPA}

Theorem

Every pair of separating structures (w; t), (w'; t') satisfies

$$\max\left\{\frac{\sum w_i/t}{\sum w_i'/t'}, \frac{\sum w_i'/t'}{\sum w_i/t}\right\} \le 2$$

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $val(\mathbf{w}; t) = \sum w_i/t \le \max\{k(f), l(f)\}.$

induces an optimal implementation of the \mathcal{LPA}

Theorem

Every pair of separating structures (w; t), (w'; t') satisfies

$$\max\left\{\frac{\sum w_i/t}{\sum w_i'/t'}, \frac{\sum w_i'/t'}{\sum w_i/t}\right\} \le 2$$

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $val(\mathbf{w}; t) = \sum w_i/t \le \max\{k(f), l(f)\}.$

induces an optimal implementation of the \mathcal{LPA}

Theorem

Every pair of separating structures $(\mathbf{w}; t)$, $(\mathbf{w}'; t')$ satisfies

$$\max\left\{\frac{\sum w_i/t}{\sum w_i'/t'}, \frac{\sum w_i'/t'}{\sum w_i/t}\right\} \le 2$$

Separating Structure optimal for the LP(f)

Theorem

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

- Every maxterm has size $I(f) \ge k(f)$
- if not $\sum_{V} w_i = \sum_{P} w_i + \sum_{V \setminus P} w_i \le (l(f) 1)t + t \le l(f)t$ (contradiction)
- Every pair of maxterms P_1, P_2 satisfies $|P_1 \cap P_2| = l(f) 1$ if not $\sum_V w_i \le \sum_{P_1 \cap P_2} w_i + \sum_{V \setminus P_1} w_i + \sum_{V \setminus P_2} w_i \le (l(f) - 2)t + 2t = l(f)t$

(contradiction)

Fix a maxterm P. Then ∀P' (maxterm) P' = P \ {x} ∪ {y} for some x ∈ P, y ∉ P.

Separating Structure optimal for the LP(f)

Theorem

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

• Every maxterm has size $l(f) \ge k(f)$ if not $\sum_{V} w_i = \sum_{P} w_i + \sum_{V \setminus P} w_i \le (l(f) - 1)t + t \le l(f)t$ (contradiction)

• Every pair of maxterms P_1 , P_2 satisfies $|P_1 \cap P_2| = l(f) - 1$ if not $\sum_V w_i \le \sum_{P_1 \cap P_2} w_i + \sum_{V \setminus P_1} w_i + \sum_{V \setminus P_2} w_i \le (l(f) - 2)t + 2t = l(f)t$

(contradiction)

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

- Every maxterm has size $l(f) \ge k(f)$ if not $\sum_{V} w_i = \sum_{P} w_i + \sum_{V \setminus P} w_i \le (l(f) - 1)t + t \le l(f)t$ (contradiction)
- Every pair of maxterms P_1, P_2 satisfies $|P_1 \cap P_2| = I(f) 1$ if not $\sum_V W_i \leq \sum_{P_1 \cap P_2} W_i + \sum_{V \setminus P_1} W_i + \sum_{V \setminus P_2} W_i \leq (I(f) - 2)t + 2t = I(f)t$

(contradiction)

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

- Every maxterm has size $l(f) \ge k(f)$ if not $\sum_{V} w_i = \sum_{P} w_i + \sum_{V \setminus P} w_i \le (l(f) - 1)t + t \le l(f)t$ (contradiction)
- Every pair of maxterms P_1 , P_2 satisfies $|P_1 \cap P_2| = I(f) 1$ if not $\sum_V w_i \leq \sum_{P_1 \cap P_2} w_i + \sum_{V \setminus P_1} w_i + \sum_{V \setminus P_2} w_i \leq (I(f) - 2)t + 2t = I(f)t$

(contradiction)

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

- Every maxterm has size $l(f) \ge k(f)$ if not $\sum_{V} w_i = \sum_{P} w_i + \sum_{V \setminus P} w_i \le (l(f) - 1)t + t \le l(f)t$ (contradiction)
- Every pair of maxterms P_1 , P_2 satisfies $|P_1 \cap P_2| = l(f) 1$ if not $\sum_V w_i \leq \sum_{P_1 \cap P_2} w_i + \sum_{V \setminus P_1} w_i + \sum_{V \setminus P_2} w_i \leq (l(f) - 2)t + 2t = l(f)t$

(contradiction)

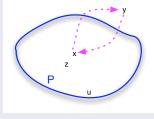
Separating Structure optimal for the LP(f)

Theorem

For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

- Every maxterm has size $I(f) \ge k(f)$
- Every two maxterms P_1, P_2 satisfy $|P_1 \cap P_2| = I(f) 1$
- Fix a maxterm *P*. Then $\forall P'$ (maxterm) $P' = P \setminus \{x\} \cup \{y\}$



for some $x \in P, y \notin P$.

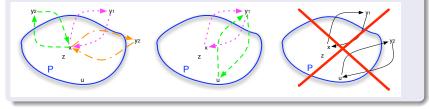
Separating Structure optimal for the LP(f)

Theorem

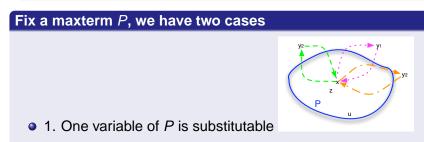
For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), I(f)\}.$

Let f: (w; t) and suppose that $\sum w_i/t > \max\{k(f), l(f)\}$

- Every maxterm has size $I(f) \ge k(f)$
- Every maxterms P_1, P_2 satisfy $|P_1 \cap P_2| = I(f) 1$
- Fix a maxterm P. There are two possible cases:



For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$



For any thr. func. f, there exists sep. str. (**w**; t) s.t. $\sum w_i/t \le \max\{k(f), l(f)\}.$

f: given by (w; t)

- Verify if *f* belongs to one of the two above cases (can be done in linear time).
- If so: construct an explicit sep. str. (w'; t')
- If not: the given sep. str. (w; t) is optimal for LP(f).

Combined with the LPA framework:

f: given by (w; t)

- Verify if *f* belongs to one of the two above cases (can be done in linear time).
- If so: construct an explicit sep. str. $(\mathbf{w}'; t')$
- If not: the given sep. str. (w; t) is optimal for LP(f).

Combined with the LPA framework:

f: given by (w; t)

- Verify if *f* belongs to one of the two above cases (can be done in linear time).
- If so: construct an explicit sep. str. $(\mathbf{w}'; t')$
- If not: the given sep. str. (**w**; *t*) is optimal for **LP**(*f*).

Combined with the LPA framework:

f: given by (w; t)

- Verify if *f* belongs to one of the two above cases (can be done in linear time).
- If so: construct an explicit sep. str. $(\mathbf{w}'; t')$
- If not: the given sep. str. (**w**; *t*) is optimal for **LP**(*f*).

Combined with the LPA framework:

Any separating structure guarantees $2\gamma(f)$

Theorem

Every pair of separating structures $(\mathbf{w}; t)$, $(\mathbf{w}'; t')$ satisfies

$$\max\left\{\frac{\textit{val}(\mathbf{w};t)}{\textit{val}(\mathbf{w}';t')},\frac{\textit{val}(\mathbf{w}';t')}{\textit{val}(\mathbf{w};t)}\right\} \leq 2$$

$$au^*(\mathcal{H}) \leq val(\mathbf{w}; t) \leq \chi^*(\mathcal{H}) \leq \chi(\mathcal{H}) \leq 2 au^*(\mathcal{H})$$

This bound is sharp:

- (t, t; t + 1) for $t \ge 1$ all define the same f
- for t = 1, we get $val(\mathbf{w}; t) = 1$
- $val(\mathbf{w}; t) \rightarrow 2 \text{ as } t \rightarrow \infty$

Any separating structure guarantees $2\gamma(f)$

Theorem

Every pair of separating structures $(\mathbf{w}; t)$, $(\mathbf{w}'; t')$ satisfies

$$\max\left\{\frac{\textit{val}(\mathbf{w};t)}{\textit{val}(\mathbf{w}';t')},\frac{\textit{val}(\mathbf{w}';t')}{\textit{val}(\mathbf{w};t)}\right\} \leq 2$$

$$au^*(\mathcal{H}) \leq \mathit{val}(\mathbf{w}; t) \leq \chi^*(\mathcal{H}) \leq \chi(\mathcal{H}) \leq 2 au^*(\mathcal{H})$$

This bound is sharp:

- (t, t; t + 1) for $t \ge 1$ all define the same f
- for t = 1, we get $val(\mathbf{w}; t) = 1$
- $val(\mathbf{w}; t) \rightarrow 2 \text{ as } t \rightarrow \infty$

Any separating structure guarantees $2\gamma(f)$

Theorem

Every pair of separating structures $(\mathbf{w}; t)$, $(\mathbf{w}'; t')$ satisfies

$$\max\left\{\frac{\textit{val}(\mathbf{w};t)}{\textit{val}(\mathbf{w}';t')},\frac{\textit{val}(\mathbf{w}';t')}{\textit{val}(\mathbf{w};t)}\right\} \leq 2$$

$$au^*(\mathcal{H}) \leq \mathit{val}(\mathbf{w}; t) \leq \chi^*(\mathcal{H}) \leq \chi(\mathcal{H}) \leq 2 au^*(\mathcal{H})$$

This bound is sharp:

- (t, t; t + 1) for $t \ge 1$ all define the same f
- for t = 1, we get $val(\mathbf{w}; t) = 1$
- $val(\mathbf{w}; t) \rightarrow 2 \text{ as } t \rightarrow \infty$

Theorem

Every pair of separating structures $(\mathbf{w}; t)$, $(\mathbf{w}'; t')$ satisfies

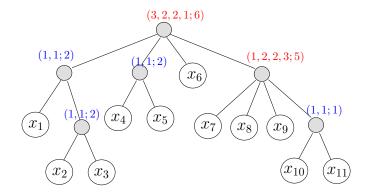
$$\max\left\{\frac{\textit{val}(\mathbf{w};t)}{\textit{val}(\mathbf{w}';t')},\frac{\textit{val}(\mathbf{w}';t')}{\textit{val}(\mathbf{w};t)}\right\} \leq 2$$

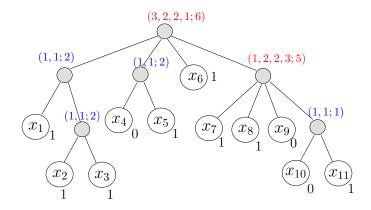
$$au^*(\mathcal{H}) \leq \mathit{val}(\mathbf{w}; t) \leq \chi^*(\mathcal{H}) \leq \chi(\mathcal{H}) \leq 2 au^*(\mathcal{H})$$

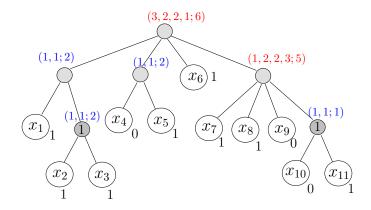
This bound is sharp:

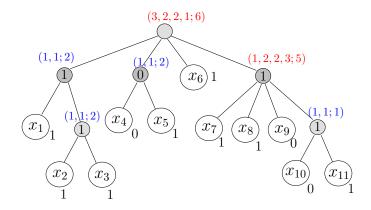
- (t, t; t + 1) for $t \ge 1$ all define the same f
- for t = 1, we get $val(\mathbf{w}; t) = 1$

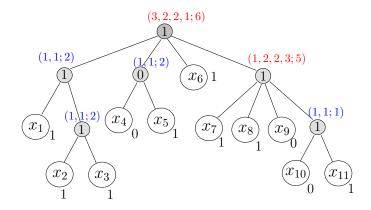
•
$$val(\mathbf{w}; t) \rightarrow 2 \text{ as } t \rightarrow \infty$$





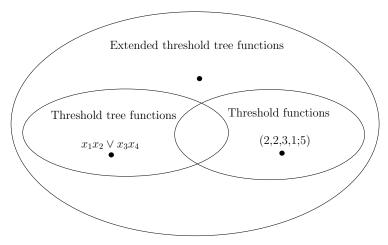






Relation to threshold functions and threshold tree functions

This class properly contains the classes of threshold functions and threshold tree functions:



LPA(f: function)

While the value of f is unknown

Select a feasible solution s() of **LP**(f)

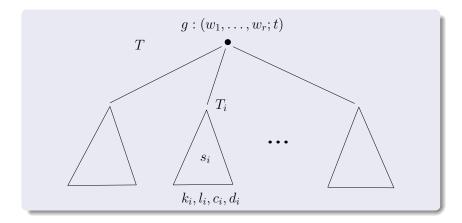
Read the variable u which minimizes c(x)/s(x)(cost/impact)

$$c(x) = c(x) - s(x)c(u)/s(u)$$

 $f \leftarrow$ restriction of f after reading u

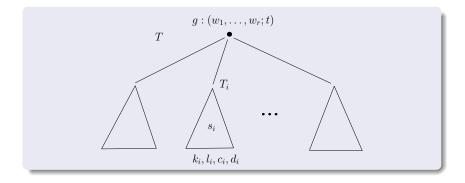
End While

Constructing s



- s_i : the solution to the LP_{T_i}
- k_i , l_i : maximum size of a minterm (maxterm) in T_i

Constructing s



$$s(x) = \frac{z_i \cdot s_i(x)}{\delta}$$

- $\delta > 0$: scaling factor
- **z**: a nontrivial solution of HLP_g

Constructing s (main steps)

1. compute k(T) and l(T): dynamic programming, using (**w**; *t*), the k_i 's and the the l_i 's

2. compute a solution $\mathbf{z} \neq 0$ to the following system HLP_g :

HLP_{g}

- $\begin{array}{rcl} \sum c_i k_i z_i &\leq & k(T) \cdot \sum_P c_i z_i & \forall \text{maxterm } P \text{ of } g, \\ \sum d_i l_i z_i &\leq & l(T) \cdot \sum_P d_i z_i & \forall \text{minterm } P \text{ of } g, \\ z_i &\geq & 0 & \forall i = 1, \dots, r \end{array}$
- dynamic prog. algorithm for the separation problem (linearly many knapsack problems)

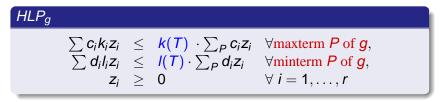
3. compute s:

$$\mathbf{s}(\mathbf{x}) = \frac{\mathbf{z}_i \cdot \mathbf{s}_i(\mathbf{x})}{\delta}$$

Constructing s (main steps)

1. compute k(T) and l(T): dynamic programming, using (**w**; *t*), the k_i 's and the the l_i 's

2. compute a solution $\mathbf{z} \neq \mathbf{0}$ to the following system HLP_g :



 dynamic prog. algorithm for the separation problem (linearly many knapsack problems)

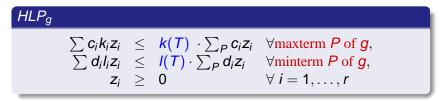
3. compute s:

$$\mathbf{s}(\mathbf{x}) = \frac{\mathbf{z}_i \cdot \mathbf{s}_i(\mathbf{x})}{\delta}$$

Constructing s (main steps)

1. compute k(T) and l(T): dynamic programming, using (**w**; *t*), the k_i 's and the the l_i 's

2. compute a solution $\mathbf{z} \neq \mathbf{0}$ to the following system HLP_g :



 dynamic prog. algorithm for the separation problem (linearly many knapsack problems)

3. compute s:

$$s(x) = \frac{z_i \cdot s_i(x)}{\delta}$$

The algorithm can be generalized to work for any tree function whose node connectives are monotone Boolean functions.

 \mathcal{G} : a class of functions closed under restrictions Suppose that all functions at the nodes belong to \mathcal{G} .

The complexity of the algo depends on the complexity of:

- Finding a cheapest minterm (maxterm) of a given $g \in G$.
- Computing a restriction of a given g ∈ G.
- Testing whether $g \equiv 0$ ($g \equiv 1$) for a given $g \in \mathcal{G}$.

The algorithm can be generalized to work for any tree function whose node connectives are monotone Boolean functions.

 \mathcal{G} : a class of functions closed under restrictions Suppose that all functions at the nodes belong to \mathcal{G} .

The complexity of the algo depends on the complexity of:

- Finding a cheapest minterm (maxterm) of a given $g \in G$.
- Computing a restriction of a given $g \in \mathcal{G}$.
- Testing whether $g \equiv 0$ ($g \equiv 1$) for a given $g \in \mathcal{G}$.

The algorithm can be generalized to work for any tree function whose node connectives are monotone Boolean functions.

G: a class of functions closed under restrictionsSuppose that all functions at the nodes belong to G.

The complexity of the algo depends on the complexity of:

- Finding a cheapest minterm (maxterm) of a given $g \in G$.
- Computing a restriction of a given $g \in G$.
- Testing whether $g \equiv 0$ ($g \equiv 1$) for a given $g \in \mathcal{G}$.

The *HLP_f* for studying function evaluation

f: a monotone Boolean function over $\{x_1, \ldots, x_n\}$ Consider the homogeneous linear system HLP_f :

HLP_{f}

$$\begin{array}{rcl} \sum z_i &\leq k(f) \cdot \sum_P z_i & \forall \text{maxterm } P \text{ of } f, \\ \sum z_i &\leq l(f) \cdot \sum_P z_i & \forall \text{minterm } P \text{ of } f, \\ z_i &\geq 0 & \forall i = 1, \dots, n \end{array}$$

always has a nontrivial solution

Corollary:

For every monotone Boolean function *f*:

- There exists a γ(f)-competitive implementation of the *LPA*.
- $\gamma(f) = \max\{k(f), l(f)\}.$

The *HLP_f* for studying function evaluation

f: a monotone Boolean function over $\{x_1, \ldots, x_n\}$ Consider the homogeneous linear system HLP_f :

HLP_f

$$\sum_{i} z_{i} \leq k(f) \cdot \sum_{P} z_{i} \quad \forall \text{maxterm } P \text{ of } f, \\ \sum_{i} z_{i} \leq l(f) \cdot \sum_{P} z_{i} \quad \forall \text{minterm } P \text{ of } f, \\ z_{i} \geq 0 \qquad \forall i = 1, \dots, n$$

always has a nontrivial solution

Corollary:

For every monotone Boolean function *f* :

- There exists a γ(f)-competitive implementation of the *LPA*.
- $\gamma(f) = \max\{k(f), l(f)\}.$

The *HLP_f* for studying function evaluation

f: a monotone Boolean function over $\{x_1, \ldots, x_n\}$ Consider the homogeneous linear system HLP_f :

HLP_f

$$\sum_{i} z_{i} \leq k(f) \cdot \sum_{P} z_{i} \quad \forall \text{maxterm } P \text{ of } f,$$

$$\sum_{i} z_{i} \leq l(f) \cdot \sum_{P} z_{i} \quad \forall \text{minterm } P \text{ of } f,$$

$$z_{i} \geq 0 \quad \forall i = 1, \dots, n$$

always has a nontrivial solution

Corollary:

For every monotone Boolean function *f*:

 There exists a γ(f)-competitive implementation of the *LPA*.

•
$$\gamma(f) = \max\{k(f), I(f)\}$$

Some Open Questions

Can threshold functions be optimally evaluated in linear time?

- Is the extremal competitive ratio always integer?
- Find the extremal comp. ratio of general Boolean functions.
- Is there a polynomial algorithm with optimal extremal comp. ratio for evaluating monotone Boolean functions (given by an oracle/by the list of minterms)?

- Can threshold functions be optimally evaluated in linear time?
- Is the extremal competitive ratio always integer?
- Find the extremal comp. ratio of general Boolean functions.
- Is there a polynomial algorithm with optimal extremal comp. ratio for evaluating monotone Boolean functions (given by an oracle/by the list of minterms)?

- Can threshold functions be optimally evaluated in linear time?
- Is the extremal competitive ratio always integer?
- Find the extremal comp. ratio of general Boolean functions.
- Is there a polynomial algorithm with optimal extremal comp. ratio for evaluating monotone Boolean functions (given by an oracle/by the list of minterms)?

- Can threshold functions be optimally evaluated in linear time?
- Is the extremal competitive ratio always integer?
- Find the extremal comp. ratio of general Boolean functions.
- Is there a polynomial algorithm with optimal extremal comp. ratio for evaluating monotone Boolean functions (given by an oracle/by the list of minterms)?

THANK YOU

Cicalese–Milanič Threshold Functions and Game Trees