CONSTRUCTION OF A MAXIMUM STABLE SET WITH *k*-EXTENSIONS

PETER L. HAMMER AND IGOR E. ZVEROVICH

ABSTRACT. A stable set I of a graph G is called k-extendable, $k \ge 1$, if there exists a stable set $X \subseteq V(G) \setminus I$ such that $|X| \le k$ and $|N(X) \cap I| < |X|$. A graph G is called k-extendable if every stable set in G, which is not maximum, is k-extendable. Let us denote by E(k) the class of all k-extendable graphs.

We present a finite forbidden induced subgraph characterization of the maximal hereditary subclass PE(k) in E(k) for every $k \ge 1$.

Thus, we define a hierarchy $PE(1) \subset PE(2) \subset \cdots \subset PE(k) \subset \cdots$ of hereditary classes of graphs, in each of which a maximum stable set can be found in polynomial time. The hierarchy covers all graphs, and all its classes can be recognized in polynomial time.

RUTCOR-Rutgers Center for Operations Research, Rutgers University, 640 Bartholomew Rd, Piscataway, NJ 08854-8003, USA

E-mail address: igorzv@rci.rutgers.edu

Date: December 15, 2008.