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Issues in Computational Vickrey Auctions

Abstract

The Vickrey auction has been widely advocated for multiagent systems. First we review its

limitations so as to guide practitioners in their decision of when to use that protocol. These

limitations include lower revenue than alternative protocols, lying in non-private-value auctions,

bidder collusion, a lying auctioneer, and undesirable revelation of sensitive information. We

discuss the special characteristics of Internet auctions: third party auction servers, cryptography,

and how proxy agents relate to the revelation principle and fail to promote truth-telling.

Then we uncover limitations of the protocol which stem from computational complexity con-

siderations. These include ine�cient allocation and lying in sequential auctions of interrelated

items, untruthful bidding under valuation uncertainty, and counterspeculation to make deliber-

ation control (or information gathering) decisions. We also discuss methods for winner and price

determination in combinatorial \second-price" auctions, with implications on truth-dominance.

Keywords: Auction, multiagent system, proxy bidder, winner determination, electronic commerce.

2



1 Introduction

Auctions provide e�cient, distributed and autonomy preserving ways of solving task and resource

allocation problems in multiagent systems. While �xed-menu take-it-or-leave-it o�ers are still quite

common in electronic commerce, auctions are the leading vehicle for dynamically priced electronic

trades. Electronic auctions are used for consumer-to-consumer, business-to-consumer, and business-

to-business electronic commerce, and the success of recent Internet auction companies has been

phenomenal. Auctions can be used among cooperative agents, but they also work in open systems

consisting of self-interested agents. An auction can be analyzed using noncooperative game theory:

what strategies are self-interested agents best o� using in the auction (and therefore will use), and

will a desirable social outcome|e.g. e�cient allocation|still follow. The goal is to design the

protocols (mechanisms) of the interaction so that desirable social outcomes follow even though each

agent acts based on self-interest.

This paper servers three roles:

1. It reviews the known limitations of the Vickrey auction protocol, i.e. the second-price sealed-

bid auction. Vickrey auctions have been widely advocated and adopted for use in computa-

tional multiagent systems [62, 17, 13, 58, 1, 9, 8, 56, 36, 20, 21]. The methods and frequency

of adoption suggest that the limitations are not well understood by the multiagent systems

and electronic commerce communities. Understanding the shortcomings is important in or-

der not to ascribe desirable characteristics|such as truth-dominance and counterspeculation

avoidance|to a protocol when the protocol really does not guarantee them in the setting in

question. Misapplications of protocols open the door for manipulation by the agents, which

may lead to ine�cient outcomes and processes. While this paper focuses on the limitations

of the Vickrey auction, there are some auction settings where that protocol is desirable. The

explication of the limitations will hopefully help practitioners distinguish when the Vickrey

auction is and is not appropriate.

2. It discusses how computational auctions|potentially among computerized agents as bidders
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and/or auctioneers|in settings like the Internet di�er from traditional auctions among hu-

mans, and how these di�erences a�ect the choice of auction protocols. Issues of proxy bidders,

cryptographic techniques, and trusted third party auction servers are discussed.

3. Perhaps most importantly, it uncovers new limitations of the Vickrey auction that stem from

computational complexity and information gathering considerations. While the computational

questions apply to auctions among humans as well, they emerge particularly clearly in multia-

gent systems because the bidders' and/or auctioneer's algorithms need to be constructed, and

because the agents' cognitive capabilities can be analytically characterized.

An auction consists of an auctioneer and potential bidders.1 Auctions are usually discussed

regarding situations where the auctioneer wants to sell an item and get the highest possible payment

for it while each bidder wants to acquire the item at the lowest possible price. However, settings in

which the auctioneer wants to subcontract out a task at the lowest possible price and each bidder

wants to handle the task at the highest possible payment, are totally analogous.

The rest of the paper is organized as follows. Section 2 reviews di�erent auction settings and

protocols. Section 3 details the known problems regarding the Vickrey auction. These problems have

been discovered by auction theorists and practitioners, and they have led to the lack of deployment

of Vickrey auctions among humans. The �rst problem is lower revenue than alternative protocols

(Section 3.1). Section 3.2 discusses current Internet auctions and how the simple proxy agents

relate to the revelation principle, and how they fail to incent truthful bidding. The other problems

discussed in the �rst part of the paper include lying in non-private-value auctions (Section 3.3),

bidder collusion (Section 3.4), an untruthful auctioneer (Section 3.5), and the necessity to reveal

sensitive information (Section 3.6). The wide advocation of Vickrey auctions in multiagent systems

suggests that these limitations have not been fully assimilated by the builders of multiagent systems.

The �rst part of the paper serves as a reminder for practitioners.

The second part (Section 4) focuses on limitations that arise mainly from computational con-

1There are also auctions with multiple bid takers, i.e. auctioneers.
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siderations. The �rst of these problems is ine�cient allocation and lying in sequential auctions of

interrelated items (Section 4.1). That section also discusses combinatorial auctions, algorithms for

winner determination, fully expressive bidding languages, and the impacts of approximate winner

determination on truth-dominance. The computational complexities of bidding are also elaborated.

Section 4.2 shows how untruthful bidding can be bene�cial when a bidder's valuation is uncertain.

Finally, Section 4.3 shows how counterspeculation is needed for deciding on deliberation actions and

information gathering actions.

2 Auction settings and protocols

There are three qualitatively di�erent auction settings depending on how an agent's value of the

auctioned item is formed.

In private value auctions, the value of the good depends only on the agent's own preferences.

An example is auctioning o� a cake that the winning bidder will eat. The key is that the winning

bidder will not resell the item or get utility from showing it o� to others, because in such cases the

value would depend on other agents' valuations. The agent is often assumed to know its value for

the good exactly.

On the other hand, in common value auctions, an agent's value of an item depends entirely on

other agents' values of it: all agents have the same value for the item. Auctioning treasury bills is

an example: nobody inherently prefers having the bills, and the value of the bill comes entirely from

reselling possibilities.

In correlated value auctions, an agent's value depends partly on its own preferences and partly

on others' values. For example, a negotiation within a contracting setting ful�lls this criterion. An

agent may handle a task itself in which case its local concerns de�ne the cost of handling the task.

On the other hand, the agent can recontract out the task in which case the cost depends solely on

other agents' valuations.

The rest of this section reviews four simple auction protocols from the literature for allocating
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a single item. The following sections compare their properties in the di�erent settings discussed

above.

In the English (�rst-price open-cry) auction, each bidder is free to raise his bid. When no bidder

is willing to raise anymore, the auction ends, and the highest bidder wins the item at the price of his

bid. An agent's strategy is a series of bids as a function of his private value, his prior estimates of

other bidder's valuations, and the past bids of others. In private value English auctions, an agent's

dominant strategy is to always bid a small amount more than the current highest bid, and stop

when his private value price is reached. These strategies lead to the bidding ending when the second

highest bidder's valuation (plus epsilon) has been reached. In correlated value auctions the rules

are often varied to make the auctioneer increase the price at a constant rate or at a rate he thinks

appropriate. Also, sometimes open-exit is used where a bidder has to openly declare exiting without

a re-entering possibility. The motivation behind these variations is to make more information about

the bidders' valuations public. This information will signal to a bidder about the item's value.

In the �rst-price sealed-bid auction, each bidder submits one bid without knowing the others'

bids. The highest bidder wins the item and pays the amount of his bid. An agent's strategy is his

bid as a function of his private value and his prior beliefs of others' valuations. In general there is

no dominant strategy for bidding in this auction. An agent's best strategy is to bid less than his

true valuation, but how much less depends on what the others bid. The agent would want to bid

the lowest amount that still wins the auction|given that this amount does not exceed his valuation.

With common knowledge assumptions regarding the probability distributions of the agents' values,

it is possible to determine Nash equilibrium strategies for the agents. For example, in a private

value auction where the valuation, vi, for each agent, i, is drawn independently from a uniform

distribution between 0 and some positive number, �v, there is a Nash equilibrium where every agent,

i, bids a�1
a
vi, where a is the number of bidders (see e.g. [32]).

In the Dutch (descending) auction, the seller continuously lowers the price until one of the bidders

takes the item at the current price. The Dutch auction is strategically equivalent to the �rst-price

sealed-bid auction because in both games an agent's bid matters only if it is the highest, and no
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relevant information is revealed during the auction process. Among humans, Dutch auctions are

often used for perishable goods such as 
owers and �sh. In these auctions, the current price is

reduced rapidly so as to make the auction e�cient in terms of real time. Note, however, that the

other auction protocols discussed in this paper could be executed rapidly as well, see e.g. [11]. Dutch

auctions are not often used in multiagent systems; the FishMarket project is a notable exception [35].

One reason may be the need to pass price information repeatedly to the bidders, and preferably at

the same time. While the network lag can be implicitly removed from the bids, for example, by

using timestamping methods, guaranteeing that the price information gets posted to all bidders

simultaneously is more di�cult. While Dutch auctions are not common in real electronic markets,

simulations do exist on the Internet, see e.g. www.mcsr.olemiss.edu/ ~ ccjimmy/auction.

In the Vickrey (second-price sealed-bid) auction, each bidder submits one bid without knowing

the others' bids. The highest bidder wins, but at the price of the second highest bid. An agent's

strategy is his bid as a function of his private value and prior beliefs of others' valuations. A bidder's

dominant strategy in a private value Vickrey auction is to bid his true valuation [60]. If he bids

more than his valuation, and the increment made the di�erence between winning or not, he will

end up with a loss if he wins. If he bids less, there is a smaller chance of winning, but the winning

price is una�ected.2 The truth-dominance result means that an agent is best o� bidding truthfully

no matter what the other bidders are like: what their capabilities, operating environments, bidding

plans, etc, are. This has two desirable sides. First, the agents reveal their preferences truthfully

which allows globally e�cient decisions to be made. Second, the agents need not waste e�ort in

counterspeculating other agents because they do not matter in making the bidding decision.

Vickrey auctions have been widely advocated and adopted for use in computational multiagent

systems [58, 1, 9, 8, 21, 56, 36, 59, 13]. For example, versions of the Vickrey auction have been

2In private value auctions, the Vickrey auction is strategically equivalent to the English auction. They will produce

the same allocation at the same prices. On the other hand, in correlated value auctions, the other agents' bids in

the English auction signal to the agent about his own valuation. Therefore, English and Vickrey auctions are not

strategically equivalent in general, and may lead to di�erent results.
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used to allocate computation resources in operating systems [62], to allocate bandwidth in computer

networks [20], and to computationally control building heating [17]. On the other hand, Vickrey

auctions have not been widely adopted in auctions among humans [37, 39] even though the protocol

was invented over 28 years ago [60].

There are severe limitations to the applicability of the Vickrey auction protocol. This paper ex-

plores the limitations. Understanding the shortcomings is important in order not to ascribe desirable

characteristics|such as truth-dominance and counterspeculation avoidance|to a protocol when the

protocol really does not guarantee them in the setting in question. Some of the limitations are in-

dependent of computational considerations, but others stem from computational issues. While the

computational questions apply to auctions among humans as well, they emerge particularly clearly

in multiagent systems because the bidders' and/or auctioneer's algorithms need to be constructed,

and because the agents' cognitive capabilities can be analytically characterized. While this paper

focuses on the limitations of the Vickrey auction, in some auction settings the Vickrey protocol is

desirable. The explication of the limitations will hopefully help practitioners distinguish when the

Vickrey auction is and is not appropriate.

3 General limitations of the Vickrey auction

Before discussing the problems that arise in Vickrey auctions due to computational issues, we review

some known limitations of the Vickrey auction that do not stem from computational considerations.

These limitations alone warrant caution when applying the Vickrey auction, for example to Internet

commerce or to multiagent systems in general.

3.1 Lower revenue than with the English auction

In isolated private value or common value auctions, each one of the four auction protocols (English,

Dutch, �rst-price sealed-bid, and Vickrey) allocates the auctioned item Pareto e�ciently to the
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bidder who values it the most.3 Although all four are Pareto e�cient in the allocation, the ones

with dominant strategies (Vickrey and English auction) are more e�cient in the sense that no e�ort

is wasted in counterspeculating the other bidders.

One might expect the �rst-price auctions (�rst-price sealed-bid and Dutch) to give higher ex-

pected revenue to the auctioneer because in second-price auctions (the Vickrey auction is second-

price by de�nition, and the English auction is second-price in e�ect because the winning bidder

only has to bid as high as the second highest bidder is willing to raise plus �) the auctioneer only

gets the second price. This is not the case, however, because in �rst-price auctions the bidders

are motivated to lie by biasing their bids downward. The revenue-equivalence theorem [28, 29, 24,

22] states that all four auction protocols produce the same expected revenue to the auctioneer in

private value auctions where the values that bidders place on the item are independently drawn from

an identical distribution, and bidders are risk-neutral.

Among risk-averse bidders, the Dutch and the �rst-price sealed-bid protocols give higher expected

revenue to the auctioneer than the Vickrey or English auction protocols [23, 27].4 This is because

in the former two protocols, a risk-averse agent can insure himself by bidding more than what is

optimal for a risk-neutral agent. So, since agents take on the preferences of the real world parties

that they represent, and most real world parties are risk-averse in practice, it may make sense for the

auctioneer to choose one of the former two protocols. On the other hand, a risk-averse auctioneer

achieves higher expected utility via the Vickrey or English auction protocols than via the Dutch or

the �rst-price sealed-bid protocol (given that the bidders are risk-neutral). This is because the four

protocols lead to the same expected revenue, and the former two have less variance.

The fact that revenue equivalence holds in private value auctions|with the assumptions men-

3This holds as long as the auctioneer always sells the item. On the other hand, the optimal auction protocol for

private value auctions where the bidder's valuations are drawn independently from the same distribution is a modi�ed

second-price auction where the seller also submits a bid. Unfortunately the seller's best strategy is not to bid his true

valuation: he should overbid [31]. This may cause the seller to ine�ciently keep the item.

4Interestingly, among risk-seeking agents a third-price auction can lead to expected revenue that is higher than

the expected value of the highest valuation among the bidders [30].
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tioned above|does not mean that it usually holds in practice: most auctions are not pure private

value auctions. In non-private value auctions with at least three bidders, the English auction (espe-

cially the open-exit variant) leads to higher revenue than the Vickrey auction. The reason is that

the willingness of other bidders to state high prices causes a bidder to increase his own valuation of

the auctioned item. In these types of auctions, both the English and the Vickrey protocols produce

greater expected revenue to the auctioneer than the �rst-price sealed-bid auction or its equivalent,

the Dutch auction.

The fact that the bidders can update their valuations based on the others' bids also has interesting

repercussions on proxy bidding in Internet auctions, as the next subsection will discuss.

3.2 Proxy bidder agents and the revelation principle in Internet auctions

Most existing Internet auction houses use the English auction protocol or some variant of it. However,

many of these auction sites allow the bidder to tell his maximum bid to a proxy bidder \agent"

that will bid in the English auction by always bidding a minimum increment over the current

high bid, and exiting when the user's maximum bid is reached, see for example www.ebay.com or

www.webauction.com.

Such \agents" can be implemented by the trusted auction server via one global thread of execu-

tion. As the high bid changes, all the bidders' stored maximumbids are checked, in �rst-come-�rst-

serve order, to see if any \agent" would like to raise its bid, and the �rst one that would raise gets

to do so. This check is repeated until no agent is willing to raise its bid.

Another alternative is to give each agent its own thread of execution. This is implemented

in eMediator, a next generation electronic commerce server that we have built [49]. In addition

to having their own threads of execution, the agents in eMediator are mobile: they can move to

other sites on the net [16]. Users can program their agents for eMediator using Java. In addition,

an HTML page is provided for non-programmers for preference elicitation, and the user's mobile

agent is automatically programmed based on the preferences. In many auction settings, these

automatically programmed agents will bid optimally on the user's behalf based on game-theoretically
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predetermined strategies. eMediator also incorporates other novel features such as combinatorial

bidding [48], bidding with price-quantity graphs, leveled commitment contracts [55, 53, 46], and a

safe exchange planner [46, 51].

From a game theoretic point of view, the \agents" in traditional Internet auctions convert the

auction protocol from an English auction to a Vickrey auction: the participant with the highest

willingness to pay gets the item at the price of the willingness to pay of the second highest participant.

This is an interesting real world manifestation of the revelation principle [22]. It states that any

outcome that can be supported in equilibrium via a complex protocol can be supported in an

equilibrium via a protocol where the agents reveal their types truthfully in a single step. The proof

is based on having the new protocol incorporate a virtual player for each real world participant such

that the virtual player will �nd and play the best strategy for the original complex protocol on behalf

of the real world participant|given that the participant reveals his preferences to the virtual player.

Because the virtual player will play optimally for the participant, the participant is motivated to

reveal his preferences truthfully. Each \agent" in current Internet auctions is a materialization of

such a theoretical virtual player.

Each \agent" in current Internet auctions plays optimally on behalf of the real world participant

in private value auctions: it keeps increasing the bid by a minimal amount and stops when the

participant's revealed maximum is reached. However, this is not the best strategy in non-private

value auctions. Instead, the \agent" should take into account in its strategy how the others' bids

a�ect the participant's valuation. Therefore, the current \agents" do not play optimally for the

participants in general. It follows that a participant is not necessarily best o� by revealing her

maximum willingness to pay truthfully to her \agent"|unlike the Internet auction sites suggest.

Since English auctions have higher expected revenue than Vickrey auctions in non-private settings,

the current over-simpli�cation of the \agents" tends to hurt the sellers.

11



3.3 Bidders lying in non-private-value auctions

Most auctions are not pure private value auctions: an agent's valuation of a good depends at least

in part on the other agents' valuations of that good. For example in contracting settings, a bidder's

evaluation of a task is a�ected by the prices at which the agent can subcontract the task or parts

of it out to other agents. This type of recontracting is commonly allowed in automated versions of

the contract net protocol also [44, 47, 2, 57].

Common value auctions (and correlated value auctions to a certain extent) su�er from the

winner's curse. If an agent bids its valuation and wins the auction, it will know that its val-

uation was too high because the other agents bid less. Therefore winning the auction amounts

to a loss in utility. Knowing this in advance, agents should bid less than their valuations [28,

32]. This is the best strategy in common value Vickrey auctions also. So, even though the Vickrey

auction promotes truthful bidding in private-value auctions, it fails to induce truthful bidding in

most auction settings.

3.4 Vulnerability to bidder collusion

One problem with all four of the auction protocols is that they are not collusion proof [34]. The

bidders could coordinate their bid prices so that the bids stay arti�cially low. In this manner, the

bidders get the item at a lower price than they normally would.

The English auction and the Vickrey auction actually self-enforce some of the most likely collusion

agreements. Therefore, from the perspective of deterring collusion, �rst-price sealed-bid or Dutch

auctions are preferable. The following example from [32] shows this. Let bidder Smith have value

20, and every other bidder have value 18 for the auctioned item. Say that the bidders collude by

deciding that Smith will bid 6, and everyone else will bid 5. In an English auction this is self-

enforcing, because if one of the other agents exceeds 5, Smith will observe this, and will be willing

to go all the way up to 20, and the cheater will not gain anything from breaking the coalition

agreement. In the Vickrey auction, the collusion agreement can just as well be that Smith bids 20,
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because Smith will get the item for 5 anyway. Bidding 20 removes the incentive from any bidder

to break the coalition agreement by bidding between 5 and 18, because no such bid would win the

auction. On the other hand, in a �rst-price sealed-bid auction, if Smith bids anything below 18, the

other agents have an incentive to bid higher than Smith's bid because that would cause them to win

the auction at a pro�t. The same holds for the Dutch auction.

However, for collusion to occur under the Vickrey auction, the �rst-price sealed-bid auction, or

the Dutch auction, the bidders need to identify each other before the submission of bids. Otherwise

a non-member of the coalition could win the auction. On the other hand, in the English auction

this is not necessary, because the bidders identify themselves by shouting bids. To prevent this, the

auctioneer can organize a computerized English auction where the bidding process does not reveal

the identities of the bidders.

3.5 Vulnerability to a lying auctioneer

Insincerity of the auctioneer may be a problem in the Vickrey auction, and this problem is exacer-

bated in Internet auctions where the sellers and buyers often do not know or trust each other. The

auctioneer may overstate the second highest bid to the highest bidder unless that bidder can verify

it. An overstated second o�er would give the highest bidder a higher bill than she would receive if

the auctioneer were truthful.

Cheating by the auctioneer has been suggested as one of the main reasons why the Vickrey auction

protocol has not been widely adopted in auctions among humans [39]. In another paper, two formal

models of cheating by the auctioneer are discussed [37]. The �rst model is game theoretic. It analyses

the situation where the auctioneer can choose to use a �rst-price sealed-bid protocol or a Vickrey

protocol. The bidders' equilibrium behavior creates positive incentives for all auctioneers, except

the type most prone to cheat, to choose standard �rst-price sealed-bid auctions. The second model

assumes simple, not rational, bidders. They bid honestly as long as the auctioneer has not been

caught cheating, but after catching a cheating auctioneer, the bidders will bid as if the auctioneer

always cheats. The result is that a seller with probabilistic opportunities to cheat, and �nite abilities
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to resist cheating, will cheat and be caught in �nite time and thereafter have no reason to conduct

Vickrey auctions.

To address the problem of a lying auctioneer, cryptographic electronic signatures could be used

by the bidders so that the auctioneer could actually present the second best bid to the winning

bidder|and would not be able to alter it. However, this would not preclude the auctioneer from

having some phony bidder bid at the last moment just below the winning bidder's bid [60]. This

problem can be tackled by using an (automated) trusted third party auction server that reveals the

bids to the seller only once the auction has closed instead of having the seller be the auctioneer

directly. The other three auction protocols (English, Dutch, and �rst-price sealed-bid) do not su�er

from lying by the auctioneer because the highest bidder gets the item at the price that she stated

in the bid.

The auctioneer may also have other tools at his disposal. For example, he may place a bid

himself to guarantee that the item will not be sold below a certain price. This can also be achieved

by having a reservation price which might not be public to the bidders. However, for example in

the Vickrey auction, the auctioneer is motivated to bid more than his true reservation price. This is

because there is a chance that his bid will be second highest in which case it determines the item's

price. Such overbidding leads to the possibility that the auctioneer ends up ine�ciently keeping

the item even though some bidders' valuations exceed the auctioneer's valuation. Unfortunately, no

other auction protocol can lead to higher allocative e�ciency either [31]

Some of the other protocols are vulnerable to di�erent kinds of further manipulations. For

example, in non-private value auctions with the English auction protocol, the auctioneer can use

shills that bid in the auction in order to make the real bidders increase their valuations of the item.

This is not possible in the sealed-bid protocols or the Dutch protocol because the bidders do not

observe the others' bids.
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3.6 Undesirable private information revelation

Because the Vickrey auction has truthful bidding as the dominant strategy in private value auctions,

agents often bid truthfully. This leads to bidders revealing their true valuations. Sometimes this

information is sensitive, and the bidders would prefer not to reveal it. For example, after winning

a contract with a low bid, a company's subcontractors �gure out that the company's production

cost is low, and therefore the company is making larger pro�ts than the subcontractors thought.

It has been observed that when such auction results are revealed, the subcontractors will want to

renegotiate their deals to get higher payo�s [39]. This has been suggested|along with the problem

of a lying auctioneer|as one of the main reasons why the Vickrey auction protocol is not widely

used in auctions among humans [39].

First-price auction protocols do not expose a bidder's valuation as clearly because the bid is

subject to strategic lying: the bid is based on the agent's model of other bidders, and this possibly

inaccurate model is not known by the subcontractors. Therefore, these auction types may be more

desirable than the Vickrey auction when valuations are sensitive.

4 Problems arising from computational limitations

Most of auction theory has studied auctions without reference to deliberation. However, deliberation

considerations are of key importance in many auction settings. In this era when auctioneers and

bidders are being computerized, these computational questions are becoming increasingly apparent.

Fortunately the deliberative characteristics of computational agents can be analytically modeled

and studied. This section discusses computational issues in auctions and how they can be viewed

as limitations in the applicability of the Vickrey auction protocol which has been widely advocated

for use in computational auction settings.
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4.1 Ine�cient allocation and lying in interrelated auctions

In addition to single-item auctions, Vickrey auctions have been widely studied in the allocation

of multiple units of a single good [28]. However, the case of auctioning heterogeneous interrelated

goods has received little attention. On the other hand this is the setting of many real world problems

where computational agents are used [52, 54, 53, 44, 36].

This section discusses cases where heterogeneous items are auctioned one at a time, and an

agent's valuations of these items are interdependent, i.e. not additive. Such valuations prevail for

example in delivery task allocation in transportation problems [44], in bandwidth allocation [25, 26,

20, 21], and in airport landing slot allocation [33]. They also occur in auctioning collectibles on

the Internet, e.g. when the bidders are interested in acquiring a complete set of Star Wars �gures,

Beanie babies, etc.

We �rst demonstrate that the optimal allocation is not reached if the bidders treat the auctions

independently and bid truthfully.

Example 4.1 Figure 1 presents a simple example of a transportation problem with two delivery

tasks: t1 and t2. Task t1 is auctioned before t2. The auctioneer wants to get the tasks handled while

paying agents 1 and 2 as little as possible for handling them. The initial locations of the two agents

are presented in the �gure. To handle a task, an agent needs to move to the beginning of the delivery

task (arrow), and take a parcel from there to the end of the arrow. An agent's movement incurs the

same cost irrespective of whether it is carrying a parcel or not. The agents need not return to their

initial locations. The costs for handling tasks (subscripted by the name of the agent) can be measured

from the �gure: c1(ft1g) = 2, c1(ft2g) = 1, c1(ft1; t2g) = 2, c2(ft1g) = 1:5, c2(ft2g) = 1:5, and

c2(ft1; t2g) = 2:5. Say that these costs are common knowledge. Clearly the globally optimal allocation

is the one where agent 1 handles both tasks.

We now show that this allocation is not reached if agents treat the auctions independently and

bid truthfully. In the �rst auction of the example, task t1 is allocated. Agent 1 bids c1(ft1g) = 2,

and agent 2 bids c2(ft1g) = 1:5. The task is allocated to agent 2. In the second auction, task t2
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is allocated. Agent 1 bids c1(ft2g) = 1, and agent 2 bids c2(ft2g) = 1:5, so t2 is allocated to agent

1. The resulting allocation of the two tasks is suboptimal. If agent 2 takes the ownership of t1 into

account when bidding for t2, then it will bid c2(ft1; t2g) � c2(ft1g) = 2:5 � 1:5 = 1. In this case

t2 may be allocated to either agent. In both cases the resulting allocation of the two tasks is still

ine�cient.

Alternatively, the agents could incorporate full lookahead into their auction strategies. As the

next example shows, this way the optimal allocation is reached, but agents do not bid their true

myopic per-item costs.

Example 4.2 In the last auction of Example 4.1|i.e. the auction for task t2|each bidder is best

o� bidding its own costs that takes into account the tasks that the bidder already has (because truth-

telling is a dominant strategy for a risk-neutral bidder in a single item Vickrey auction). Let us look

at the auction of t2. If agent 1 has t1, it will bid c1(ft1; t2g)� c1(ft1g) = 2�2 = 0, and c1(ft2g) = 1

otherwise. If agent 2 has t1, it will bid c2(ft1; t2g) � c2(ft1g) = 2:5 � 1:5 = 1, and c2(ft2g) = 1:5

otherwise. So, if agent 1 has t1, it will win t2 at the price 1:5, and get a payo� of 1:5 � 0 = 1:5

in the second auction, while agent 2 gets zero. On the other hand, if agent 2 has t1, the bids for

t2 are equal, and both agents get a zero payo� in the second auction irrespective of which bidder

gets t2. Therefore it is known that getting t1 in the �rst auction is worth an extra 1.5 to agent

1 while nothing extra to agent 2. So, in the auction for t1, agent 1's dominant strategy is to bid

c1(ft1g) � 1:5 = 2 � 1:5 = 0:5. This is lower than agent 2's bid c2(ft1g) � 0 = 1:5 � 0 = 1:5, so

agent one gets t1. In the second auction agent 1 gets t2 as discussed above. So the globally optimal

allocation is reached. However, agent 1 bids 0:5 for t1 instead of 2, which would be the truthful bid

if the auctions were treated independently without lookahead.

Put together, lookahead is a key feature when sequentially auctioning interrelated items. To date

it has not been adequately addressed in computational multiagent systems that use Vickrey auctions,

and it is a common misunderstanding that Vickrey auctions promote single-shot truth-telling even

in interrelated auctions.
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4.1.1 Comparison of computation in sequential vs. combinatorial auctions

An alternative to sequential auctioning of the interdependent items would be to open them all for

auction in parallel. However, some of the same problems prevail. For example, when bidding for an

item, the bidder does not know its valuation because it depends on which other items the bidder

wins, which in turn depends on how others will bid (in sealed-bid auctions this is not known to the

bidder, and in open-cry auctions it may become known only later).

One solution to this problem is to allow the bidders to place bids for combinations of items [33,

43, 44, 26]. The rest of this section will compare the computational aspects of protocols that allow

this against protocols that do not. The next subsection discusses the auctioneer's complexity, and

the subsection after that addresses the complexity on the bidders' side.

Complexity of winner and price determination

The determination of winners|i.e., determining what items each bidder gets|is easy in non-

combinatorial auctions. It can be done by picking the highest bidder for each item separately.

This takes O(an) time where a is the number of bidders, and n is the number of items. In such

auctions, determining the Vickrey price of each item is equally easy: it can be done in O(an) time

by simply �nding the second highest bid for each item.

Winner determination in combinatorial auctions is more di�cult. Let X be the set of items to

be auctioned. Then any agent, i, could place any bid bi(S) for any combination S � X. If agent i

does not place a bid for combination S, we set bi(S) = 0. Let

�b(S) = max
i

bi(S) (1)

Now, winner determination in a combinatorial auction is the following problem:

max
S

X
S2S

�b(S) (2)

where S is a valid outcome, i.e. an outcome where each item is allocated to only one bidder:

[S � X;T � X;S 2 S; T 2 S] ) S \ T = ;. The problem can be solved in O(3n) time using
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dynamic programming [38]. However, no known algorithm can solve the problem in polynomial

time in the size of the input if only some combinations have received bids: that problem is the

same as weighted set packing, which is NP-complete [19]. The problem can be made tractable by

placing severe restrictions on what combinations can be bid on [38], but such restrictions can lead

to ine�cient outcomes because the bidders are faced with similar uncertainties as in bidding for

interrelated items sequentially.

Another approach for optimal winner determination is to allow all combinations to be bid on, and

to capitalize on the fact that in practice the space of bids is usually extremely sparsely populated.

For example, even if there are only 100 items to be auctioned, there are 2100�1 combinations, and it

would take longer than the life of the universe to bid on all of them even if every person in the world

submitted a bid per second. Sparseness of bids implies sparseness of the allocations, S, that actually

need to be checked. We recently devised an algorithm that only checks those allocations [48]. The

details of the algorithm are beyond the scope of this paper. The algorithm scaled to hundreds of

items and thousands of bids in minutes on a general-purpose uniprocessor workstation.

Naive methods for winner determination are based on the implicit assumption that each agent's

bids are locally superadditive: bi(S [ S0) � bi(S) + bi(S
0). But what would happen if agent 1 bid

b1(f1g) = 5, b1(f2g) = 4, and b1(f1; 2g) = 7? The auctioneer could allocate items 1 and 2 to agent

1 separately, and that agent's bid for the combination would value at 5 + 4 = 9 instead of 7. This

could be �xed by using an auction protocol that only allocates combinations according to bids on

combinations, i.e., restricts to making at most one bid win per agent. Alternatively this could be

handled by a protocol that allows the allocation of multiple bids to an agent but only if the agent did

not submit a lesser bid for the corresponding combination. We have also developed a protocol where

the bidders themselves can submit mutually non-exclusive (OR) bids as well as mutually exclusive

(XOR) bids. This allows the bidders to express general preferences, and our winner determination

algorithm works in this case as well [48].

With such bidding languages that allow bidders to express general preferences, it is possible to

generalize the Vickrey pricing rule to the combinatorial case to obtain truthful bidding in dominant
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strategy equilibrium. Following the Groves-Clarke mechanism [14, 7], the amount that an agent needs

to pay should be computed as the sum of the others' winning bids had the agent not submitted any

bids, minus the sum of the others' winning bids in the actual optimal allocation. Therefore, the

winner determination problem would have to be solved once overall, and once per winning agent

without any of that agent's bids. Just removing one winning bid at a time would not lead to

an incentive compatible mechanism, i.e., one where the agents are motivated to bid truthfully in

dominant strategy equilibrium.

The algorithms used by the auctioneer also have repercussions on the bidders' strategies. If either

winner determination or price determination is done only approximately, incentive compatibility can

be lost.

Complexity of bidding

Computational complexity is also present in each bidder's strategy, for example in the following

ways:

1. Determining the valuation of an isolated item may be intractable. For example, when a

dispatch center evaluates the cost of taking on a transportation task, it would need to compute

the solution to a vehicle routing problem with its old tasks and the new task. Then it would

need to compute the solution to a vehicle routing problem with its old tasks only. The cost of

accepting the new task is the cost of the former solution minus the cost of the latter. However,

solving the two vehicle routing problems would mean solving two NP-complete problems.

Therefore, in practice, the cost of the task has to be approximated [44, 46].

2. The setting becomes more complex if the valuation of the item depends on what other items the

agent has. In a combinatorial auction this would mean calculating the valuation on potentially

all combinations of items. In a sequential auction, determining the valuation would require

�nding out what other items the agent will get. This requires lookahead in the game tree.

Solving the whole game tree is often intractable, but acting myopically is not desirable either:
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partial search in the game tree would be more appropriate. However, several open questions

remain. How does one evaluate the node when further search could be done from it but it is

decided that further search is not worthwhile? How does one decide how deep to search (this

may vary along di�erent paths of the same game tree)?

3. Even if one assumes that the other bidders bid nonstrategically, at some points of the game tree

of a sequential auction one needs to know (at least probabilistically [5]) what the others will

bid because that a�ects what items one will get. This may require solving their optimization

problems, which again may be intractable. While avoidance of counterspeculation was one of

the original reasons suggested for adopting the Vickrey auction, lookahead requires speculation

in the sense of trying to guess how high others are going to bid. Other speculative issues in

sequential Vickrey auctions have been discussed for example in [18].

4. Dominant strategy mechanisms, such as the Vickrey auction, do not require common knowl-

edge of the priors, but as discussed, many of those mechanisms lose their dominant strategy

properties when one takes their limitations into account. Moving then to the Nash equilibrium

solution concept, or one of its re�nements, introduces the problem that those solution concepts

assume common knowledge, which is usually unobtainable [10]. Instead of common knowledge,

in reality there is a recursive modeling tree: what does 1 think that 2 thinks that 3 thinks that

1 thinks that 3 thinks that 2 thinks... [6, 12]. It is often intractable to deduce in that tree|even

if information is limited. Again, partial search in this tree would be appropriate [61].

Search is a central paradigm in AI, and several e�cient engineering answers to similar questions

have been provided over the years [40]. Recently, more normative methods for deliberation control

have been developed, but they still do not reach the goal of provably optimal reasoning in general

because they make simplifying assumptions such as myopic search control, costless meta-reasoning,

and conditioning the search control on engineer-chosen features [42, 3], or they guarantee only

optimal composition of underlying components which themselves may not be optimal [41, 4, 63, 50,

15].
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This is an invaluably important topic of continuing research especially for game theory: in order

to devise normative theories of how agents should act in non-cooperative equilibrium, one also needs

to prescribe how the agents should deliberate. Therefore we envision that each agent's deliberation

actions need to be modeled as part of the agent's strategy|just like physical actions. This approach

would allow one to make the best computational tradeo�s, e.g., in the four complexity-generating

items above simultaneously.

Once such computation-incorporating equilibrium analyses are done, one can seriously start to

compare auction protocols to each other. One can start to ask the key questions such as what

combinational bids should be allowed, and how parallel vs. sequential the protocol should be.

4.2 Untruthful bidding with local uncertainty

Bidders often have uncertainty about their valuation of the auctioned item. This valuation may be

inherently uncertain. Computational agents may have additional uncertainty regarding the valuation

because computing it can be complex, and the computation may not have �nished by the time of

the auction. Such computational complexities arise for example in task allocation auctions where

evaluating a task set requires solvingNP-complete problems [52, 54, 53, 44, 36]. Also, an agent may

be better o� by carrying out an approximate valuation calculation before bidding, and investing the

remaining detailed computation only if he wins the item (computation is still important at this time

because the agent may need to decide how to act with the item, e.g., how to incorporate a delivery

task into the weekly vehicle routing solution).

In settings where a bidder has uncertainty about his valuation, a risk-neutral bidder is best o�

bidding his expected valuation in a single-shot private value Vickrey auction. This is a dominant

strategy. However, in practice, most agents are risk-averse. Computational agents take on the

preferences of the real world parties that they represent. Therefore most computational agents will

be risk-averse as well. We now show that risk-averse agents are not best o� bidding truthfully in the

Vickrey auction. Therefore it is nonobvious that the Vickrey auction protocol can really be used in

computational systems to avoid lying in practice.

22



Example 4.3 Let the bidder's utility function be U (x) =

8>><
>>:

2x if x � 0

x if x > 0.

The concavity of this

function represents risk aversion of the agent. Let the bidder's valuation, v, be uniformly distributed

between 0 and 1. We now show that the bidder can increase his expected utility by bidding E[v]� �

instead of E[v]. We analyze the situation based on what the highest bid, b, coming from the other

agents might be.

Case 1: b � E[v]� �. In this case, the agent wins the auction at price b when bidding E[v] or

E[v]� �. Therefore the expected utility is una�ected by bidding E[v]� � instead of E[v].

Case 2: b � E[v]. In this case, the agent loses the auction when bidding E[v] or E[v] � �.

Therefore the expected utility U (0) = 0 is una�ected by bidding E[v]� � instead of E[v].

Case 3: E[v] � � < b < E[v]. In this case, the bidder loses the auction when bidding E[v] � �,

but wins it when bidding E[v]. Therefore, the utility from bidding E[v]� � is U (0) = 0. The expected

utility from bidding E[v] is

Z 1

�1

U (v � b)dv =

Z b

0

2(v � b)dv +

Z 1

b

v � bdv

= �
1

2
b2 � b+

1

2

which is less than zero when b > �2+
p
8

2
� 0:41 (i.e. in the range of case 3). So, bidding E[v] has

smaller expected utility than bidding E[v]� �.

4.3 Counterspeculation for deciding on information gathering

One of the main original motivations for using the Vickrey auction was that each bidder has a

dominant strategy (of telling the truth), i.e. a bidder's best strategy does not depend on other

bidders. Therefore the bidders will not waste e�ort in counterspeculating each other. This would

lead to global savings.

This section shows that there are cases where the Vickrey auction fails to have this desirable

property. Let us look at a setting where a bidder has uncertainty regarding his valuation, but

can pay to remove this uncertainty. This situation often occurs among computational agents, for
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example because the only way to evaluate a good (or cost of taking on a task) might be to carry out

a costly computation|e.g., solving combinatorial problems as discussed earlier. Alternatively the

payment can be viewed as the cost of solving a prediction problem, or as the cost of performing an

information gathering action (this is a common decision that needs to be made by automated agents

in Internet commerce), or as the cost paid to an expert oracle. The following theorem states that in

such a setting, the Vickrey auction protocol does not avoid counterspeculation. In particular, the

decision of whether or not to pay to resolve the uncertainty depends on the other bidders.

Proposition 4.1 In a private value Vickrey auction with uncertainty about a bidder's valuation,

the bidder's best (deliberation or information gathering) strategy can depend on the other bidders.

Proof. Let there be two risk-neutral bidders: 1 and 2. Let agent 1's valuation, v1, be uniformly

distributed between 0 and 1, i.e. agent 1 does not know his valuation exactly. Let agent 2's exact

valuation, v2, be common knowledge. Let 0 � v2 <
1

2
, which implies E[v1] > v2.

Let agent 1 have the choice of �nding out his exact valuation, v1, before the auction by paying

a cost, c. Now, should agent 1 take this informative but costly action?

No matter what agent 1 chooses here, agent 2 will bid v2 because bidding one's valuation is a

dominant strategy in a single-shot private value Vickrey auction for a risk-neutral bidder.

If agent 1 chooses to not pay c, agent 1 should bid E[v1] =
1

2
because bidding one's expected

valuation is a risk-neutral agent's dominant strategy in a single-shot private value Vickrey auction.

Now agent 1 gets the item at price v2. If agent 1's valuation v1 turns out to be less than v2, agent

1 will su�er a loss. Agent 1's expected payo� is

E[�noinfo] =

Z 1

0

v1 � v2dv1 =
1

2
� v2

On the other hand, if agent 1 chooses to pay c for the exact information, he should bid v1 because

bidding one's valuation is a risk-neutral bidder's dominant strategy in a single-shot private value

Vickrey auction. In this case agent 1 gets the item if and only if v1 � v2. Note that now the agent

has no chance of su�ering a loss, but on the other hand he has invested c in the information. So,
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agent 1's expected payo� is

E[�info] =

Z v2

0

�cdv1 +

Z 1

v2

v1 � v2 � cdv1

=
1

2
v22 � v2 +

1

2
� c

Agent 1 should choose to buy the information i�

E[�info] � E[�noinfo]

,
1

2
v22 � v2 +

1

2
� c �

1

2
� v2

,
1

2
v22 � c

, v2 �
p
2c (because v2 � 0)

So, agent 1's best choice of action depends on agent 2's valuation, v2. Therefore, agent 1 bene�ts

from counterspeculating agent 2. 2

5 Conclusions

Vickrey auctions have been widely advocated and adopted for use in computational multiagent

systems. This auction protocol has certain desirable properties|such as truth-promotion and coun-

terspeculation avoidance|in limited settings. It is important to clearly understand these limitations

in order not to use the protocol when inappropriate, and in order not to trust the protocol to have

certain desirable properties when it really does not have them in the particular setting.

The �rst part of the paper reviewed known problems regarding the Vickrey auction. These

include lower revenue than alternative protocols, promotion of lying in non-private-value auctions,

bidder collusion, vulnerability to a lying auctioneer, and the necessity to reveal sensitive information.

Bidder collusion can be reduced by electronic auctions because the bidders may be unable to identify

each other. The proposed mechanisms for avoiding lying by the auctioneer include cryptographic

signatures on bids, and the use of trusted third party auction servers.

The proxy bidder agents of current Internet auction houses are a real world materialization of
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the revelation principle. In private value auctions they convert the English auction into a Vickrey

auction. However, in non-private value auctions they do not bid optimally on the user's behalf unlike

the auction sites claim. It follows that users are not motivated to reveal their valuations truthfully

to the proxy bidder agents.

The second part of the paper presented our results regarding limitations of the protocol that

mainly stem from computational considerations. While these problems prevail in auctions among

humans, they become particularly apparent when the algorithms for the auctioneer and bidder agents

need to be designed. They also become increasingly analyzable since the deliberative capabilities of

computational agents can be precisely modeled.

The �rst problem is ine�cient allocation and lying in sequential auctions of interrelated items.

The problem was demonstrated via two simple example games. Combinatorial auctions were dis-

cussed as a candidate remedy. Winner determination is easy in non-combinatorial auctions, but

NP-complete in combinatorial auctions. Restricting the allowable combinations to bid on is one

way of making winner determination tractable, but that introduces some of the same ine�ciencies

that non-combinatorial auctions have. A new algorithm for optimalwinner determination in the non-

restricted setting was brie
y mentioned. It capitalizes on the sparseness of bids. Bidding languages

that allow users to express general preferences were also presented. In combinatorial auctions, the

Vickrey-Groves-Clarke pricing mechanism introduces added computational complexity. Also, truth-

dominance ceases to hold if approximate algorithms are used for winner or price determination. We

also discussed the computational complexities involved in bidding, and how those complexities cause

the Vickrey auction to no longer promote truth-telling and avoid counterspeculation.

We showed how insincere bidding can be bene�cial when a risk-averse bidder is uncertain about

his valuation. Finally, we showed the need for counterspeculation to make deliberation control|or

information gathering|decisions when an agent has local uncertainty. So, here too the Vickrey

auction loses the dominant strategy property.

In the future, systems will increasingly be designed, built, and operated in a distributed manner.

A larger number of systems will be used by multiple real-world parties. The problem of coordinating
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these parties and avoiding manipulation cannot be tackled by technological or economic methods

alone. Instead, the successful solutions are likely to emerge from a deep understanding and careful

hybridization of both. In particular, when taking into account the agents' computational constraints

by modeling each agent's computational steps as actions that the agent intentionally takes, many of

the classic results from game theory cease to apply.
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Figure 1: Small example problem with two agents and two delivery tasks (bold arrows).
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