Valuation Uncertainty and Imperfect
Introspection in Second-Price Auctions

Abstract

In auction theory, agents are typically presumed to have perfect knowledge of
their valuations. In practice, though, they may face barriers to this knowledge due
to transaction costs or bounded rationality. Modeling and analyzing such settings
has been the focus of much recent work, though a canonical model of such do-
mains has not yet emerged. We begin by proposing a taxonomy of auction models
with valuation uncertainty, and showing how it categorizes previous work. We
then restrict ourselves to single-good sealed-bid auctions, in which agents have
(uncertain) independent private values and can introspect about their own (but not
others’) valuations through possibly costly and imperfect queries. We investigate
second-price auctions, performing equilibrium analysis for cases with both discrete
and continuous valuation distributions. We identify cases where every equilibrium
involves either randomized or asymmetric introspection. We contrast the revenue
properties of different equilibria, discuss steps the seller can take to improve rev-
enue, and identify a form of revenue equivalence across mechanisms.

1 Introduction

Imagine deciding to bid for a particular car at a car auction, and trying to determine
what price you would be prepared to pay. At first you would probably start out very
uncertain—is the new car worth more than $10,000? $15,000? $18,526? You would
probably have actions available to you that could increase your level of certainty, such
as test driving the car, checking online reviews, and so on. But these actions would
consume quite a lot of effort: pretty quickly you might feel compelled to make up your
mind one way or the other, even if you were not yet 100% certain of your valuation.
Similarly, imagine the problem of submitting a bid on behalf of your new startup
company in an online advertisement auction. The value of a customer’s click on your
ad would not be obvious: at the moment of entering the ad you might not yet have
accurate information about demographics, conversion rates, and so on. Again, it would
be possible to collect additional information that would allow you to make a better
decision; again, also, the cost of gathering such information would probably lead you
to submit your bid even despite some residual uncertainty about the value of a click.
Both of these scenarios illustrate a fact that most canonical models of auctions
fail to capture: bidders are often uncertain about their own valuations. While it is
often possible for bidders to introspect (or otherwise gather information) in order to



reduce this uncertainty, doing so is costly. Furthermore, such introspection is usually
imperfect, in the sense that it does not entirely eliminate uncertainty. Bidders must
thus be prepared to place bids even in the face of residual uncertainty. In this paper,
we explore the problem of building formal game-theoretic models to describe such
settings.

In what follows, we define terminology and then offer a taxonomy of auction mod-
els in which bidders are uncertain about their valuations. We use this taxonomy to
survey a variety of related work in the literature. We propose a novel auction model
that aims to reflect the settings described above. Applying this model to the special case
of second-price auctions, we offer several theoretical results, identifying equilibria and
making revenue comparisons.

1.1 Terminology

It is common in auction theory to refer to an agent’s fype, by which is meant both
the agent’s private information (or signal) and the agent’s valuation. However, even
in the classical literature there are settings in which this modeling assumption is not
reasonable. A key example is the common value setting: here agents all have the same
valuation for the good, but they are uncertain about what this valuation is and all have
(potentially) different private signals about it. In our work we will follow Bergemann
and Morris (2006) in dividing type into belief type (private information) and payoff type
(valuation).

We must also be careful with the notions of ex ante, ex interim and ex post. Over the
course of an auction, an agent might purchase several signals, changing and refining
his beliefs after each one. This agent would have several different belief types, and it
isn’t immediately clear of these which ex interim refers to. We will take the position
that ex interim refers to all of them (so that ex interim individually rational becomes
a much stronger condition: at no stage should any signal should cause an agent to
prefer to drop out of the auction), while ex ante refers to an agent’s beliefs given no
private information. We will use ex post to refer to the aggregation of all agents’
final belief types (so that ex post efficiency means maximizing the expected social
welfare). Unfortunately, this doesn’t leave us with any ways of talking about payoff
types. We will introduce ex interim perfect to refer to perfect knowledge of a single
agent’s valuation, and ex post perfect to refer to the aggregation of all agents’ valuations
(so that ex post perfect efficiency means maximizing the actual social welfare).

Definition 1 (Deliberation) When the agent selects a signal, we call this a delibera-
tion. We call agents capable of this deliberative agents.

Because agents can choose from a menu of potential signals, the resulting game
is extensive form: Agents must make decisions about how to deliberate and how to
bid conditioned on that the results of that deliberation. We will distinguish two special
types of deliberation based on the information revealed.

Definition 2 (Introspection) An introspection is a deliberation where the information
is independent of any other agent’s valuation given the deliberator’s valuation.



[ Parameter | Possible values ]

Valuation distribution | Independent, common, interdependent
Privacy | Private, non-private
Perfection | Perfect certainty, residual uncertainty
Volatility | Volatile, non-volatile
Costliness | Costly, free
Limitations | Limited, unlimited
Separability | Separable, inseparable

Table 1: The axes of our taxonomy

Definition 3 (Strategic deliberation) A strategic deliberation (coined by Larson and
Sandholm (2001)) is the opposite of introspection; the information is independent of
the deliberator’s valuation given all the other agents’ valuations.

1.2 Taxonomy

The existing literature has studied the problem of deliberating agents under a variety
of assumptions and models (and names). In order to study and compare the existing
literature, we first introduce a unifying taxonomy with a number of free parameters
(see Table 1).

Definition 4 (Valuation distribution) If all agents’ valuations are independent, we
call the setting independent value. If every agent has the same valuation, we call the
setting common value. We call all other cases interdependent value.

Definition 5 (Privacy) If agents are only capable of performing introspections, we
call the setting private.

Notably, researchers have studied independent non-private values (for example,
Larson (2006)) and interdependent private values (for example, Persico (2000)).

Definition 6 (Perfection) A perfect introspection is one that reveals an agent’s exact
valuation, while an imperfect introspection does not. Many mechanisms or settings
require perfect certainty: agents must perform a perfect introspection before bidding
or receiving or consuming the good. Settings that do not are said to allow imperfect
certainty (or residual uncertainty (Rasmusen, 2006)).

One justification for saying that a setting requires is perfect certainty is that agents
must solve a constrained optimization problem (for example, vehicle scheduling and
routing), to discover how to use the good and what value it will be worth for that use.
Without a feasible solution, the agent can’t consume the good. Perfect certainty could
also be a property of the mechanism: the seller could require that the agents reveal and
commit to a particular solution before bidding or before the auction closes.

Definition 7 (Volatility) We call any setting volatile if there is some possibility of a
deliberation action changing the agent’s valuation rather than just his belief type.



Like perfection, this can be motivated by the example of agents solving a con-
strained optimization problem, to determine how to use the good. Feasible solutions
can tell the agent how to use the good and the exact utility for that use. By finding an-
other solution, the agent might be able to get a different exact utility. Notably, perfect
certainty settings are a special case of volatility where agents’ valuations are 0 until
they perform a perfect introspection.

Definition 8 (Costliness) If the agent has disutility for performing a deliberation, we
call that deliberation costly. Settings are also called costly if they include even the
possibility of costly deliberations.

We will model costs as another term in quasilinear utility:

w; = vi(x) — t; — ¢ (q)

where v;(x) is an arbitrary function for outcome z, t; is the transfer the agent
makes to the seller and ¢;(q) is an arbitrary function for deliberation policy ¢. Costly
deliberation is not equivalent to an entry fee because it is not transferred to the seller.

Definition 9 (Limited) We say that a setting has limited deliberation if agents face
hard constraints about when any particular deliberation is possible.

For example, agents might be limited as to how many deliberations are possible
during a particular stage of the mechanism.

Definition 10 (Separability) Separability is a special case of limited deliberation, where
no deliberations are possible once the mechanism begins.

All sealed-bid mechanisms are trivially separable. Some settings with staged mech-
anism are also separable. (For example, in auctions for antiques, bidders are often only
free to closely examine the goods until the English auction begins.)

Because the problem of deliberation is equivalent whether the source of the infor-
mation is internal or external, there is an equivalence between costly deliberation (with
privacy and non-volatility) and costly communication to a proxy.

We will make one strong assumption: separability. While the seller can impose sep-
arability (for example, by sealed-bid auction), existing work shows that staged auctions
perform better than sealed bid, in terms of maximizing revenue and minimizing delib-
eration costs (Compte & Jehiel, 2001; Parkes, 2005; Bergemann & Valimaki, 2002).
However, separability can also occur because deliberations are too time consuming to
allow between bidding rounds: the deliberation might involve analysis of a particular
market potential for a broadcast spectrum, or drilling control wells to evaluate an off-
shore oil patch. Further, since separability is a feature of many common real-world
auction types, we believe there is value in an analysis of separable auctions. We will
also make a number of less unusual assumptions: independence, privacy, symmetry
and non-volatility.
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1.3 Previous work

The earliest work on modeling agents with valuation uncertainty is probably Wilson’s
(1967) work on common values. This problem has been extensively studied since then,
but primarily in settings in which agents are not deliberative. Another related litera-
ture considers tractably expressing bidder preferences in multi-good auctions (Ausubel
& Milgrom, 2002; Blumrosen & Nisan, 2005; Nisan & Segal, 2005; Sandholm &
Boutilier, 2006).

However, our specific interest is in the problem of deliberative agents in auctions.
We will classify the existing work on this topic according to our taxonomy, though the
classification isn’t always precise. In particular, some of the existing work spans and
contrasts classes. Also, some theorems and results are likely more general than their
stated assumptions.

A number of researchers have considered the problem of deliberative agents in set-
tings requiring perfect certainty. Indeed, Parkes (2005) stated that “[handling residual
uncertainty] appears beyond the scope of current methods (either analytic or computa-
tional), even for simple auctions such as an ascending-price auction for a single item.”
The paper from which this quote was taken focuses on the dual problem to our own:
auction and proxy design with costly communication. Parkes demonstrated that in-
cremental revelation mechanisms can achieve the same allocation as direct ones with
lower communication costs. Cremer et al. (2003) described how to extract full surplus
from agents who commit to participating in the auction prior to deliberating, using a
sequential auction based on optimal search. Larson and Sandholm (2005) proved that
no (interesting) mechanism exists in which agents have no incentive to strategically de-
liberate, agents have no incentive to mislead the seller and the mechanism not depend
on knowledge of agents’ possible deliberation costs and limits. The proof assumes
costly deliberations, volatility (though the proof works equally well for non-volatile
settings that require perfect certainty), and non-privacy. Larson (2006) described an op-
timal search auction in which agents never strategically deliberate or mislead the seller
(though the optimal search requires some knowledge of the possible deliberations and
costs). Larson and Sandholm (2001) provided a very general model for costly, lim-
ited deliberations in auctions and shows that under costly deliberation models and in a
number of common auction types (Vickrey, English, Dutch, first price and (for multiple
goods) Generalized Vickrey Auction) bidders would perform strategic deliberation in
equilibrium. As well, all but Vickrey and English can also have strategic deliberation
in limited, uncostly deliberation settings.

There has been a small number of papers analyzing deliberative agents in settings
that allow residual uncertainty. (Blumrosen & Nisan, 2002) showed that in auctions
with severely limited communications (equivalent to severely limited deliberation), so-
cial welfare can be improved by using asymmetric proxies (equivalent to asymmetric
deliberation strategies). Bergemann and Valimaki (2002) showed that in independent
private settings, the VCG mechanism can be ex post efficient and provide the ex ante in-
centives to deliberate. For common value settings, they showed that no mechanism can
achieve both. They also demonstrated that staged mechanisms require less costly delib-
eration than direct mechanisms, to implement the same social choice function. Compte
and Jehiel (2001) showed that in inseparable settings, a seller can get more revenue



from a Japanese-like ascending auction than from a second price auction. Sandholm
(2000) demonstrated that in second price auctions, bidding true expected valuation
is a dominant strategy for risk neutral bidders but not for risk averse ones. He also
demonstrated that second price auctions do not necessarily have dominant deliberation
strategies when deliberation is costly. Rasmusen (2006) presented residual uncertainty
as a motivation for sniping on eBay auctions: buyers don’t have time to deliberate in
the last seconds of an auction, but don’t deliberate earlier because of the cost. Persico
(2000) demonstrated that, when valuations are correlated, the value of information is
greater in first price auctions than second (because bidding strategies are conditioned
on opponents’ valuations).

2 Model

Our setting is a six-tuple: (N, f,Q, A, p,c). N is the set of all agents, each of which
has a valuation v; drawn from distribution f (which has support on the interval [v, 7)).
Q is the set of possible introspections (from which each agent chooses one, ¢;) and A
is the set of possible signals the agent can receive, according to conditional probability
distribution p(a;|¢;, v;). ¢(¢;, a;) is the cost of the signal. Since the agent is capable of
not deliberating, we will assume the existence of a special deliberation gz which costs
nothing and is totally uninformative. No agent (including the seller) knows how any
other agent deliberated.

This model is without loss of generality regarding a number of important features.

Proposition 1 This model is equivalent to a separable model where agents are able to
perform multiple introspections.

Proof Sketch. The agent has a choice of deliberations given the results of previ-
ous introspections, forming a tree structure (including limit of which sequences of
introspections are possible) with some nodes being choices of the agent (includ-
ing qg) and others being random. The agent could chose their policy on this tree
as a single choice (with conditional probabilities and costs), as with collapsing an
extensive form game into normal form. This collapsing requires separability. B

Proposition 2 This model is equivalent to a model where agents begin with some pos-
sibility of (partial) knowledge.

We can trivially add a free initial introspections to the tree which gives the agent
imperfect (or perfect with some probability) information.

Proposition 3 This model is equivalent to a model where the cost of introspection
depends on the true valuation.

If so the agent would want to condition beliefs on the costs, which should be part
of the signal. Thus, for every distinct signal, there is a known cost.
We will show some (trivial) results needed for our later analysis.



Proposition 4 Risk neutral agents with residual uncertainty should bid as though their
expected valuations were their exact known valuations, in any setting with indepen-
dence, privacy and separability.

Proof. Having won the good, agent ¢ would be indifferent between the good and
a fixed transfer of E[v;|a;, ¢ wins auction]. However, when independence and pri-
vacy hold, the event of winning the auction is uninformative regarding v; (because
the all the seller knows about v; was revealed by ¢). Thus the agent can bid as
though v; = IE[v;|a;], once it had decided to perform no more deliberations. Since
the setting is separable, the agent cannot bid before this point. B

Because agents can bid as though their signals informed them of an exact valuation,
we can define an induced valuation distribution: the value distribution agents act as
though they had given their deliberation. The induced valuation distribution f, of
deliberation g is defined as

fo(v)) = Z p(ailq)d(Elvilai, q] = v;)

a;EA

where d(e) is the Kronecker delta: d(e) = 1 iff e is true and §(e) = 0 otherwise.

3 Second price auctions

In this section we find and characterize the equilibria of second price auctions for some
simple value distributions and sets of possible introspections. We show cases where
there are two competing classes of equilibria with different properties as far as revenue
and efficiency are concerned. Throughout, we assume (for reasons of simplicity and
tractability) that agents are risk neutral and always follow the dominant strategy of
bidding their expected valuations truthfully (as shown by Proposition 1). Because of
this, the second price auction is trivially ex post efficient (for any set of deliberation
strategies), though not necessarily ex post perfect efficient.

We will begin by considering an extremely simple example: 2 bidders with valua-
tions of either 0 or 1 (with equal probability). The agents can chose between a perfect
introspection, ¢; = ¢* with fixed cost c or not introspecting, ¢; = qz. This results in
the induced normal form game given in Figure 1.

We will only consider the non-trivial values of 0 < ¢ < 0.25, because otherwise in-
formation is either free or prohibitively expensive. This game has a number of notewor-
thy features: The value of information for deliberation ¢* depends on the other agent’s
deliberation action, and the only equilibria require either randomization or asymmetry.
These two sets of equilibria have qualitatively different revenues. Under an asymmet-
ric pure strategy equilibrium, the deliberation is a sunk cost and doesn’t affect bidding
strategies or revenue. Under a symmetric mixed strategy equilibrium, the probabil-
ity of introspection will vary continuously with costs (meaning that revenue will vary
with costs as well). Both agents weakly prefer the pure strategy equilibria (which also
maximize the social welfare), but face a coordination problem to reach them. If they
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Figure 1: Induced normal-form game for two bidders in a second-price auction who
have valuations of 0 or 1 with equal probability. The third payoff indicates the seller’s
revenue.

must follow symmetric strategies, then they risk miscoordinating (with a loss of social
welfare). By allowing the agents to condition their deliberations for a correlated equi-
librium, the seller would allow them to always reach the pure strategy equilibria. (In
this case, the seller’s revenue would decrease, but that is an artifact of having so few
bidders.)

We can show that these two sets of equilibria also exist for larger numbers of agents.

Theorem 5 In every pure strategy equilibrium of this game exactly min(n—1, | —logs(c) |—
1) agents introspect.

Proof Sketch. We enumerate the set of all pure strategy profiles as follows. Let
k denote the number of agents that introspected. We can write expressions for the
expected utility of an agent given that pure strategy profile:

Elui|k, ¢; = qo] = { 81/2)(1/2)k ]cjzjn !

and

N (1/2)" ¢ k=n
Elui|k,q; = ¢"] = { (1/2)(1/2)F — ¢ o.w.

A set of equilibria exist with k& agents introspecting ift:

and

Eluilk — 1,q = qo] < Eluilk, ¢ = ¢"].

Solving this system of equations, we can find the values of & which represent
the set of all possible pure strategy Nash equilibria.



Corollary 6 When introspection is costly, there are symmetric settings where the sec-
ond price auction has no symmetric pure strategy Nash equilibrium.

We enumerate the set of all symmetric strategy profiles as follows. Let p be the
probability of deliberating in any symmetric mixed strategy. We can write an expres-
sion for the expected utility of each agent under a symmetric mixed strategy profile:

n—1

Elulp) = > p/(1—p)" =37 ( " ; ! ) (PE[w]j + 1.4 = ¢*] + (1 = p)Eluslj, ¢; = 40)).
7=0

Since the game is symmetric, it must have a symmetric Nash equilibrium at some
p*, which much satisfy

p* € arg max E[u;|p)].
3

Theorem 7 In second price auctions with costly introspection, the pure strategy equi-
libria can yield different revenue from the symmetric equilibria.

With these equilibria, we can compare revenues. We can write an expression for
the expected revenue of the seller under pure strategy profiles:

1—27F —f27* k=n
Efrevenue|k] = ¢ 1 —27%F — g2=F-1 k=n-1
1—27k1 —k2=F=1 o,

Under symmetric (mixed) strategy profiles, the revenue is

E[revenue|p] = zn:p](l —p)n — ) ( SL ) E[revenuel|k = j].
3=0

With these analytic solutions, we can compare the revenue of the different classes
of Nash equilibria as n varies. The qualitative revenue properties of the are consistent
with the intuition from 2 bidder examples, but the quantitative impact on revenue is
striking (see Figure 2). For pure strategy equilibria, all costs have the same revenue
for low values of n. When n becomes too large, adding more agent will have no
effect on the number of agents that introspect, causing the revenue to plateau. Notably,
this threshold only increases linearly for exponential decreases in costs, so that this
limit is applies to relatively small numbers of bidders, even when the cost is orders
of magnitude smaller than the agents’ valuations. For mixed strategy equilibria, the
revenue decreases continuously as costs increase. As in the 2-bidder case, symmetric
mixed strategy equilibria involve a risk of miscoordinating, though this risk becomes
greater (and has a negative impact on seller revenue for n > 3) as the number of
agents increases. The value of information decreases, decreasing the probability of

10
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Figure 2: Expected revenue under pure (top) and mixed (bottom) strategies

deliberation. As n gets large the probability of introspection will tend to 0, and the
expected revenue will tend the uninformed expected valuation (though in this case it
does so extremely slowly).

Although the second price auction is always ex post efficient, the deliberation strate-
gies used will affect the probability of ex post perfect efficiency (the probability that
the allocation actually maximizes social welfare, which given our simple 0,1 valuation
structure is also the expected fraction of optimal social welfare). These different equi-
libria have different probabilities of ex post perfect efficiency (see Figure 3). Again,
the risk of miscoordination has a significant negative impact.

The analytic expression for the probability of ex post perfect efficiency of pure
strategy equilibria is

n—k—1 y
ep(k,n) =1— | (1/2)" Z (1/2)J<n;k>nik

Jj=1

The analytic expression for the probability of ex post perfect efficiency of mixed
strategy equilibria is

11
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Figure 3: Probability of ex post perfect efficiency under pure (top) and mixed (bottom)
strategies

em(p,n) = ]é ( . >p’“(1 —p)" Fep(k,n).

Next we will consider a case with limited, free deliberations, and show that equilib-
ria can have similar properties here. The agents have valuations drawn from a uniform
[0, 1] distribution. Agents can perform one deliberation of the following type: for any
value on the interval [0, 1], they can discover (by a 1-bit signal) whether their valua-
tion is above or below it. Since the action space of deliberations is continuous (and
purely cooperative, though this is a coincidence of n = 2), we show the induced nor-
mal form continuously (see Figure 4). Again, we have the problem that the only pure
strategy equilibria are asymmetric (even though deliberations are no longer costly):
[(n =1/3,92 = 2/3] and [q1 = 2/3, g2 = 1/3]. This reflects the results of Blumrosen
and Nisan (2002), that agents benefit from asymmetry when severe limitations apply
(though in this case, the asymmetric meaning of the 1-bit signal is chosen by the bid-
der rather than the mechanism or proxy). The agents could randomize across these two
equilibria, though again they will lose expected utility through miscoordination. By or-
dering the bidders by weakly increasing g;, we can write a expression for the expected
utility of any number of agents under any pure strategy profile:
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Figure 4: Graphical representation of the induced normal form of the 2-bidder limited
deliberation case. The peaks (pure equilibria) do not fall on the g; = ¢ line, so they
are not symmetric.
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4 Revenue relationships and bounds

This section contains theoretical results: we will show a limited application of revenue
equivalence, an upper bound on the revenue of separable auctions with costly deliber-
ation and an impossibility result.

Theorem 8 In all symmetric, separable IPV settings where for every deliberation q
the induced valuation distribution f, is differentiable on the interval [v, 7], all efficient
auctions are revenue equivalent under symmetric equilibria.

13



Proof. Any convex combination of the induced valuations will itself be differen-
tiable on the interval [v, 8]. If all agents play the same mixed deliberation strategy
s, they will all have the same induced valuation distribution, fs. Fixing this de-
liberation strategy profile, the problem of how to bid is strategically equivalent to
how to bid the same auction if agents had perfectly known valuations drawn from
distribution f,. Since the problems are equivalent, the equilibria of the bidding
subgame will be the same and revenue equivalence will apply to any efficient auc-
tion for a fixed f,. Since agents get the same expected utility from s regardless of
the efficient auction used, the same deliberation strategies will be equilibria for all
efficient auctions. B

We can also show an extremely general (though loose) revenue bound, which ap-
plies to a wide variety of models including independent, common and interdependent
values, as well as private and non-private. It also applies volatile settings, provided the
agents’ valuations are always bounded above by v. Finally, it makes no assumptions
about the allocation rule, so it applies to all auctions, efficient or not.

Theorem 9 Any individually-rational, separable auction the upper bound on the ex-
pected revenue is reduced by the sum of the expected costs of every agent’s delibera-
tions.

Proof. Let 7;(s) be the marginal probability of i receiving the good given strategy
profile s. Let ¢;(s) be i’s expected transfer to the seller given s.

Eluils] = ~(s)E[v|s, wins]
—ti(s) — Elcs|s;]
ti(s) (vi(8)v — Eles]sq])
Z t(s:) Z(%‘(S)’E — Ele;|si])
€N iEN

v — ZE[CHSA |

i

IN

IN

E[revenue|s]

IN

Although previous work has already shown that Vickrey auctions aren’t necessarily
dominant strategy in the case where deliberations are costly, this bound allows us to
generalize that finding into a broader impossibility result.

Corollary 10 No budget-balanced, individually-rational, separable mechanism can
have a dominant strategy which involves an unbounded number of agents performing
costly deliberations.

Proof. There must exist some n where nc > v, where c is the cost of the cheapest

deliberation. If more than n agents are performing a deliberation with cost > ¢,
then the seller’s expected revenue becomes negative. B
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Theorem 11 [In efficient, separable auctions with independent private values, the value
of information for any deliberation q falls off exponentially in the number of agents per-
forming it (denoted by k).

Proof. Suppose we only allowed agents who performed the deliberation to bid in
the auction. For any signal a;, ¢’s probability of receiving the good is proportional
to FF=1(E[v;as]), where Fy(v) is the cumulative induced valuation distribution
of ¢q. Hence, his expected surplus (and the value of information for deliberation ¢)
must fall off exponentially in k. Allowing agents to bid without performing delib-
eration ¢ weakly decreases the expected utility of g (by reducing the probability of
receiving the good and increasing the expected payment) and weakly increases the
value of not performing ¢. B

5 Conclusion

We have expanded on previous work which shows that the problem of how to deliberate
prior to bidding adds a significant extra layer of strategic complexity, by demonstrating
that limited and costly deliberation can impose a coordination problem on those agents.
We have shown that there is a significant effect on the utility of bidders and sellers. We
have also shown that this impact is present even for small numbers of bidders and ex-
tremely small costs. Future work on this problem could benefit from relaxing a number
of the assumptions, about distribution, privacy and separability. In particular, it might
be useful to formally model the costs to the seller (and other bidders) of waiting for
slow deliberations, allowing a continuous trade-off of the speed of separable auctions
against the lower deliberation costs and higher revenue of inseparable auctions. Work
could also be done to characterize cases deliberation acts both as a source of informa-
tion and as a randomizing device.
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