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Abstract

We investigate deliberation and bidding strategies of agents with unlimited but costly computation who are
participating in auctions. The agents do nota priori know their valuations for the items begin auctioned. Instead
they devote computational resources to compute their valuations. We present a normative model of bounded
rationality where deliberation actions of agents are incorporated into strategies and equilibria are analyzed for
standard auction protocols. We show that even in settings such as English auctions where information about
other agents’ valuations is revealed for free by the bidding process, agents may still compute on opponents’
valuation problems, incurring a cost, in order to determine how to bid. We compare the costly computation
model of bounded rationality with a different model where computation is free but limited. For some auction
mechanisms the equilibrium strategies are substantially different. It can be concluded that the model of bounded
rationality impacts the agents’ equilibrium strategies and must be considered when designing mechanisms for
computationally limited agents.

1 Introduction

Systems, especially on the Internet, are increasingly being used by multiple parties—or software agents that repre-

sent them—with their own preferences. This invalidates the traditional assumption that a central designer controls

the behavior of all system components. The system designer can only control themechanism, while each agent

chooses its ownstrategy. The economic efficiency that a system yields depends on the agents’ strategies. To de-

velop a system that leads to desirable outcomes, the designer has to make sure that each agent is motivated in the

desired way. This can be achieved by analyzing the game using theNash equilibriumsolution concept from game

theory (or its refinements). However, the equilibrium for rational agents does not generally remain an equilibrium

for computationally limited agents. This leaves a potentially hazardous gap in game theory, as well as automated

negotiation, since computationally limited agents are not motivated to behave in the desired way.

Early on, it was recognized that humans have bounded rationality, e.g., due to cognitive limitations, so they do

not act rationally as economic theory would predict [23]. Since then, considerable work has focused on developing

normativemodels that prescribe how a computationally limited agentshouldbehave [1, 2, 18]. However, this has

been a problem filled with many technical difficulties and so simplifying assumptions have been used.
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and ITR IIS-0081246.



While such simplifications are acceptable in single-agent settings as long as the agent performs reasonably well,

any deviation from full normativity can be catastrophic in multiagent settings. If the designer cannot guarantee that

the strategy (including deliberation actions) is the best strategy that an agent can use, there is a risk that an agent

is motivated to use some other strategy. Even if that strategy happens to be “close” to the desired one, the social

outcome may be far from desirable.

Game theorists have also realized the significance of computational limitations, but have focussed on how

complex it is to compute the rational strategies [9], memory limitations in keeping track of history [17], or limited

uniform–depth lookahead capabilities in repeated games [7]. Instead, we are interested in settings where agents’

limited rationality stems from the complexity of the agents’ optimization problems, a setting which is ubiquitous

in practice [22].

Game theory is a useful tool to help in the design of bidding agents for auctions. There is a vast literature

describingrational agents’ optimal bidding strategies in different types of auctions [13]. However, economic mod-

els forbounded–rationalagents have often been descriptive rather than prescriptive [23, 17]. In order to provide

a prescriptive model, Larson and Sandholm proposed incorporating deliberation actions into agents’ strategies in

order to analyze, game theoretically, bounded–rational agents in a 2–agent bargaining game [11].

In auctions there has been work on both bounded–rational bidding agents and mechanisms. For bounded–

rational bidding agents, Sandholm noted that under a model of costly computation, the dominant strategy property

of Vickrey auctions fails to hold [21]. Instead, an agent’s best deliberation action can depend on the other agents.

In recent work, auction settings where agents have hard valuation problems have been studied [16]. Auction de-

sign is presented as a way to simplify the meta–deliberation problems of the agents’, with the goal of providing

incentives for the “right” agents to deliberate for the “right” amount of time. A costly computation model, with

simple deliberation control where agents compute to refine their valuations, is used. However, situations where

agents may compute on each others’ problems in order to refine their bids are not considered, nor are combina-

torial auctions, where agents have to select which of their own valuation problems and which of their opponents’

valuation problems to compute on, studied.

There has also been recent work on computationally limited mechanisms. In particular, research has focused on

the generalized Vickrey auction and investigates ways of introducing approximate algorithms to compute outcomes

without loosing the incentive compatibility property [15, 8, 12]. These methods still require that the bidding agents

compute and submit their valuations.

In this paper we investigate deliberation and bidding strategies of agents with unlimited but costly computation

who participate in auctions. They do nota priori know their valuations for the items being auctioned. Instead, they

must devote computational resources in order to compute their valuations. Agents are also allowed to compute

on other agents’ valuation problems so as to gain information about potential bidding strategies. We present a

fully normative model of deliberation control and define agents’ strategies in this setting, as well as the concepts

of strong and weak strategic computation. We analyze different auction protocols, presenting results on whether

strategic computation occurs in equilibrium. We conclude with a comparison to a setting where computation is



limited but free, and provide a discussion how the model of bounded rationality affects the equilibrium strategies

of agents.

2 Auctions

Auctions provide efficient and distributed ways of allocating goods and tasks among agents. In this paper we in-

vestigate inherently private value auctions with risk–neutral agents. There are many different auction mechanisms,

but in this paper we focus on the single item English, Dutch, Vickrey, and first–price sealed–bid auctions. We

also discuss combinatorial auctions where bids can be submitted on bundles of items. In particular, we focus on a

sealed–bid combinatorial auction, (Generalized Vickrey auction (GVA)), where with an expressive enough bidding

language [20], truthful bidding is a dominant strategy using the Groves–Clarke mechanism [4, 3].

3 The Roles of Computation

To participate in an auction, agents need to determine valuations for the items being auctioned. The question

becomes: how are these valuations derived? In this paper we focus on situations where agents do not simply know

their own valuations. Rather, they have to allocate computational resources to compute the valuations. We assume

all agents haveanytime algorithmsso that a result can be supplied at any time, and solution quality increases with

time. This enables each agent to make a tradeoff between time and solution quality. Anytime algorithms can be

broadly classified into two groups. The first group includes iterative improvement algorithms such as iterative

refinement. These algorithms always have a solution at hand and make small changes to the solution to try and

improve it. Iterative improvement algorithms have been very successful in finding nearly optimal solutions to

hard problems with very small amounts of time [14]. The second group of anytime algorithms contains complete

algorithms such as many tree search algorithms. Branch and bound, for example, improves the bounds on the

solution as more time is allocated to the algorithm [19].

We present two roles where agents use computation.

Role 1: Computation improves valuations In our first model, computation increases the agents’ valuations.

As the agent computes further, the agent finds better ways of using the items. Therefore, the agent may be willing

to place a “better” bid.

An example is a procurement auction where agents are companies bidding on a task which consists of delivering

a parcel from one location to another. The agent who submits the lowest bid wins and its utility is the bid amount,

bi, that it gets paid minus its cost,ci, of performing the delivery. As the agent computes on the problem of how to

deliver the parcel, it can obtain better (less costly) vehicle routing solutions. The agent might then want to modify

its bid, decreasing it so as to increase the likelihood of winning the auction.

Role 2: Computation refines the agent’s beliefAlternatively, computation can refine an agent’s valuation.

The agent can maintain a distribution (or bounds) on the valuation. Additional computation can then refine the



agent’s beliefs, causing the distribution of the value to shift up or down.

4 Costly Computation and Normative Control of Deliberation

If agents know their valuationsa priori, or are able to compute their valuations with ease, they would execute

the equilibrium bidding strategies for rational agents. However, agents often have limitations on their deliberation

resources which may take the form of costly or limited (deadlines and finite processing speed) computation.

The agents must decide how to allocate their limited deliberation resources. In single–item settings they must

decide whether to compute only on their own valuation problem in order to obtain the best valuation possible,

or whether to use some of their computational resources on other agents’ valuation problems. In combinatorial

auctions the agents’ decisions become more complex. Each agent must decide how to split its computation across

different bundles it is interested in as well as bundles the other agents might place bids on.

In this paper we consider situations where agents have the possibility of unlimited computation, but each

computation step incurs a cost. Each agent has a cost functionci : Tn ! R, whereT is time andn is the

number of problems an agent may compute on. In single item auctions,n equals the number of bidders and in

combinatorial auctions,n is the number of bidders times2m, wherem is the number of goods being auctioned.1

At time �t = (t1; t2; : : : ; tn), the utility of agenti from computingtj time steps on goodgj is ugji = vgj (tj)� ci(�t)

wherevgj (tj) is the valuation computed for the good. Note that an agent may have different computational costs

for different problems.

Each agent has ananytime algorithmthat has a feasible solution available whenever it is terminated, and

improves the solution as more computation time is allocated to the problem. Letvg�(t) be the value agent�

has obtained after devotingt computation steps to the valuation problem for goodg. The agents have statistical

performance profilesthat describe how computation changes the valuations. Each agent uses this information to

decide how to allocate its computation at every step in the process, based on the results of its computation so far.

There has been much work on performance profile based deliberation control [24, 5, 2, 6]. To represent the per-

formance profiles we use a tree structure [11]. The advantage of this approach is that it allows optimal conditioning

on results of execution so far, and allows conditioning on the actual problem instance.

We specify two different types of performance profiles,stochasticanddeterministic. In a stochastic perfor-

mance profilethere is uncertainty as to what results future computation will bring. At least one node in the tree

has multiple children. The uncertainty can come from variation in performance on different problem instances or

from the use of a randomized algorithm. In adeterministic performance profilethe algorithm’s performance can

be projected with certainty (i.e. the tree is a branch). Before doing any computation, an agent can determine what

the solution will be after any number of computation steps devoted to the problem.

We index the problem byi andg wherei is an agent andg is an item (or bundle of items) in the auction. For

eachg andi there is a performance profile tree,T
g
i . This represents the fact that the tree may be conditioned on

1This takes into account the fact that agents’ valuations for the empty bundle need not be 0.
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Figure 1:An agent’s stochastic performance profile tree for a valuation problem. The hexagonal nodes are random

nodes and the round nodes are value nodes. At random nodeA, the probability that the random number will be

0 isP (0), and the probability that the random number will be 1 isP (1). The edges from any value node have a

weight of one time step, while the edges from any random node have a weight of zero time steps. This means it

takes 3 time steps to reach nodeG, and 2 time steps to reach nodeJ .

features of the problem instance. Figure 1 exemplifies one such tree.

The general tree form represents uncertainty that comes from both randomized algorithms and variation of

performance on different problem instances. There are two different types of nodes in the performance profile tree,

random number nodes and value nodes. A random node occurs whenever a random number is needed to chart

the path of the algorithm run. For example, an anytime algorithm for the Travelling Salesman Problem (TSP),

randomly chooses cities and swaps them in the route. In this situation, a random number would be a city label. The

edges from a random node represent the possible random numbers (bits), and are labeled with the probability of a

certain random number occurring. Each edge emanating from a random node has a weight of zero. Value nodes

store the value of the solution that the algorithm has computed at a certain point in time. The children of a value

node may be either more value nodes or random nodes. Each edge emanating from a value node has a weight of

one time step. The edges are labeled with the probability of reaching the child, given that the parent was reached.

This allows one to compute the probability of reaching any particular future node in the tree given any node, by

multiplying the probabilities on the path between nodes. If the only uncertainty in the algorithm’s run is from the

variation of performance on different problem instances, then there are no random nodes in the performance profile

tree.

We denote bytime(n) the sum of the weights of the edges that were followed to reach the noden. In other

words,time(n) is the number of computational steps used to reach noden. We denote byV (n) the value of a

value noden.

In practice it is unlikely that an agent knows the valuation for every time allocation without actually doing the

computation. Rather, there is uncertainty about how the valuation improves over time. A performance profile tree

allows one to capture this uncertainty. The tree can be used to determineP (vgi jt) denoting the probability that

running the algorithm fort time steps produces a solution of valuev
g
i .

Unlike earlier performance profile models for controlling anytime algorithms (e.g., [24, 2, 6, 5]), the perfor-

mance profile tree supports conditioning on the path of valuation quality so far. The performance profile tree that

applies given a path of computation is the subtree rooted at the current noden. This subtree is denoted byT g
i (n).



If an agent is at a noden with valuev, then when estimating how much additional deliberation would increase the

valuation, the agent need only consider paths that emanate from noden. The probability,Pn(n0), of reaching a

particular future noden0 in T
g
i (n) is simply the product of the probabilities on the path fromn ton0. The expected

valuation after allocatingt more time steps to the problem, if the current node isn, is
X

Pn(n
0) � V (n0)

where the sum is over the setfn0jn0 is a node inT g
i (n) which is reachable int time stepsg.

In our equilibrium analysis, we assume that all performance profile trees are common knowledge and that

agents have access to the same algorithms. Agenti can compute on agentj’s valuation for itemg, using the

performance profileT g
j to guide its computation. However, this computation would not change agenti’s valuation

for goodg. The most practical model is the special case where the agents have the same performance profiles,

i.e., T g
i = T

g
j for all agentsi and j. This models a real world setting where the agents have been solving

similar problems in the past, and have been improving their algorithms for those problems resulting in comparable

algorithms among the agents.

If the only uncertainty comes from the variation in the performance of the algorithm on different problem

instances, then agents can compute on others problems, and are able to obtain identical results. This information

can be used when it comes to the bid formation process. If an agent can determine that another agent has a high

valuation for a good, then it might decide that the likelihood of obtaining the good in the auction is small, and thus

can concentrate its resources on obtaining valuations for other items. However, if agents are running randomized

algorithms, then, since the path is dependent on random numbers, one agent’s results from computing on a certain

valuation problem may be different from the valuation obtained by another agent computing on the same problem.

Therefore, we allow one agent toemulatethe possible algorithm runs another agent may be following. While

emulating an algorithm run, whenever an agent reaches a point where a random number is used, the agent can

select which random number to run the algorithm with. At a later point in time, the agent may revisit the same

random node, and select a different random number with which to run the algorithm. While the emulation does

not remove all uncertainty as to what valuations other agents have computed (as the actual random numbers are

not known), it does allow an agent to remove some uncertainty as it provides information about the possible paths

the algorithm might have taken.

Agents store the results of their deliberation actions at each time step in a state of deliberation. The state of

deliberation also stores the cost incurred from computing.

Definition 1 Thestate of deliberationof agenti at timet when there are no randomized algorithms is

�i(t) = (hn(j; g)ig2Gj2A ; ci(�t))

whereA is the set of agents participating in the auction,G is the set of bundles being auctioned,
P

g;j time(n(j; g)) =

t, and�t = (time(n(j; g)))j2Ag2G.

If there are randomized algorithms then the state of deliberation of agenti at timet is

�i(t) = (hn(j; g; r)i; ci(�t))



whereg 2 G, j 2 A, r is a (set of) random number used for the problem specified byg andj,
P

g;j

P
r time(n(j; g; r)) =

t, and�t = ((
P

r time(n(j; g; r)))g2Gj2A ).

5 Bidding Strategies and Strategic Computation

A strategy for an agent is composed of two interrelated components – the deliberation component and the bargain-

ing component. What an agent bids depends on the solutions it has obtained for its valuation problems, and what

an agent computes on depends partially on what bids it has observed.

Let A be the set of agents participating in the auction andG be the set of bundles. LetAct(A;G) be the set

of deliberation actions whereactgi 2 Act(A;G) is the action of (possibly choosing a random number and then)

taking one computation step on agenti’s problem for bundleg. We do not require that agents compute every step.

Instead, they may decide to pass on computing. Agents do not incur any cost when they decide not to compute on

a problem. We denote by; the act of taking no deliberation step. While bidding, agents may either send a message

stating how much their bid is, or that they no longer wish to participate in the auction. We require agents to send

“withdraw” messages in sequential auctions in order to differentiate between not increasing a bid, and leaving the

auction.

The auction mechanism determines the agents’ strategies.

Definition 2 A strategy for agenti in a sequential auction is

Si = ((�di (t); �
b
i (t)))

1

t=0

with deliberation component

�di (t+ 1) : �i(t)�Bi(t) ! Act(A;G)

whereBi(t) is the list of bids observed by agenti up to timet. The bidding component is

�bi (t+ 1) : �i(t+ 1)�Bi(t) ! R
2
M
�1 [ fwithdrawg:

In a single–shot setting the strategy is slightly different. The auction ends at some timeT at which point agents

submit a single bid. An agent never has the opportunity to observe the other agents’ bids.

Definition 3 A strategy for agenti is a single–shot auction which closes at timeT is

Si = ((�di (t))
1

t=0; �
b
i )

where the deliberation component is

�di (t+ 1) : �i(t+ 1) ! Act(A;G) and �bi : �i(T ) ! R
2
M
�1:

If agents’ deliberation and bidding strategies are in (Nash, perfect Bayesian, etc.) equilibrium then we say

there exists a (Nash, perfect Bayesian, etc.)deliberation equilibrium .



Agents use their computational resources in different ways. They can compute on their own problems in

order to obtain better valuations. They can also compute on their opponents’ problems in an attempt to gather

information about the bids that the opponents may be submitting. We make a distinction between these two types

of deliberation. The first we callweak strategic computation. The second we callstrong strategic computation.

Definition 4 If an agenti uses part of its deliberation resources to compute on another agent’s valuation problems,

then agenti is performingstrong strategic computation.

Definition 5 If an agenti does not actually use its deliberation resources to compute on another agent’s valuation

problems, but does use information from the opponents performance profile to devise a strategy, then agenti is

performingweak strategic computation.

In strong strategic computation the agent uses its own deliberation resources to compute on opponents’ problems,

thus incurring a higher cost than if it deliberated on its own valuation problems. This increased cost, may cause

an agent to compute less on its own valuation problems. In weak strategic computation, an agent does not use

its computational resources to compute on an opponent’s valuation problem. Instead it forms its deliberation

and bidding strategies based on information obtained by examining the opponent’s performance profiles. Ideally,

neither form of strategic computation is present in an auction. However, strong strategic computation is the least

desirable since agents not only counterspeculate on other agents’ strategies, but also use their own limited resources

in the process, leading to higher cost and less computation time (and therefore worse solutions) on their own actual

problems. In economic terms, strong strategic computation generally decreases Pareto efficiency.

6 Results: Does Strategic Computation Occur in Equilibrium?

For some auction mechanisms, the occurrence of strong strategic computation does not come as a surprise. In par-

ticular, for first–price, sealed–bid and Dutch auctions where rational agents counterspeculate, it is straightforward

to see that if the cost of obtaining information about other bidders is small, agents may be willing to invest their

resources in order to determine what the other agents’ valuations might be.

The following results formalize this idea. The occurrence of strong strategic computation depends on the

performance profiles and the cost functions of the agents.

Theorem 1 Strong strategic computation can occur in Nash equilibrium in first price sealed bid auctions.

Due to limited space, proofs for Theorems 1 to 4 are omitted from this extended abstract.

Theorem 2 Strong strategic computation can occur in Nash equilibrium in Dutch auctions.

If an agent can pay to remove uncertainty about its valuation, then it may counterspeculate its opponents in the

Vickrey auction (i.e., perform weak strategic computation) [21]. Thus, the Vickrey auction ceases to have the dom-

inant strategy property. However, if the performance profiles are stochastic, then depending on the performance



profiles and cost functions, in equilibrium agents may devote some of their deliberation resources on computing

other agents’ valuation problems.

Theorem 3 Strong strategic computation can occur in Nash equilibrium in Vickrey auctions if the performance

profiles are stochastic. If the performance profiles are deterministic (i.e., branches), then only weak strategic

computation will occur.

The costly computation also affects the equilibrium strategies of agents participating in auctions where there are

multiple items and thus multiple valuation problems on which to compute. If the agents have costly computation,

the GVA looses its incentive compatibility property.

Theorem 4 If the performance profiles are stochastic, strong strategic computation can occur in Nash equilibrium

in generalized Vickrey auctions. If the performance profiles are deterministic (i.e. branches), no strong strategic

computation can occur in Nash equilibrium in generalized Vickrey auctions. However, weak strategic computation

can occur.

The most interesting results occur in English auctions. In an English auction, information is revealed as the

auction progresses. As the bids increase, participants are able to update their beliefs about the other agents’

valuations and are able to determine whether they wish to continue participating in the auction

In situations with fully rational agents, no form of strategic computation occurs in equilibrium. A fully rational

agent will increment its bid whenever it does not have the highest bid, and the highest bid is less than the agent’s

valuation. Enough information is revealed through the auction mechanism so that participants have no need to

counterspeculate or learn their opponents’ valuations through any method other than waiting and observing. With

a costly computation model, agents’ strategies are different. In equilibrium, strong strategic computation can occur.

There are some instances in which no strong strategic computation will occur in equilibrium.

Theorem 5 If at most one agent’s performance profile is stochastic, then in an English auction no strong strategic

computation will occur. Agents have dominant strategies.

Proof: If an agent has a deterministic performance profile, then it has a dominant strategy. It participates in the

auction by incrementing its bid whenever it does not have the highest bid,b, and

max
t

[vi(t)� ci(�ti)]� b � 0

where�ti = (t1; t2; : : : ; tjAj) such thatti = t and for all j such thati 6= j, tj = 0. It does not perform any

computation until the auction has closed and it has won the auction.

Assume one agent has a stochastic performance profile. It’s strategy depends on how the other participants bid.

However, it can gain nothing by computing on its opponents’ valuation problems as it already has all information

from just examining the performance profiles without computing. 2

If more than one agent has a stochastic performance profile then strong strategic computation can occur. It may

be better for an agent to compute on an opponent’s valuation problem in order to determine whether to remain in



an auction or to withdraw early without fully resolving its own valuations. Subtle aspects of performance profiles

distinguish whether strong strategic computation occurs in equilibrium.

Theorem 6 In an English auction there exist instances where strong strategic computation does and does not

occur in Nash equilibrium (even with the same performance profile topologies across those instances).

Proof: Assume that there are two agents, agent� and agent� who have the performance profiles in Figure 2.

Assume thatc�(�t) = 0 andc�(�t) = t�+ t� for all �t = (t�; t�). Agent� has a dominant strategy. It computes one

step on its own problem (at a cost of 0) to determine whether its valuation is high (h�) or low (l�). It will bid in

the auction until the bid is higher than its valuation. It gains nothing by computing on agent�’s problem. For each

hα

lα
l
β

h
β

l <l <h <h 
α β αββ

p

1−p
0

α
0 0

q

1−q

Figure 2:Performance profiles for agents� and�.

computation step that agent� takes, it incurs a cost of 1. Therefore agent� must decide whether to compute on a

problem and incur the cost, or not. It may be to agent�’s advantage to compute on agent�’s valuation problem in

order to determine whether it wants to continue participating in the auction and devote computational resources to

its own valuation problem. What agent� decides to do depends on agent�’s bids. Letbi be agenti’s highest bid.

Case 1. If b� > l� then agent� has valuationh� and agent� knows this. Agent� will not be able to out bid

agent�. Agent� has no incentive to participate in the auction since it is impossible for it to win the item. Agent�

has no incentive to compute further on its own valuation problem nor on agent�’s valuation problem since it has

already learned that agent� has a high valuation. Therefore agent� withdraws from the auction.

Case 2.If b� < l� � 1 then agent� continues to increment its bid as long as agent� does the same. Agent� will

not compute on any valuation problem as it knows that its own valuation for the item is not less thanl� and the

cost to compute this valuation is 1. If agent� withdraws whileb� < l� � 1 then agent� will compute on its own

problem.

Case 3.If l� � 1 � b� � l� then agent�’s best–response strategy is more complex. Whenb� = l� � 1, agent

� must decide whether to continue bidding without knowing its true valuation, whether to compute on its own

problem to determine its valuation, whether to compute on agent�’s problem to determine whether agent� has

high valuation, or whether to withdraw from the auction. These decisions are captured in Figure 3. If agent�

computes on agent�’s problem then strong strategic computation occurs. The question becomes, does there exists

parameters on the performance profile trees such that agent� will compute on agent�’s problem? That is, does

there existp, q 2 [0; 1] andh� , l� , h� andl� such that

2p+ q(h� � l�) + pq(l� � h�)� 3 > q(h� � l�) + pq(l� � h�)� 2 (1)

2p+ q(h� � l�) + pq(l� � h�)� 3 > p(l� � l� + 2) + pq(l� � h�) + l� � l� � 2 (2)
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Figure 3:Agent�’s decision tree. The circles represent times when� must take an action. The squares represent

times when nature moves and the agents’ valuations are revealed. Agent� has valuationh� with probabilityp

and agent� has valuationh� with probabilityq. Only undominated choices are shown. In particular, at node 2,

� has more than the one choice shown. It could also withdraw from the auction or bid before determining its true

valuation. However, both these actions result in� having strictly lower utility than from what it could obtain if it

computed on its own problem. Therefore, they were not included in the decision tree.

2p+ q(h� � l�) + pq(l� � h�)� 3 > 0: (3)

We obtain the following constraints.

1

2
< p < 1; 0 < q < 1

h� >
3� 2p� 2q + 2pq

q � pq � q2 + pq2
,

1

1� p� q + pq
< l� <

3� 2p� h�q + h�pq

pq � q

�3 + 2p� l�q + l�pq

pq � q
< h� < h�, 0 � l� <

�1 + l� � l�p� l�q + l�pq

1� p� q + pq
: 2

We present an example where strategic computation occurs, depending on the probability distributions of the

valuations. Consider the performance profile trees of Figure 2. Leth� = 30, l� = 12, h� = 22 andl� = 3. Figure

4 shows the ranges for the probabilitiesp andq where agent�’s optimal strategy involves computing on agent�’s

valuation problem.

7 Comparison of Different Models of Computation

Another model of limited computation is one where computing is free but agents have deadlines after which they

may no longer compute. The effects of this model on deliberation and bidding strategies has been previously stud-

ied, [10]. Interestingly, the equilibrium behavior of the agents are different in the two models. Table 1 summarizes



Figure 4: Graph illustrating when strong strategic computation will occur in equilibrium. The shaded region

contains the values forp andq where agent� will compute on agent�’s valuation problem. The unshaded region

contains the values forp andq where strong strategic computation will not occur in equilibrium.

the differences and compares the computationally limited agents’ strategies with those of fully rational agents,

depending on whether counterspeculatation would occur in equilibrium or not.

Strategic computation?
Auction Counterspeculation by Limited Costly
mechanism rational agents? computation computation

Single item Vickrey no no yes
English no no yes
First Price yes yes yes
Dutch yes yes yes

Multiple items GVA no yes(weak only) yes (weak only)
(deterministic performance profiles)
GVA (stochastic) no yes yes
(stochastic performance profiles)

Table 1: When does strategic computation occur? The answer to this question depends on the model of limited

computation being used.

8 Conclusion

Auctions provide efficient and distributed ways of allocating goods and tasks among agents. For rational agents,

bidding strategies have been well studied in the game theory literature. However, not all agents are fully rational.

Instead they may have computational limitations which curtail their ability to compute valuations for the items

being auctioned. This adds another dimension to the agents’ strategies as they have to determine not only the

best bid to submit, but how to use their computational resources in order to determine their valuations and gain

information about the valuations of the other agents participating in the auction.



We presented a model of bounded rationality where agents incur cost for each computation step. We showed

that in most standard auction settings, in equilibrium agents are willing to use their limited deliberation resources

in order to compute on valuation problems of competitors.

We compared results from the costly computation model with those from a free but limited model. Equilib-

rium strategies differed, which leads to the conclusion that different models can change the equilibrium outcomes

substantially. The classical tools for analyzing auctions, i.e., the Revelation Principle and the Revenue Equiva-

lence Theorem, are no longer directly applicable in the limited computation setting. A reinvestigation of modified

analysis tools may be required for settings with bounded rational agents.

Future work in this area includes a full analysis of bidding and deliberation strategies under other models of

bounded rationality. For example, in this paper it is assumed that agents have the possibility of skipping delibera-

tion steps, and thus avoiding accumulating further cost. This skipping may be disallowed by an auctioneer who also

controls the CPU that the software (bidding) agents run on. If cost is incurred at every step in the auction, agents

may have incentives to try and end an ascending auction early. Design of different auction protocols which take

into account agents’ limitations and lead to as Pareto efficient as possible outcomes is another important research

area that naturally stems from our paradigm of modeling deliberation actions as part of each agent’s strategy.
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