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Abstract

We consider the truthful implementation of the socially e¢ cient allocation in a

dynamic private value environment in which agents receive private information over

time. We show that a suitable generalization of the Vickrey-Clark-Groves mechanism,

based on the marginal contribution of each agent, leads to truthtelling in every period.

A leading example of a dynamic allocation model is the sequential auction of a single

good in which the current winner of the object receives additional information about

her valuation. We show that a modi�ed sequential second price auction in which only

the current winner makes a positive payment leads to truthtelling. In general allocation

problems, the marginal contribution mechanism continues to induce truthtelling in every

period but may now include positive transfers for many agents.

Jel Classification: C72, C73, D43, D83.

Keywords: Vickrey Auction, Marginal Contribution, Dynamic Allocation Index, Multi-

Armed Bandit, Bayesian Learning, Experimentation, Matching.

�The authors gratefully acknolwedge �nancial support through the National Science Foundation Grants

CNS 0428422 and SES 0518929 and the Yrjö Jahnsson�s Foundation, respectively.
yDepartment of Economics, Yale University, New Haven, CT 06520-8268, U.S.A.,

dirk.bergemann@yale.edu.
zDepartment of Economics, Helsinki School of Economics and University of Southampton, 00100 Helsinki,

Finland, juuso.valimaki@hse.�

1



1 Introduction

The seminal analysis of second price auctions by Vickrey (1961) established that single or

multiple unit discriminatory auctions can be used to implement the socially e¢ cient alloca-

tion in private value models in (weakly) dominant strategies. The subsequent contributions

by Clarke (1971) and Groves (1973) showed that the insight of Vickrey extends to more

general allocation problems in private value environments. By requiring that the transfer

payment of agent i match her externality cost on the remaining agents, agent i internalizes

the social objective and is led to report her type truthfully. The resulting net utility for

agent i corresponds to her marginal contribution to the social value.

In this paper, we generalize the idea of a marginal contribution mechanism to dynamic

environments with private information. We design an intertemporal sequence of transfer

payments which allow each agent to receive her �ow marginal contribution in every period.

In other words, each agent will pay her externality cost in a time consistent manner. In

consequence, each agent is willing to truthfully report her information in every period.

The basic idea of the dynamic mechanism is �rst explored in the context of the sequential

allocation of an indivisible object with initially uncertain value to the bidders. We assume

that the initial estimate of the value is private information to the bidder. In subsequent

periods, a bidder receives additional information only in those periods in which the object is

allocated to her. The structure of the payo¤s in the model, and in particular the resolution

of uncertainty, therefore resembles the multi-armed bandit problem.

The �rst result reports the construction of a dynamically e¢ cient auction that allocates

the object in each period according to the utilitarian welfare criterion under symmetric but

imperfect information. We show that a dynamic second price auction truthfully implements

the socially e¢ cient allocation period by period subject to Bayesian (and in fact even subject

to ex post) incentive constraints. The bandit framework constitutes a natural setting to

analyze the repeated allocation of an object or a license over time. The key assumption in

the multi-armed bandit setting is that only the current user gains more information about

her valuation of the object. If we think about the object as a license to use a facility or to

explore a resource for a limited time, it is natural to assume that the current insider gains

information relative to the outsiders. A conceptual advantage of the sequential allocation

problem is that the structure of the socially e¢ cient program is well understood. As the

2



monetary transfers allow each agent to capture her marginal contribution, the properties

of the social program translate into properties of the marginal program. In the case of the

dynamic auction, we therefore obtain surprisingly explicit and informative expressions for

the intertemporal transfer prices.

The second result is the description of a dynamic Vickrey-Clark-Groves mechanism in

which each agent receives in every period her �ow marginal contribution to the social value.

We obtain the second result for a general speci�cation of the utility of each agent and the

arrival of private information over time. Throughout the paper we maintain the assumptions

of quasi-linear utility and of a private value environment.

The objective of the dynamic mechanism is to implement the socially e¢ cient policy.

With transferable utilities, the social objective is simply to maximize the expected dis-

counted sum of the individual utilities. The solution to this dynamic optimization problem

is by necessity time consistent. In consequence, the dynamic Vickrey-Clark-Groves mecha-

nism is time consistent and the social choice function can be implemented by a sequential

mechanism without any ex ante commitment by the designer. In contrast, in revenue max-

imizing problems, the �ratchet e¤ect�leads to very distinct solutions for mechanisms with

and without intertemporal commitment ability (see Freixas, Guesnerie, and Tirole (1985)).

In contrast to the static environment, the thruthtelling strategy in the dynamic setting

forms an ex-post equilibrium rather than an equilibrium in weakly dominant strategies.

The weakening of the equilibrium notion is due to the dynamic nature of the game. If

the connection between other agents� current announcements and their implications on

the future continuation payo¤s is broken, then truthtelling is not necessarily individually

optimal.

In recent years, a number of papers have been written with the aim to explore various

issues arising in dynamic allocation problems. Athey and Segal (2006) consider a �nite

time horizon model with transferable utilities and private values. Their main result is the

construction of a balanced budget mechanism in the �nite horizon allocation model. Their

construction of a rebalancing mechanism is based on a �team mechanism� in which the

monetary transfers are paid only at the terminal period and are equal to the sum of the other

agents�terminal utilities. In contrast, we design a sequence of transfers which support the

�ow marginal contribution as the net utility of each agent in every period. In consequence

we do not need a �nite terminal time to establish the transfers. Bapna and Weber (2005)
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consider a sequential allocation problem for a single, indivisible object by a dynamic auction.

The basic optimization problem is a multi-armed bandit problem as in the auction we discuss

here. Their analysis attempts to use the Gittins index of each alternative allocation as a

su¢ cient statistic for the determination of the transfer price. While the Gittins index is

su¢ cient to determine the e¢ cient allocation in each period, the indices, in particular the

second highest index is typically not a su¢ cient statistic for the incentive compatible transfer

price. Bapna and Weber (2005) present necessary and su¢ cient conditions when an a¢ ne

but report-contingent combination of indices can represent the externality cost. In contrast,

we consider a direct mechanism and determine the transfers from general principles of the

incentive problem. In particular we do not require any assumptions beyond the private value

environment and transferable utility. In symmetric information environments, Bergemann

and Välimäki (2003), (2006) use the notion of marginal contribution to construct e¢ cient

equilibria in dynamic �rst price auctions. In this paper, we emphasize the role of a time-

consistent utility �ow, namely the �ow marginal contribution, to encompass environments

with private information.

This paper is organized as follows. Section 2 sets up the basic auction model. Sec-

tion 3 contains the construction of the e¢ cient dynamic auction. Section 4 extends the

construction to general private value environments. Section 5 concludes.

2 Model

Setting We consider a dynamic auction model in discrete time with an in�nite horizon.

In every period t; a single indivisible object can be allocated to a bidder i 2 f1; :::; Ng. The
true valuation of bidder i is given by !i 2 
i = [0; 1]. The prior distribution about the

valuation !i is given by Fi (!i) and the distributions are independent across bidders. In

period 0, bidder i does not know the realization of !i, instead she receives an informative

signal s0i 2 Si = [0; 1] about her true value of the object. The signal si is generated by a

conditional distribution function Gi (si j!i ). In each subsequent period t, only the winning
bidder in period t� 1 receives additional information about her valuation !i in the form of

an additional and conditionally independent signal sti 2 Si from the conditional distribution
Gi (si j!i ). Each signal sti is private information to bidder i and is not observed by any other
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agent.1

We denote the private history of bidder i by hti =
�
s0i ; :::; s

t�1
i

�
: The posterior belief of

agent i about !i can be calculated by Bayes�rule using hti: The expected value of the object

for bidder i given his private history is denoted by:

vi
�
hti
�
= E

�
!i
��hti � .

Each agent i has quasi-linear utility and the net value of getting the object in period t is

vi
�
hit
�
� pti;

where pti is the transfer price paid in period t. Each agent discounts the future with a

common discount factor �; 0 < � < 1.

Mechanism A dynamic direct mechanism asks the bidders to report their signals in every

period t. The report bsti may or may not be truthful. We de�ne the initial reports by
bh0 = �bs01; :::; bs0N� ;

and inductively the history of reports by:

bht = �bht�1; bst1; :::; bstN� .
The set of possible histories of reports in period t is denoted by bHt. The allocation rule for

a dynamic direct revelation mechanism is

xt : bHt ! [0; 1]N :

The allocation in period t is a vector xt =
�
xt1; :::; x

t
N

�
; where xti denotes the probability of

assigning the object to i in t with
NX
i=1

xti = 1.

The transfer (or pricing) rule is given by:

pt : bHt ! RN :
1We describe the arrival of new information as a Bayesian sampling process. The equilibrium character-

ization in Theorem 1 would continue to hold for any stochastic process, possibly non-Markovian, provided

that the signal realizations are independent across agents and that signals only arrive for winning bidders.
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A dynamic mechanismM =
D
x;p; bHE is a triple where

x =
�
xt
	1
t=0
; p =

�
pt
	1
t=0

and bH =
n bHt

o1
t=0
;

are the sequences of public decisions and public reports (histories).

Equilibrium The bidders evaluate payo¤s according to the discounted expected payo¤

criterion. A reporting strategy for agent i is a mapping

mt
i : Si ! Si.

For a given mechanism M, the expected payo¤ for bidder i from reporting a sequencebsi = fbstig of signals given that the others are reporting bs�i = fbst�ig is given by
E

1X
t=0

�t
h
xti

�bht�1; bsti; bst�i� vi �hti�� pti �bht�1; bsti; bst�i�i :
Given the mechanism M and the reporting strategies bs�i, the optimal reporting strategy
of bidder i solves a sequential optimization problem which can phrased recursively in terms

of value functions, or

Vi(bht�1; hti) = maxbsti2Si E
n
xti

�bht�1; bsti; bst�i� vi �hti�� pti �bht�1; bsti; bst�i�+ �Vi �bht; ht+1i

�o
:

We say that the dynamic direct mechanismM is Bayesian incentive compatible, if for every

agent i, in every period t, truthtelling is a best response given that all other agents report

truthfully. In terms of the value function, it means that for all i and all t, the solution to

the dynamic programming equation:

Vi(h
t�1) = maxbsti2Si E

�
xti
�
ht�1; bsti; st�i� vi �hti�� pti �ht�1; bsti; st�i�+ �Vi �ht�1; bsti; st�i�	 :

is to report truthfully, i.e. to choose bsti = sti. Finally, we say that the mechanism M is

ex post incentive compatible if truthtelling is a best response for agent i regardless of the

distribution of signals of the other agents, or

si 2 argmaxbsti2Si
�
xti
�
ht�1; bsti; st�i� vi �hti�� pti �ht�1; bsti; st�i�+ �Vi �ht�1; bsti; st�i�	 ;

for all st�i 2 S�i. In the dynamic context, ex post incentive compatibility has to be qual-
i�ed in the sense that is ex post with respect to all signals received in period t, but not

ex post with respect to signals arriving after period t. Consequently, the value function

Vi
�
ht�1; bsti; st�i� is still the future expected value conditional on ht�1; bsti; st�i.
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3 Dynamic Auction

We start with the single good allocation problem and show that it is possible to implement

the socially e¢ cient allocation in ex post equilibrium (and hence in Bayesian Nash equilib-

rium). The construction resembles to some extent a second price auction in each period.

The transfer price of the winning bidder is calculated in each period by comparison to the

optimal allocation policy within the set of bidders where the current winner is excluded.

As a result, the winning bidder internalizes her e¤ect on the welfare of other bidders. The

transfer price of the loosing bidders will be equal to zero provided that only the winning

bidder receives additional information. The exact construction of the transfer prices fol-

lows the spirit of the Vickrey pricing, but the intertemporal trade-o¤s are fully taken into

account.

Social E¢ ciency The socially e¢ cient assignment policy is obtained by maximizing the

utilitarian welfare criterion, namely the expected discounted sum of utilities. Given a history

of signals hs in period s, the socially optimal program can be written simply as

W (hs) = max
fxt(ht)g1t=s

E
1X
t=s

NX
i=1

�t�sxti
�
ht
�
vi
�
hti
�
:

Alternatively, we can represent the social program in its recursive form:

W (hs) = max
xs(hs)

E

(
NX
i=1

xsi (h
s) vi (h

s
i ) + �W (hs; xs)

)
:

The expected value EW (hs; xs) represents the optimal continuation value conditional upon

the state hs and the allocation xs today. The socially optimal assignment problem is a

standard multi�armed bandit problem and the optimal policy is characterized by an index

policy (see Gittins (1989) and Whittle (1982) for a textbook introduction). In particular,

we compute for every bidder i the Gittins index based exclusively on the information about

bidder i. The index of bidder i in state hti is the solution to the following optimal stopping

problem:


i
�
hti
�
= max

�
E

(P�
s=0 �

svi
�
ht+si

�P�
s=0 �

s

)
:

The socially e¢ cient allocation policy x� =
�
xt�
	1
t=0

is to choose in every period a bidder

i with the maximal index:

xt�i > 0 if 
i
�
hti
�
� 
j

�
htj
�
for all j:
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Marginal Contribution In the static Vickrey auction, the price of the winning bidder

is equal to the highest valuation among the loosing bidders. The highest value among

the remaining bidders represents the social opportunity cost of assigning the object to the

winning bidder. In a dynamic framework, the social opportunity cost is determined by the

optimal continuation plan in the absence of the current winner. It is therefore useful to

de�ne the value of the social program after removing bidder i from the set of agents:

W�i (h
s) = max

fxt�i(ht)g1t=s
E

1X
t=s

X
j 6=i

�t�sxtj
�
ht
�
vj
�
htj
�
:

The marginal contribution Mi

�
ht
�
of bidder i at history ht is then naturally de�ned by:

Mi

�
ht
�
=W

�
ht
�
�W�i

�
ht
�
: (1)

The marginal contribution is the change in social value due to the addition of agent i and

hence the possibility of assigning the object to i. The marginal contribution of agent i

may be thought of as the information rent that agent i may be able to secure for herself in

the direct mechanism. If bidder i can secure her marginal contribution in a time consistent

manner, she should be able to receive the �ow marginal contribution mi

�
ht
�
in every period.

The �ow marginal contribution accrues incrementally over each period:

Mi

�
ht
�
= mi

�
ht
�
+ �Mi

�
ht; xt�

�
:

As in the notations of the value functions above, Mi

�
ht; xt

�
represents the marginal con-

tribution of agent i in the continuation problem conditional on the history ht and the

allocation xt today. The �ow marginal contribution can be expressed more directly using

the de�nition of the marginal contribution (1) as

mi

�
ht
�
=W

�
ht
�
�W�i

�
ht
�
� �

�
W
�
ht; x�t

�
�W�i

�
ht; xt�

��
. (2)

Dynamic Second Price Auction The �ow marginal contribution is a natural candidate

for the net utility that each bidder should receive in each period t. We now construct a

transfer price such that under the e¢ cient allocation, each bidder�s net payo¤ coincides

with her �ow marginal contribution. We then show that this pricing rule makes truthtelling

incentive compatible in the dynamic mechanism.
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The winning bidder i receives the object in period t. To match her net payo¤ to her

�ow marginal contribution, we must have:

mi

�
ht
�
= vi

�
ht
�
� pi

�
ht
�
: (3)

The remaining bidders, j 6= i, do not receive the object in period t and their transfer price
must o¤set the �ow marginal contribution:

mj

�
ht
�
= �pj

�
ht
�
:

Consider �rst the e¢ cient bidder i in period t. We expand the �ow marginal contribution

in (2) by noting that i is the e¢ cient assignment and that another bidder, say k, would

constitute the e¢ cient assignment in the absence of bidder i:

mi

�
ht
�
= vi

�
hti
�
� vk

�
htk
�
� �

�
W�i

�
ht; i

�
�W�i

�
ht; k

��
: (4)

The optimal assignment policy is without loss of generality a deterministic policy as a

function of the history. We therefore replace the vector xt by the assignment decision which

determines the identity of the winning bidder. Thus, in (4), W�i
�
ht; i

�
and W�i

�
ht; k

�
represent the continuation value of the social program without i, conditional on the history

ht and the current assignment being i or k�i respectively. We notice that with private values,

the continuation value of the social program without i and conditional on ht and giving the

object to agent i in period t is simply equal to the value of the program conditional on ht

alone, or

W�i
�
ht; i

�
=W�i

�
ht
�
:

The additional information generated by the assignment to agent i only pertains to agent

i and hence has no value for the allocation problem once i is removed. We can therefore

rewrite the �ow marginal contribution of the winning agent i as:

mi

�
ht
�
= vi

�
hti
�
� (1� �)W�i

�
ht
�
:

The �ow marginal contribution of i is therefore her expected �ow value minus the delay

in the accrual of the social bene�t arising from the optimal assignment among all agents

excluding agent i. It follows that the transfer price should simply be given by:

p�i
�
ht
�
= (1� �)W�i

�
ht
�
, (5)
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which is the �ow social opportunity cost of assigning the object today to agent i.

A similar analysis, based on the �ow marginal contribution (4) leads to the determination

of the transfer price for the losing bidders. Consider a bidder j who should not get the object

in period t. Her �ow utility is clearly zero in period t. Moreover, by the optimality of the

index policy, the removal of alternative j from the set of possible allocations does not change

the optimal assignment today. In consequence, the identity of the winning bidder does not

depend on the presence of alternative j. In other words the e¢ cient assignment to i will

remain e¢ cient after we remove j. As a result the �ow marginal contribution of the loosing

bidder is zero, and we have:

p�j
�
ht
�
= �mj

�
ht
�
= 0.

Theorem 1 (Dynamic Second Price Auction)

The socially e¢ cient allocation rule x� is ex post incentive compatible in the dynamic direct

mechanism with the payment rule p� where:

p�j
�
ht
�
=

8<: (1� �)W�j
�
ht
�

if xt�j = 1;

0 if xt�j = 0:

Proof. By the unimprovability principle, it is su¢ cient to prove that if an agent receives

in all future periods her marginal contribution as her continuation value, then truthtelling is

incentive compatible for an agent in period t. Suppose then that at ht, it is socially e¢ cient

to assign the object to agent i and suppose that all agents except i report truthful. The

incentive constraint for agent i is then given by:

vi
�
hti
�
� p�i

�
ht
�
+ �Mi

�
ht; i

�
� �Mi

�
ht; j

�
(6)

for some j 6= i. By the determination of the transfer price p�i , it follows that (6) can be

written as follows

Mi

�
ht
�
� �Mi

�
ht; j

�
(7)

and by de�nition of the marginal contribution, we can rewrite (7) in terms of the social

value functions:

W
�
ht
�
�W�i

�
ht
�
� �

�
W
�
ht; j

�
�W�i

�
ht; j

��
;

and expanding by vi
�
hti
�
, we have

W
�
ht
�
�W�i

�
ht
�
� vi

�
hti
�
+ �W

�
ht; j

�
� vi

�
hti
�
� �W�i

�
ht; j

�
;
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but then the result is:

W
�
ht
�
�W

�
ht; j

�
�W�i

�
ht
�
�W�i

�
ht; j

�
: (8)

The inequality (8) follows from the fact that the size of the loss due to a suboptimal choice

j (weakly) increases in the number of alternatives present.

For the case of an ine¢ cient agent j in period t, we have

Mj

�
ht
�
� vj

�
htj
�
� pj

�
ht
�
+ �Mj

�
ht; j

�
. (9)

As the transfer price is independent of the report of agent j, and given by (5), we can

rewrite (9) as follows

Mj

�
ht
�
� vj

�
htj
�
� (1� �)W�j

�
ht
�
+ �Mj

�
ht; j

�
.

After replacing the marginal contributions by the social value functions, we have

W
�
ht
�
�W�j

�
ht
�
� vj

�
htj
�
� (1� �)W�j

�
ht
�
+ �

�
W
�
ht; j

�
�W�j

�
ht; j

��
.

But as W�j
�
ht; j

�
= W�j

�
ht
�
, the terms involving the value functions of �j all drop out

and we are left with

W
�
ht
�
� vj

�
htj
�
+ �W

�
ht; j

�
, (10)

which is a valid inequality since j is by hypothesis not the e¢ cient choice in period t.

The incentive compatible pricing rule has a few interesting implications. First, we

observe that in the case of two bidders, the formula for the dynamic second price reduces to

the static solution. If we remove one bidder, the social program has no other choice but to

always assign it to the remaining bidder. But then, the expected value of that assignment

policy is simply equal to the expected value of the object for bidder j in period t by the

martingale probability of the Bayesian posterior. In other words, the transfer is equal to the

current expected value of the next best competitor. With more than two bidders, the social

program without bidder i will contain an option value due to the possibility of assigning the

object to the more favorable bidder. In consequence the social opportunity cost is higher

than the highest expected valuation among the remaining bidders.

Second, we observe that the transfer price of the winning bidder is independent of her

own information about the object. This means, that for any number of periods in which the
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ownership of the object does not change, the transfer price will stay constant as well, even

though the valuation of the object by the winning bidder may undergo substantial change.

The design of the transfer price pursued the objective to match the �ow marginal con-

tribution of every agent in every period. The determination of the transfer price is based

exclusively on the reported signals of the other agents, rather than their true signals. For

this reason, truthtelling is not only Bayesian incentive compatible, but ex post incentive

compatible, if we qualify ex post to mean conditional on all signals received up to and

including period t.

An important insight from the static analysis of the private value environment is the

fact that incentive compatibility can be guaranteed in weakly dominant strategies. This

strong result does not carry over into the dynamic setting due to the interaction of the

strategies. In a dynamic setting, each agent can condition her strategy on the past reports

of the other agents. In particular, the strategy of truthtelling after all histories fails to be

a weakly dominant strategy as it removes the ability to respond to past announcements.

Yet our argument shows that the weaker condition of ex post incentive compatibility can

be satis�ed.

The vital assumption in the dynamic auction model pertained to the �ow of information:

Each bidder receives additional private information in period t+1 if and only if she received

the object in period t. This is the essential informational hypothesis in multi-armed bandit

framework. Yet we might be interested in a setting in which each bidder may learn more

about the value of the object even in periods in which she does not control the object.

The incentive analysis is again based on the �ow marginal contribution. But once we leave

the bandit framework, then some loosing bidders may have to pay a positive price even in

periods in which they do not receive the object. Consider a loosing bidder j and suppose

that the removal of bidder j would change the e¢ cient assignment policy from agent i to

agent k. The �ow contribution of the loosing bidder j would now be equal to:

mj

�
ht
�
= vi

�
hti
�
� vk

�
htk
�
+ �

�
W�j

�
ht; i

�
�W�j

�
ht; k

��
< 0:

In other words, if the presence of j changes the e¢ cient assignment policy, then this leads

to an externality cost created by agent j and hence strictly positive transfer prices even in

periods in which agent j does not receive the object.
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4 General Private Value Environment

In this section we extend the private value environment from a single unit auction to a

general allocation model. In addition, we substantially generalize the statistical model of

information. The net expected �ow utility of agent i in period t is now determined by the

(�ow) allocation at 2 A, the private history hti and the transfer price pti:

vi
�
at; hti

�
� pti.

The utility function vi represents the expected utility to agent i from an allocation at given

the private information hti. The set of available allocations is given by a compact and time

invariant set A. The private signal of agent i in period t + 1 is generated according to a

conditional distribution function:

st+1i � Gi
�
st+1i

��at; hti � :
We generalize the information �ow by allowing the signal st+1i of agent i in period t + 1

to be dependent on the current allocative decision at and the entire past history of private

signals received by agent i. The allocation rule for the direct mechanism is now given by

xt : bHt ! �(A) ;

and the transfer rules are given by:

pt : bHt ! RN :

As before, we denote the socially e¢ cient policy by x� =
�
xt�
	1
t=0
. The direct dynamic

mechanism M =
D
x�;p�; bHE extends the Vickrey-Clark-Groves mechanism to general in-

tertemporal environments by the marginal contribution argument as developed earlier in

the context of the single unit allocation problem.

Theorem 2 (Dynamic Vickrey Groves Clark Mechanism)

The socially e¢ cient allocation rule fx�g is ex post incentive incentive compatible with the
payment rule p�:

pt�i
�
x�
�
ht
�
; ht�i

�
= mi

�
ht
�
� vi

�
x�
�
ht
�
; hti
�
: (11)
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Proof. The basic idea of the proof generalizes the marginal contribution argument

in Theorem 1. By the unimprovability principle, it su¢ ces to prove that if agent i will

receive as her continuation value her marginal contribution, then truthtelling is incentive

compatible for agent i in period t, or:

vi
�
x�
�
ht
�
; hti
�
� pti

�
x�
�
ht
�
; ht�i

�
+ �Mi

�
x�
�
ht
�
; ht
�
� vi

�
a; hti

�
� pti

�
a; ht

�
+ �Mi

�
ht; a

�
;

(12)

for all i; t and a 2 A. By construction of the transfer price, the lhs of (12) represents

the marginal contribution of agent i. Similarly, we can express the continuation marginal

contribution Mi

�
ht; a

�
in terms of the values of the di¤erent social programs:
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�
ht
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�W�i
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ht
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a; hti

�
� pti

�
a; ht�i

�
+ �

�
W
�
ht; a

�
�W�i

�
ht�i; a

��
: (13)

By construction of the transfer price, we can represent the price that agent i would have to

pay if allocation a were to be chosen in terms of the marginal contribution if the reported

history hti were the true signal received by agent i. By construction, we have as in (11):

pt�i
�
x�
�
ht
�
; ht
�
= mi

�
ht
�
� vi

�
x�
�
ht
�
; hti
�
:

The �ow marginal contribution of agent i is given by
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�
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t
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IX
j=1
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t
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�
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�
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�
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�
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�
�i
��
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(14)

so that the price is given by:
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: (15)

We can now insert the prices into (13) to obtain:
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But now we can reconstitute the entire expression in terms of the social value of the program

with and without agent i and we are lead to the �nal inequality:
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where the later is true by the optimality of x� at ht.

We observe that the pricing rule (11) for agent i depends on the report of agent i only

through the determination of the social allocation which already appeared as a prominent

feature in the static environment. Theorem 2 gives a general characterization of the transfer

prices. In speci�c environment (such as a public good provision model), we can then gain

additional insights into the structure of the e¢ cient transfer prices by analyzing how the

policies would change with the addition or removal of an arbitrary agent i.

5 Conclusion

This paper suggest the construction of a direct dynamic mechanism in private value en-

vironments with transferable utility. The design of the monetary transfers relies on the

notions of marginal contribution and �ow marginal contribution. These notions allow us

to transfer the insights of the Vickrey-Clark-Groves mechanism from a static environment

to general dynamic settings. In the case of the sequential allocation of a single indivisible

object, we show that the notion of marginal contribution and its relationship to the social

program allow us to give explicit solutions of the monetary transfers in each period.

Many interesting questions are left open. The dynamic mechanism considered here sat-

is�es the incentive compatibility and individual participation constraints in every period. In

particular, we do not require that the monetary transfer satisfy a balanced budget condition

in every period. The recent analysis of Athey and Segal (2006) suggests that a sequential

version of AGV mechanism might be able to achieve budget balancing in every period as

well. This paper is silent on the issue of revenue maximizing mechanisms. In order to

make progress in that direction, a characterization of implementable allocations in dynamic

setting will �rst be necessary. Finally, we restricted our attention to private value environ-

ments. A recent literature, beginning with Maskin (1992) and Dasgupta and Maskin (2000)

showed how to extend the VCG mechanism to interdependent value environments. In dy-

namic settings, the single crossing condition will then typically involve a dynamic element

which will introduce some complications. These tasks are left for future research.
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