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Abstract

Potential bidders respond to a seller�s choice of auction mechanism for a common-value

or a¢ liated-values asset by endogenous decisions whether to incur a participation cost (and

observe a private signal), or forego competing. Privately informed participants decide whether

to incur a bid-preparation cost and pay an entry fee, or cease competing. Auction rules and

information �ows are quite general; participation decisions may be simultaneous or sequential.

The resulting revenue identity for any auction mechanism implies that optimal auctions are

allocatively e¢ cient; a nontrivial reserve price is revenue-inferior for any common-value auction.

Optimal auctions are otherwise contentless: any auction that sells without reserve becomes

optimal by adjusting any one of the continuous, spanning parameters, e.g., the entry fee. Seller�s

surplus-extracting tools are now substitutes, not complements. Many econometric studies of

auction markets are seen to be �awed in their identi�cation of the number of bidders.

D44; D82; C72; Keywords: optimal auctions, endegenous bidder participation, a¢ liated-

values, common-value auctions, surplus-extracting devices

�A less thorough version of this paper was circulated under the title �Selling without Reserve as the Content of
Optimal Auctions.�Thanks to the Fuqua School of Business at Duke University for their hospitality during phases
of writing this paper. Special thanks to Octavian Carare for several iterations of assistance with three-dimensional
diagrams.



1 Introduction

How should an owner or auctioneer select a selling procedure when bidders�value estimates for an

asset are private information? That fundamental question has for centuries received a variety of

answers from experienced auctioneers, who in di¤erent markets persist in conducting their business

in quite di¤erent ways. In contrast, theoretical models of �optimal auctions�with rational risk-

neutral bidders have tended to provide a unique answer.1

While the particular answer provided depends fragilely on the model assumed, optimal auctions

in the literature share two common characteristics. First, the optimal auction is ine¢ cient (unless

surplus can be fully extracted), primarily due to a nontrivial reserve price.2 Second, the optimal

auction is a complicated mechanism. Depending on the particular assumptions, it has involved:

distribution- and bidder-speci�c reserve prices, disjoint sets of prices at which seller refuses to sell,

requiring payments from losing bidders that vary with their bids and rivals�, requiring bidders to

accept lotteries with unboundedly large losses, or to accept lotteries before their terms are speci�ed.3

Expected-revenue comparisons across auction forms yield a similar picture: revenue rises as

surplus-extracting tools are piled atop one another, since these tools are complements. Again

theory suggests a complicated auction mechanism.4

Of course, an �optimal�auction may prove suboptimal outside a model�s assumptions. Bulow

and Klemperer [1996] surprisingly �nd an optimal auction selling to n bidders reaches lower expected

revenue than a basic English auction with n+1 bidders. In a way, this too is a speci�c prescription:

a seller optimizes by a unique tactic, obtaining another bidder.

1 In essence, the models cited in the following footnote each de�ne a very narrow equivalence class of auctions, and
show that optimal auctions all fall in a single equivalence class, which serves to characterize nearly all auction forms
as necessarily suboptimal, even with adjustments in parameters of that auction form.

2Myerson [1981], Harris and Raviv [1981] and Riley and Samuelson [1981] derive optimal auctions when bidders�
private information (their types) are independent. Of these models, Myerson�s is most general. All revolve around a
nontrivial reseve price (below which the seller prevents the asset from ever being sold); so do more recent papers (see
surveys in Klemperer [2000] and Krishna [2002]). The only optimal auctions attaining e¢ ciency are in models that
use strong informational assumptions and correlated types to extract full surplus: Crémer and McLean [1985], [1988],
McAfee, McMillan and Reny [1989] and McAfee and Reny [1992]. The criticism of these models in Robert [1991],
that the weakest form of limited liability or in�nitesimal risk aversion renders them discontinuously suboptimal, is
similar in spirit to the present e¤ort. Mares and Harstad [2005] provide an accessible treatment of necessary and
su¢ cient conditions for full surplus extraction.

3Examples of these complications, in order: Harris and Raviv [1981], Myerson [1981], Crémer and McLean [1985],
McAfee, McMillan and Reny [1989], McAfee and Reny [1992].

4Milgrom and Weber [1982] �nd higher expected revenue in a second-price than in a �rst-price sealed-bid auction,
and higher still in an English (oral ascending-bid) auction. In any of these auctions, seller increases expected revenue
by publicly announcing any information he possesses which is a¢ liated with asset value. (Even this prescription
is further complicated if a seller has an option to privately provide an appraisal to a subset of bidders; cf. Mares
and Harstad [2003].) In most circumstances, entry fees and reserve prices are also complications added to augment
revenue. Further results in the same vein are surveyed in Klemperer [2000].
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All these papers assume rational, risk-neutral bidders. Yet, critically, all analyze too narrow a

scope for bidder rationality: none allow for a potential bidder�s rational decision to participate.

Most auctions (and markets that can be stylized as auctions) share the characteristics that

bidder participation is costly, and is motivated by the expected pro�tability of competing.5 Auction

theory employing an exogenously �xed number of bidders has been fruitful both in providing tools

for analysis and in building our collective intuition about the forces that interact in equilibrium

responses to auction rules (indeed, my analysis could not proceed without their building blocks).

However, adjusting an auction model to incorporate rational decisions as to whether a potential

bidder competes dramatically alters conclusions.

The model developed here analyzes the symmetric equilibrium that results when expected-pro�t

maximizers rationally decide, �rst, whether to participate in an auction, and second, how to compete

if participating.6 A wide variety of auction forms and informational �ows can be incorporated.

Optimal auctions then strike a sharp contrast with the prior literature. When bidder arrival is

the result of su¢ cient expected pro�tability, drawing in an extra bidder is less attractive than when

an additional competitor can exogenously be obtained (Bulow and Klemperer�s model). In this

model, discouraging potential bidder participation, by adopting an auction form where competition

among relatively few bidders already extracts substantial surplus, is always part of optimizing by

seller.

Allocative ine¢ ciency no longer plays any role in optimal auctions: a seller�s preferences be-

tween any two mechanisms now mirror those of an e¢ cient social planner. Both prefer the same

interior probabilities of selling the asset, and of selling to the highest-valuing bidder. In particular,

�selling without reserve�characterizes optimal common-value auctions: a mechanism incorporating

a nontrivial reserve price is strictly revenue-inferior.7

The starkest contrast arises in a previously unaddressed issue: the size and de�nitiveness of the

set of optimal auctions. When bidder participation is rationally determined, optimal auctions are

no longer a singleton, but now selling without reserve is the entire content of optimal auctions.

5Headline-grabbing auctions�airwaves licenses, privatization of governmental enterprises, o¤shore oil leases,
museum-quality art, initial public o¤erings, acquisitions of new, established, and distressed corporations�all �t this
mold. So do such mundane markets as used-car auctions, timber sales and routine art auctions. (Buying at auction
and selling at retail is a sensible stylization of the art-gallery business.)

6The model treats situations where a seller o¤ers an asset to potential bidders who decide whether to compete to
buy. A corresponding model where a buyer details a contractual obligation, and potential bidders decide whether to
compete to supply, has completely corresponding results.

7 In a common-value model, the only e¢ ciency issue is whether the asset is sold; any bidder is an equally e¢ cient
purchaser. An e¢ cient social planner will never employ a nontrivial reserve price; below, unlike earlier models, an
expected-revenue-maximizing seller shares this preference.
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The principal result below is that any auction is within the setting of any one continuous, spanning

variable of being optimal; a corollary: optimal auctions contain a subset of dimension one less than

the dimension of the space of mechanisms with zero reserve prices.

This characterization accords better with the variety of auctions that have repeatedly been

used in practice. If an unmodeled aspect favors one auction form over another (e.g., prior practice,

or avoidable costs of congregating bidders), there is no reason within the model to overturn this

preference.

The principal theorem is simply obtained, and its intuition straightforward. A seller is no longer

interested in which surplus-extracting tools he employs, as these tools now acquire their natural role

of substitutes, rather than complements. Instead, a seller focuses on the equilibrium participation

probability that serves to make potential bidders indi¤erent over participating. That is, the new

variable added to the traditional models, the probability that a given potential bidder participates,

becomes the only variable of interest, the sole vehicle through which a seller�s mechanism choices

a¤ect revenue. From any suboptimal auction (with a zero reserve price), any spanning continuous

variable can be adjusted to move the equilibrium participation probability to its optimal level.

Hence the starting point (e.g., �rst-price or English auction) only matters in how large (or small)

an entry fee, or other continuously adjustable surplus-extracting device, attains optimality.

The presentation follows a natural order, beginning with an outline of a newly general model of

common-value auctions (Appendix C extends nearly all results to general a¢ liated-values auctions,

as modeled in Milgrom and Weber [1982]), and then assumptions. The analysis proceeds from

specifying equilibrium mixed-strategy participation decisions by potential bidders to identifying

the equilibrium expected revenue formula that characterizes any announcement of mechanism a

seller might make. Allocative e¢ ciency is a trivial corollary of the equilibrium revenue identity.

Characterizing mechanism choices as capable of attaining any equilibrium participation probability

without the use of a nontrivial reserve price implies reserve price inferiority. Comparative statics in

section 6 imply that much of the literature empirically studying historical records of auction sales is

fundamentally �awed, if bidders are believed to have arrived via equilibrium expected-pro�tability

calculations. The main result, when a reduced-form concavity assumption is added, implies that

revenue comparisons from the exogenous-bidders papers (e.g., a preference for English over second-

price auctions) are extended with endogenous bidder participation to a half-space of underlying

parameters, but reversed in another half-space. Concluding remarks assess the generality of these

results.
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The model presented treats potential bidders�decisions to become privately informed as simul-

taneous. Appendix A develops an alternative model allowing these decisions to be sequential. The

principal di¤erence is that symmetry is no longer a su¢ cient equilibrium selection criterion.

I emphasize at the outset that the model avoids any assumption of monotone equilibrium in

common-value auctions, in particular avoiding the assumption of a screening level (a threshold level

of private information above which a participant chooses to pay the entry fee). A recent impossi-

bility theorem by Landsberger and Tsirelson [2002] makes this complication critical. This aspect,

together with allowing for general a¢ liated valuations, for resource costs facing potential bidders

both before (a participation cost) and after becoming privately informed (a bid-preparation cost),

allowing seller the widest variety of surplus-extracting tools, as well as allowing for players either

to observe or not observe the number of players still competing at each stage, greatly distinguish

the generality of this model from prior auction models which endogenize the number of bidders.8

2 A General Model with Endogenous Participation

Begin with the notion that potential bidders choose among a variety of auctions, and other uncertain

economic opportunities, in which to invest their attention, time and money. Only a segment of the

extensive form of such a game, that relating to a particular auction, appears explicitly here. One

indivisible asset is sold in the explicit model. A subset of the (exogenously determined) N potential

bidders will participate, and a subset of the n participants will become the a actual bidders.

The game segment unfolds as follows, cf. Figure 1. First, seller announces an auction mechanism

M := (m;'; r) 2M �M�<�<+, where m is an auction form,M the set of auction forms, ' an

entry fee, and r a reserve price. An auction form m speci�es not just pricing rules, but the entire

�ow of information and hence the nature of the extensive form continuation. For example, m = m0

might specify a second-price auction with seller releasing an uncensored independent appraisal to

all participants, as well as specifying that neither participants nor active bidders learn their number

before bidding. Or m = m1 might specify an English (oral ascending) auction without any seller-

released public information, but with an appraisal privately revealed to one actual bidder chosen

8Harstad [1990] introduces the notion that the number of bidders ought to be considered an endogenous variable,
in a simpler model employing monotone equilibrium and with a smaller set of surplus-extracting tools. Levin and
Smith [1994] also depend on monotone equilibrium, and critically on assumptions that the seller [i] cannot disclose
an appraisal, and [ii] cannot impose an entry fee after bidders have private information, for their result supporting a
positive reserve price. Chakraborty and Kosmopoulou [2001] partially specify a simpler model employing monotone
equilibrium and with a smaller set of surplus-extracting tools, and argue for a zero entry fee when negative entry fees
are impossible.
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Figure 1: Time Line

at random, in which the number of participants is not learned but the number of actual bidders

is, and alternating recognition rules determine the probabilistic revelation of bidders�exit prices to

remaining bidders.9 A particular seller in a particular situation may face additional constraints:

he may, for example, �nd credibly imposing a nontrivial reserve price impossible, or may be unable

to inform participants of the number of competitors who acquired private information, or may not

have a reputation that would allow using a second-price auction without bidders assuming he could

well insert a fake bid just below the highest bid;10 all such constraints are treated via makingM the

feasible set of auction mechanisms for a particular auction. Note that when a seller has the option

of credibly announcing how many participants are still competing (or how many actual bidders)

before continuing, or of preventing the participants (or actual bidders) from knowing n (or a),

seller�s choice is simply modeled as a choice between two (otherwise identical) auction forms, just

as if it were a choice between �rst- and second-price auction rules.

Second, a pool of potential bidders N := f1; : : : ; Ng simultaneously select probabilities �i of

becoming a participant in this auction, basing those decisions on M .11 Participation has two

consequences: each participant j obtains some private information Xj 2 X � < about the asset�s

value to him (call this j�s signal), and each incurs a participation cost, c > 0. The participation cost

is exogenously speci�ed, and does not generate revenue for seller; it represents foregone pro�table

opportunities (e.g., inability to participate in another auction occurring elsewhere).12 This cost is

9The impact of privately revealed information is considered in Mares and Harstad [2002]; alternating recognition
rules for English auctions are analyzed in Harstad and Rothkopf [2000].
10 Impacts of such bidtaker cheating are considered in Rothkopf and Harstad [1995].
11An alternative model, in which bidders sequentially decide whether to participate, is outlined in Appendix A.

Similar results to those in the main text depend on an equilibrium selection favorable to seller.
12This consideration is missed if a view of substitute auctions is not at least implicitly present. Unwillingness of
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likely to vary across auctions, but c is the same for all potential bidders in a given auction, and

invariant to the mechanism by which the auction is run. The payo¤ of a potential bidder who does

not participate is normalized to 0.

Third, each participant j = 1; : : : ; n decides whether or not to incur a bid-preparation cost

b � 0 (which does not accrue to seller),13 plus pay the entry fee ' to seller and thereby become an

actual bidder, based on information available at the time. This information includes the auction

mechanism M , and participant j�s private signal Xj . If the component m of M characterizing

the auction form speci�es that participants are informed of the number n of participants, then n

is taken into account. If n is not known, then the vector (�1; : : : ; �N ) of rational participation

probabilities of potential bidders is taken into account. A participant who chooses not to continue

attains a payo¤ of �c.

Fourth, each actual bidder k = 1; : : : ; a selects a bidding strategy for the auction form m

with reserve price r. In addition to M and Xk, n if known, and (�1; : : : ; �N ) if n is not known,

this decision takes into account the number a of actual bidders if the auction form m releases this

information. If not, the bidding decision takes into account the functional structure of participants�

decisions on whether to pay the entry fee, and includes strategizing to learn about a (and perhaps

useful inferences about rivals�private information) as soon as information �ows permit.

The winning bidder pays a price p for the asset, if this price is no less than the reserve price

r; otherwise the asset goes unsold, which implies that all actual bidders would then be losers.14

Losing actual bidders attain a payo¤ of �'� b� c.

I present and analyze in the main text the special case in which the ultimate value of the asset is

common across potential bidders, represented by a random variable V . Appendix C indicates how

nearly all results can be extended to an a¢ liated-values auction model (the �General Symmetric

Model�of Milgrom and Weber [1982]), in which V is the �underlying asset value�and the value

to any particular participant is a function t (V;Xi) of underlying asset value and his own signal.

That extension is interesting in that both failing to sell the asset and selling to an actual bidder

an additional potential bidder to participate need not imply zero (gross) expected pro�t.
13The bid-preparation cost is treated as the same no matter what auction mechanism is employed. This assumption

is not innocuous; I return to it in Concluding Remarks.
14Notation that is already more cumbersome than might be hoped for would �nd signi�cant additional complication

if the seller were allowed to announce a vector of reserve prices ra, with the ra that corresponded to the number a
of bids actually submitted enforced after bids were submitted. That complication would not a¤ect any of the results
below. In particular, the result in Levin and Smith [1994] that a nontrivial reserve price would be employed at least
in the case where only 1 actual bidder showed up is still seen to depend on their assumptions that the seller cannot
utilize an entry fee, and cannot publicly reveal such information as an appraisal.
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who values the asset less highly than some other participant are possible ine¢ ciencies.

A sale yields the winning bidder a payo¤ of V � p� '� b� c. Seller�s payo¤ is

uS =

8<: 0, if a = 0 or p < r,

p+ a'; if a � 1 and p � r.
15

2.1 Assumptions: Auction Environment

A.1. The in�nite sequence fX1; X2; : : :g from which participants will observe signals is a sequence

of exchangeable, positively a¢ liated, real-valued random variables with nonatomic measure B, and

marginal B1 onto support X .

A¢ liation is de�ned and characterized in Milgrom and Weber [1982], pp. 1098-1100 and 1118-

1121; it is referred to as the MLRP (monotone likelihood ratio property) in several auction models.

Roughly, a¢ liation means that higher realizations for any subset of the variables fX1; X2; : : :g

make higher realizations for any disjoint subset more likely. Exchangeability means that the joint

distribution is una¤ected by any �nite permutation of the indices. Let Xn = fX1; : : : ; Xng, and

Vz =
�
1
z

�Pz
i=1Xi.

A.2. Asset value V = limz!1 Vz; c+ b < E [V ] <1.

A variant of DiFinetti�s Theorem justi�es the use of a limit in A.2:

Theorem 1 (Kingman [1980]) Given A.1, the sequence fV1; V2; : : :g almost surely converges point-

wise. Moreover, conditional on V , the fXig are mutually independent.

Letting the common value equal the asymptotic mean is without loss of generality (Milgrom

and Weber [1986]).

2.2 Assumptions: Auction Rules

A.3. The price paid is an anonymous, nondecreasing, continuous function of the pro�le of actual

bids submitted.16

15Considering the value to seller of an unsold asset to be 0 is, as usual, a harmless normalization. It bears emphasis,
however, that failing to meet the reserve price implies that the seller is irrevocably constrained from ever o¤ering this
asset to this set of potential bidders in the future (this assumption is nearly ubiquitous in auction theory, though
seldom mentioned). I return to this consideration in Concluding Remarks.
16The sort of revenue-maximizing, non-capricious discriminaton across bidders in Myerson [1981] has already been

ruled out by exchangeability (in A.1). The sort of capricious discriminaton contemplated in McAfee, McMillan
and Reny [1989] is ruled out here, solely for notational ease. Footnote 27 below explains how their mechanism,
which extracts full surplus whenever the exogenous number of bidders is at least two, becomes revenue-inferior with
endogenous bidder participation.
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A.4. Each auction form m determines a winning bidder,17 and attains a unique symmetric equi-

librium continuation for any exogenously speci�ed binomial distribution of the number of actual

bidders (including degenerate).

Allowing for payments to or from losing bidders greatly complicates the notation, but would

not change any results below. Uniqueness of the symmetric equilibrium continuation is critical to

being able to predict the pro�tability of participating and actually bidding; it is satis�ed for a wide

variety of auction forms.18

2.3 Assumptions: Behavior

A.5. All N � 2 potential bidders are risk-neutral.

A.6. Symmetric behavior: each potential bidder selects the same probability � of participating,

each participant selects the same function of known and inferred information to determine whether

to actually bid, and each actual bidder selects the same bid function. These selections constitute a

Bayesian equilibrium continuation.

If, in addition, seller selects the mechanismM to maximize expected revenue given the assumed

behavior of bidders, a full Bayesian equilibrium is attained. As our focus is on the behavior that

various announcements ofM will induce, and thus upon the expected revenue attained, equilibrium

continuation is the key assumption.19

3 The Participation Decision

In this model, the equilibrium expected number of bidders is not invariant to seller�s choice of

auction mechanism. Rather, it adjusts to the auction mechanism M so that expected pro�t equals

participation cost. The straightforward logic is, ultimately, independent of many details of the

mechanism.

A fair bit of notation is needed, and some equations in this section may appear untidy. However,

Conclusion 2 ending this section is conceptually easy, and the general revenue formulation in the

next section will be strikingly simple. Recall that N is the exogenous number of potential bidders,

17Though it may be natural, nothing depends on this being the highest bidder.
18Cf. Levin and Harstad [1986], Bikhchandani and Riley [1991], Pesendorfer and Swinkels [1997], Harstad and

Rothkopf [2000], and Maskin and Riley [2000].
19Note that there exist Nash equilibria in which seller selects an otherwise inferior M 0 because, for example, all N

potential bidders respond to any M 6=M 0 by not participating, or otherwise punishing seller. These equilibria fail to
be subgame-perfect; in ignoring them, I follow a standard but usually implicit practice.
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�(M) the symmetric equilibrium probability of participating given mechanism M , and n and a

numbers of participants and of actual bidders. Throughout, the usual binomial formula for the

probability of z successes in Z trials, each with independent success probability & is denoted

� (z; Z; &) =

�
Z

z

�
&z (1� &)Z�z :

Thus, ifN potential bidders each participate with probability �, the probability of n participants

is � (n;N; �). A potential bidder analyzing the consequences of proceeding to the next step of the

game (participating or actually bidding) rationally evaluates the likelihood of di¤erent numbers of

rival participants according to � (n� 1; N � 1; �), which accounts for the presumption that he (the

analyzing potential bidder) proceeds�even if this is not a certainty, all behavior is otherwise payo¤-

irrelevant.20 When context makes clear, I will shorten � (n;N; �) to �n and � (n� 1; N � 1; �)

to �n�1. When an arbitrary potential bidder i becomes a participant, I will harmlessly treat the

renumbering function ren(i; n;N) that would provide his position in the numerically ordered set

of participants as if it were the identity function, and refer to the continuing roles of the player

who begins as potential bidder i as if he becomes participant i if he participates, and actual bidder

i if he pays the entry fee. Symmetry attained through A.1 and A.6 allow a focus throughout on

potential bidder 1, participant 1, and actual bidder 1.

At the point that the decision to become an actual bidder (to incur the bid-preparation cost

b and pay the entry fee ') is made, participant 1 has observed signal X1 = x. Two cases must

be developed. The �rst arises when the auction form m speci�es that participants know (perhaps

because the seller informed them, perhaps because the seller could not prevent their knowing) the

number of participants, n, before deciding whether to pay the entry fee. This case is identi�ed with

M 2 MK . Let �K (M;n; x) be the expected pro�tability (gross of bid-preparation cost and entry

fee, but net of participation cost) of actually bidding in auction M , when there are n participants,

and participant 1 observes X1 = x. De�ne

�K (M;n; ') =
�
x 2 X j�K (M;n; x) � '+ b

	
, and (1)

�K (M;n) =

Z
�K(M;n;')

dB1 (x) :

20This insight is originally due to Matthews [1987] (who is credited in McAfee and McMillan [1987a]), and is
employed in Harstad, Kagel and Levin [1990]. In all three papers, the uncertain number of bidders follows an
exogenous distribution.
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Here, �K (M;n; ') is the subset of X consisting of those signals with a su¢ ciently high interim

expected pro�tability to justify continuing to compete in auction M with n� 1 rival participants,

and �K (M;n) is the ex-ante probability that a potential bidder whose action is to participate will

end up becoming an actual bidder.

Continuing with the �rst case, M 2 MK , de�ne, for n = 1; : : : ; N; i = 1; : : : ; n, the event that

participants 1; : : : ; i observe signals leading them to continue, while participants i+1; : : : ; n observe

signals leading them to cease competing:

�K (M; i; n) =
��
Xj 2 �K (M;n; ')

	
, fj � ig ; j = 1; : : : ; n

�
:

Let

�K (M; i; n) = Pr
�
Xn 2 �K (M; i; n)

�
, and

�K (M; i; n) = Pr
�
Xn 2 �K (M; i; n) jX1 2 �K (M;n; ')

�
denote the probability of this event, and its probability conditional on participant 1 observing a

signal leading to continued competition. By Bayes�Formula, for n = 1; : : : ; N; i = 1; : : : ; n,

�K (M; i; n) = �K (M; i; n)�K (M;n) : (2)

The other case, when the auction form m speci�es that the number of participants is unknown

when deciding whether to pay the entry fee, is identi�ed with M 2MU =MnMK . Let �U (M;�; x)

be the expected pro�tability (again, gross of bid-preparation cost and entry fee, but net of par-

ticipation cost) of actually bidding in auction M , when N potential bidders each participate with

probability �, and participant 1 observed X1 = x. De�ne, correspondingly,

�U (M;�; ') =
�
x 2 X j�U (M;�; x) � '+ b

	
, and

�U (M;�) =

Z
�U (M;�;')

dB1 (x) :

Continuing as in the �rst case, de�ne the event that participants 1; : : : ; i actually bid, and

i+ 1; : : : ; n cease competing:

�U (M;�; i; n) =
��
Xj 2 �U (M;�; ')

	
, fj � ig ; j = 1; : : : ; n

�
;

10



which is well-de�ned although the participants are unaware that they number n. The probability

of the �rst i participants becoming the only actual bidders, given that N potential bidders each

become a participant with probability �, must take the probabilities of events �U (M;�; i; n) and

weight them according to their likelihood:

�U (M;�; i) =

NX
n=1

� (n;N; �) Pr
�
Xn 2 �U (M;�; i; n)

�
, and

�U (M;�; i) =

NX
n=1

� (n;N; �) Pr
�
Xn 2 �U (M;�; i; n) jX1 2 �U (M;�; ')

�
is the conditional probability given that participant 1 observes a signal leading to continued com-

petition. As before,

�U (M;�; i) = �U (M;�; i)�U (M;�) : (3)

To combine the two cases, de�ne

� (M;�; n) =

8<: �K (M;n) ; M 2MK ;

�U (M;�) ; M 2MU ;
;

�i (M;�; n) =

8<: �K (M; i; n) ; M 2MK ;

�U (M;�; i) ; M 2MU ;
; and

�i (M;�; n) =

8<: �K (M; i; n) ; M 2MK ;

�U (M;�; i) ; M 2MU ;
;

with, for any M , each of �; �i; �i degenerate in one of its last two variables. Thus, � (M;�; n)

takes an ex-ante view, from the viewpoint of a potential bidder: it is the probability, should

he participate, that he will go on to become an actual bidder, evaluated before the signal x is

observed. Similarly, �a (M;�; n) is the ex-ante probability, should he become an actual bidder, that

a potential bidder will �nd himself to be one of the set f1; : : : ; ag actual bidders, and �a (M;�; n)

is the (unconditional) ex-ante probability of f1; : : : ; ag being the set of actual bidders.

Note that prior models of endogenous participation have, explicitly or implicitly, assumed a

screening level : some ex (M;n; ') 2 X such that
�
x 2 �K (M;n; ')

	
, fx � ex (M;n; ')g. Lands-

berger and Tsirelson [2002] demonstrate that this is impossible in a common-value auction, for

large numbers of potential bidders, under mild assumptions, satis�ed by this and most prior mod-

els. This paper is careful to allow for the fact that �K (M;n; ') and �U (M;�; ') may not be upper

11



contours of X .

Two cases are also distinguished with respect to actual bidders. An auction form m 2 MK0

if the number a of actual bidders becomes known before bidding strategies are selected; let the

probability of a sale be sK
0
(M;a), which is the probability that at least one of a actual bidders

is willing to pay the reserve price r. For m 2 MU 0 = MnMK0
, the number of actual bidders

is unknown when bidding; let sU
0
(M;�; n) be the probability that at least one actual bidder is

willing to pay the reserve price r when either [a] each of n participants becomes an actual bidder

i¤ Xj 2 �K (M;n; '), if m 2 MK (degenerate in �), or [b] if m 2 MU , each of N potential

bidders becomes a participant with probability �, and if a participant, becomes an actual bidder

i¤Xj 2 �U (M;�; ') (degenerate in n). Again, combine these cases via

s (M;a; �; n) =

8<: sK
0
(M;a) ; M 2MK0

;

sU
0
(M;�; n) ; M 2MU 0 :

(4)

Notation will be slightly abused when context makes clear by representing this probability as sr

(the reserve price r is the principal component of M a¤ecting this probability).

Getting closer to a characterization: Relying on A.4, let p (M;a; �; n; v) be a function indicating

the expected price paid by the winning bidder, given auction M , a actual bidders, � probability

of participating, n participants, and conditional on a realization v of asset value V . Depending on

which cases above apply, p (�) will typically be degenerate in at least one variable. It bears emphasis

that p (�) is an ex-ante calculation, and thus is symmetric across potential bidders.

Momentarily assume a potential bidder is one of n participants and one of a � n actual bidders;

his ex-ante expected payo¤ is

s (M;a; �; n)

a
E fV � E [p (M;a; �; n; �) jV ]g � '� b� c: (5)

In essence, conditioning the price on asset value (the inner expectation) makes the outer expecta-

tion simply the expected di¤erence between what the winner gets and what he pays for it. The

probability that the winner obtains this di¤erence is simply the probability of a sale (s). Ex ante,

given a winner, the probability that any one of the a actual bidders is the winner is 1/a, by A.1

and A.6. For an actual bidder, the bid-preparation cost b, entry fee ' and participation cost c are

subtracted with certainty. (Note that this calculation need not require that the actual bidder know

the value of n or a.)

12



Continuing to assume n participants, the ex-ante probability of being an actual bidder is

� (M;�; n), and of any particular formula (5) being the relevant calculation for an assumed ac-

tual bidder is
�
n�1
a�1
�
�a (M;�; n), since there are

�
n�1
a�1
�
ways in which actual bidder 1 could face a�1

remaining rivals. Now to step back, assume only that a potential bidder is one of n participants.

His expected pro�t, for n = 1; : : : ; N; is

w (M;n) = � (M;�; n)

 X
a

hsr
a
E fV � E [p (M; �) jV ]g � '� b� c

i�n� 1
a� 1

�
�a (M;�; n)

!
: (6)

Throughout,
P
a and

P
n are to be taken as abbreviated forms of

Pn
a=1 and

PN
n=1. Each formula

(6), for di¤erent n, is relevant (assuming participation) with probability �n�1 = � [n� 1; N � 1; � (M)].

Thus,

Conclusion 2 Equilibrium participation is that � 2 (0; 1) characterized by

0 =
X
n

�n�1w (M;n)

=
X
n

�n�1

(
� (M;�; n)

X
a

hsr
a
E fV � E [p (M; �) jV ]g � '� b� c

i�n� 1
a� 1

�
�a (M;�; n)

)
;(7)

equating the payo¤ from nonparticipation to the net expected bene�ts.

The right-hand side of (7) can be lowered by increasing �. If � = 1 is allowed as an equilib-

rium possibility, 0 = r:h:s:(7) must be replaced by [r:h:s:(7) ] � 0 = (� � 1) [r:h:s:(7)]. Equation

(7), by implicitly de�ning the symmetric participation probability function � (M), together with

equilibrium continuation, provides a complete characterization of potential bidders�behavior.21

4 General Revenue Formulation

Begin, analogous to the participation analysis, with a speci�cation of seller�s expected revenue,

conditional on assuming a � 1 actual bidders and n � a participants:

srE [p (M;a; �; n; �)] + a'

= (srE fE [p (M;a; �; n; �) jV ]g+ a') ,

21A corresponding equation is asserted by French and McCormick [1984], and found in simpler models by Harstad
[1990] and Levin and Smith [1994]. The current development is original in avoiding a monotonicity assumption and
allowing for the full variety of information �ows.
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which simply sums the price paid by the winner (multiplied by the probability of a sale), and entry

fees paid by all actual bidders. It is harmless to condition on the asset�s expected value.

Stepping back by replacing an assumed number of actual bidders and then of participants with

probabilities gives our speci�cation of expected revenue:

R (M;n) =
X
a

(srE fE [p (M;a; �; n; �) jV ]g+ a')
�
n

a

�
�a (M;�; n) : (8)

R (M) =
X
n

R (M;n)� [n;N; � (M)]

=
X
n

(X
a

(srE fE [p (�) jV ]g+ a')
�
n

a

�
�a (M;�; n)

)
�n: (9)

Equation (9) is still a simple sum of the price paid and entry fees, itself summed over the objective

probabilities of a actual bidders and n participants (there are
�
n
a

�
ways that �a (M;�; n) might

correctly predict the number of actual bidders). The summation harmlessly ignores the events of

0 participants and 0 actual bidders, which contribute 0 revenue. To interpret expected revenue,

natural de�nitions of the expected value transferred, expected number of participants, and expected

number of actual bidders, are invoked:

V (M) =
X
n

X
a

s (M;a; � (M) ; n)E [V ]

�
n

a

�
�a (M;�; n)�n;

n (M) =
X
n

n�n = N� (M)

a (M) =
X
n

(X
a

a

�
n

a

�
�a (M;�; n)

)
�n:

These summations also harmlessly ignore the cases n = 0, a = 0. Note that these de�nitions

depend on the mechanism; in particular, V (M) treats as a zero transfer an asset that does not sell.

(Expected value transferred will retain the same natural economic meaning in Appendix C when

that value will also come to depend on private-values components of asset value, but will have a

more complicated de�nition.)

Theorem 3 (The Fundamental Revenue Identity): In symmetric equilibrium continuation with

endogenous bidder participation, for any M 2M,

R (M) = V (M)� ba (M)� cn (M) : (10)
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Theorem 3 is proven simply by separating out terms in (9) that are zero by equilibrium par-

ticipation (eq. (7)). The notationally cumbersome details have been moved to Appendix B, and

extended to a¢ liated-values auctions in Appendix C.

In simple language, the Identity says that revenue in symmetric equilibrium continuation is equal

in expectation to the expected value transferred less aggregate participation and bid-preparation

costs.22 It is particularly important that this identity provides a simple formula for revenue for

all M ; there is no need for separate formulas for �rst-price, second-price, and English auctions, or

for di¤erent information-revealing policies (except to determine � [M ]), and the entry fee does not

directly enter the calculation. The reserve price enters only through the probability of a sale.

Viewing e¢ ciency as the sum of expected surplus of seller and all N potential bidders, Theorem

3 yields a general and striking contrast to prior optimal auctions models, in which revenue is

maximized by enforcing allocative ine¢ ciencies:

Corollary 4 The Bayesian equilibrium in which seller maximizes expected revenue is allocatively

e¢ cient. Indeed, seller�s preferences over any set of auction mechanisms match those of an e¢ cient

social planner.

Proof. The right-hand-side of (10) is an e¢ ciency measure, and in equilibrium continuation is

also seller�s objective.

As presented here, ine¢ ciencies arise solely through failures to sell: with a common-value asset,

any successful bidder is an e¢ cient recipient. However, in Appendix C, this result is extended to

a¢ liated-values auctions. There, a seller optimally attains a non-zero probability of no sale, and

a non-zero probability of selling to an actual bidder who values the asset less than some other

participant; these accord exactly with the preferences of an e¢ cient social planner.23

22No result approaching comparable generality is in the literature, but this Theorem has many antecedents. Relative
to Levin and Smith [1994], for example, it is original in its allowance for costs incurred both before and after bidders
observe private information, in allowance for numbers of participants and actual bidders to be either learned or
inferred, in the number and variety of surplus-extracting devices allowed for, and in dealing with the impossibility
of a screening level. Moreover, Appendix C obtains the corresponding revenue identity for a¢ liated-values settings
combining common-value and private-values elements.
In special cases, a corresponding result is found by Samuelson [1985] and Hausch and Li [1990], can be calculated

in the example of Theorem 5.2 in Milgrom [1981], and found as an asymptotic approximation in Matthews [1984]
(where the number of bidders is not necessarily an equilibrium level, but the participation costs are). Theorem 3
veri�es shortcuts taken, but not justi�ed explicitly, in equations (2) and (3) in Harstad [1990]. French and McCormick
[1984] discuss a similar heuristic feature of �rst-price, common-value auctions, but do not provide a complete model
or equilibrium characterization. McAfee and McMillan [1987b] assert the corresponding equation for a nonstochastic
but supposedly endogenous n, without justi�cation either for the equation or the source of n, and proceed incorrectly
to dismiss the possibility that seller could enhance expected revenue via a positive entry fee.
23 Indeed, with some additional notation, one can readily build an extension of this model (including a¢ liated-values
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5 Inferiority of a Nontrivial Reserve Price

A seller can attain the entire interval of equilibrium participation probabilities, 0 through 1; this

result is shown below for a second-price auction, chosen purely for convenience. The range of

equilibrium values of � is attained by varying only the entry fee ' (including possibly ' < 0,

reimbursing a fraction of participation and bid-preparation costs), while keeping the reserve price

�xed at r = 0. Let M' = (m;'; 0), where m is a �vanilla�second-price auction with no disclosure

of seller�s information, and with n and a revealed to bidders; M' sells �without reserve.�

Theorem 5 For any �0 2 [0; 1], there exists an entry fee '0 such that �
�
M'0

�
= �0.

Proof. Setting ' = E [V ] generates � = 0; ' = �c � b generates � = 1. Interim expected

pro�tability �
�
M'; n; x

�
is degenerate in ', so the mapping ' 7! �K

�
M'; n; '

�
[(1)] is continuous.

Smoothness of B1 (from A.1) implies that �K
�
M'; n

�
and �K

�
M'; a; n

�
are continuous in '.

Since, form, the price function p (�) is degenerate in ', it follows that the �
�
M'

�
function implicitly

de�ned in (7) is continuous in '. The Intermediate Value Theorem yields the conclusion.

A reserve price r is nontrivial if at least one actual bidder does not guarantee a sale, that is, if

there is an a > 0 such that s (M;a; �; n) < 1; �a (M;�; n) > 0:

Corollary 6 Any auction mechanism M with a nontrivial reserve price, yielding � (M) 2 (0; 1),

is an expected-revenue-inferior mechanism for seller to adopt.

Proof. Consider any M = (m;'; r) such that � (M) = b� 2 (0; 1), with r nontrivial. By

Theorem 5, there exists M b' = (m; b'; 0) so that � �M b'� = b�. Expected revenue, R (M), with r
nontrivial, is

X
n

"X
a

(E [V ]� ab)
�
s (M;a; b�; n)�n

a

�
�a (M;�; n)

�#
�n � cb�N

<
X
n

"X
a

(E [V ]� ab)
�
s
�
M b'; a; b�; n��n

a

�
�a
�
M b'; �; n��

#
�n � cb�N , (11)

aspects considered in Appendix C) featuring a number NL of potential bidders who face participation costs cL and
NH who face costs cH > cL. For such a model, it is straightforward to show that a seller will prefer an auction
mechanism M1 for which the high-cost potential bidders participate with positive probability (in which case, all
low-cost potential bidders strictly prefer to participate) to a mechanism M2 for which the high-cost potential bidders
do not participate i¤ an e¢ cient social planner prefers M1 to M2.
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which is R
�
M b'�. Naturally, the probability that a given participant pays the reserve price is strictly

less than the probability that he wins, while the probability that he pays the entry fee is strictly

greater than the probability that he wins. Hence, with both mechanisms attaining participation

probability b�, b' < '+ r. The inequality then results from the terms in f�g on the left-hand side of

(11) summing to less than the corresponding terms on the right-hand side.

Corollary 6 is quite intuitive. There is an unavoidable imperfection in this model, whenever

� < 1. That is, with probability (1� �)N , the independent mixed-strategy decisions lead to no

potential bidder participating, which is a cost that both seller and a social planner would take into

account. (Appendix A considers an alternative model avoiding this imperfection.)

Should a nontrivial reserve price be used, a further imperfection that is an ine¢ ciency is intro-

duced: not only is there no sale with probability (1� �)N , there is also a probability

X
n

nX
a=0

[1� s (M;a; � (M) ; n)]
�
n

a

�
�a (M;�; n)�n (12)

that one or more potential bidders participate, but none of them are willing to pay the reserve

price.

When the number of bidders responds endogenously to the pro�tability of competing, there is

no counterbalance to make up for the loss of a sale due to a nontrivial reserve price. Occasionally,

a reserve price would have, for example, fallen between the highest and second-highest bids in a

second-price auction, or prevented a single participant from obtaining the asset for merely the entry

fee, but the increased revenue such events create will have been taken into account in bidders�

calculations of the probability with which to participate. Levin and Smith [1994] �nd that a

nontrivial reserve price enhances revenue in common-value auctions with entry; their result is

entirely due to disallowing entry fees, disclosure of seller�s information, and other surplus-extracting

devices that shed the revenue losses in (12).24

24Levin and Smith [1994] have a more primitive device in their model that they call an entry fee, but it is an
information fee, in that it must be paid before bidders learn their signals; it in essence allows seller to employ a lump-
sum tax on participants before they become privately informed. They obtain the result that a nontrivial reserve
price is called for when they assume this information fee has to be set to zero. This paper follows a tradition in the
literature, led by Cassady [1967], Milgrom and Weber [1982] and Samuelson [1985] in the normal usage of the term
entry fee (as a fee incurred after participants become privately informed).
It also follows the tradition in the optimal auctions literature, and indeed in auction theory more generally (the only

other exception I know of is McAfee and Reny [1992]), of assuming that any surplus-extracting device is potentially
distortive, and thus ruling out devices that are in essence lump-sum taxes. I thank Jeroen Swinkels for emphasizing
this issue, and for pointing out that a limit to the generality of this paper�s results is that they apply only after a
seller has exhausted usage of devices that are essentially lump-sum taxes.
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Via Corollary 6, endogenizing bidder participation turns much of standard auction theory on

its head. A reserve price (or bidder-speci�c reserve prices if bidders draw types asymmetrically) is

the focus of Myerson�s [1981] original �Optimal Auction Design�paper, and of much of the optimal

auctions and mechanism design literature since (see, for examples, surveys in Klemperer [2000] and

Krishna [2002]). Indeed, auction policy papers also focus on the reserve price as if it were a key

variable (Klemperer [2002]). Yet when the number of bidders becomes an endogenous variable, the

reserve price becomes a uniquely inferior tool for extracting surplus from bidders; a rational seller

does not use it, and an e¢ cient social planner is glad he doesn�t.

6 Revenue and Participation

In view of Corollary 6, the remainder of the text limits mechanisms toM 2MZ = fM �M j r = 0g,

zero-reserve-price auctions. This section shows that seller�s announcement of M a¤ects expected

revenue solely through its e¤ects on the participation probability �. To develop and understand

this result, I begin with some natural comparative statics: two auction mechanisms with the same �

have the same expected revenue, and a change in mechanism which would lead to a higher expected

revenue for any exogenously given number of bidders will lead to a lower �. Formally,

Proposition 7 For any fM;M 0g �MZ ,

[i]: f� (M) = � (M 0)g ) fR (M) = R (M 0)g;

[ii]: f� (M) = � (M 0)g )
�
V (M)� ba (M) = V (M 0)� ba (M 0)

	
;

[iii]:
�
R (M;n) R R (M 0; n)8n 2 N

	
)
�
� (M) Q � (M 0)

	
.

The proof is in Appendix B.25

Proposition 7[iii] contrasts with an antecedent argument that the number of bidders may out-

weigh more direct aspects of auction design. Bulow and Klemperer [1996] �nd that an English

auction with a zero reserve price and an exogenously given N + 1 bidders attains higher expected

revenue than any standard auction with an optimal reserve price and N bidders. While, once

Levin and Smith criticize Samuelson [1985] for considering the impact of entry fees in a model where the total
expenditures on becoming privately informed are exogenous. The current model withstands that criticism.
Chakraborty and Kosmopoulou [2001] report a similar characterization to Corollary 6, that with entry, an auction

with a nontrivial reserve price is revenue-inferior to some auction with a lower reserve and an entry fee. It is not clear
what model of entry yields the nonstochastic number of participants in their paper, which depends on a screening
level.
25Proposition 7 applies only when � (M) is a function. The only auction mechanism this appears to rule out is the

McAfee, McMillan and Reny [1989] mechanism that extracts full surplus if n � 2 bidders are exogenously given. I
cover the details of comparison with that mechanism in footnote 27.
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present, the (N + 1)st bidder is assumed to behave rationally, no rational reason is given for his

being there. They advise seller, rather than worrying about how to design the auction for the �rst

N bidders, to �somehow��nd another bidder; how is unaddressed. Indeed, since their methods

depend upon the potential bidder with the highest signal becoming the winning bidder, a model of

costly entry with many potential bidders that could be consistent with their results faces serious

problems.

Instead, Proposition 7 implies that revenue consequences of an increased number of bidders are

necessarily less rosy when the extra bidders arrive via a rational participation calculation:

Remark 1 Suppose a seller can switch to an auction mechanism that increases equilibrium par-

ticipation. Then each participant has a lower chance of winning, and so in equilibrium requires

a higher expected pro�t in the event of winning. The winner�s higher expected pro�t means an

expected revenue further below expected value transferred.

A host of econometric studies of auction markets are not sensible in this context, cases where

revenue, the high bid, or some similar variable is estimated using the number of bidders as an

exogenous explanatory variable. If ten potential bidders decided to participate expecting about

three participants, but mixed strategy participation decisions happened to lead to six showing up,

no wonder the extra bidders led to higher revenue: the auction rules were su¢ ciently extractive

of bidders�surplus that no one wanted to be a fourth bidder. It would be interesting to discover

the circumstances under which a higher expected number of bidders was associated with a higher

expected price, but the historical record of auctions (outside carefully designed laboratory experi-

ments) does not include data on the expected number of bidders. The actual number of bidders is

no substitute. That revenue is higher when the realized number of bidders is higher does not imply

that a seller prefers to take steps to increase the expected number of bidders.

If a historical series of auctions arguably results from the same equilibrium for each auction,

then the binomial distribution that is the number of participants can be estimated from the series.

Many empirical auction databases, however, arise from situations far enough from ex-ante symmetry

to warn against direct application of this model. Nonetheless, observed data on the number of

bidders may incorporate entry decisions based on which rivals were expected to take part with

what probabilities. If the identities of participants are recorded in the database, a separate binomial

distribution representing participation of each potential bidder could be estimated.
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For many empirical studies, especially merger-and-acquisition studies, it remains a problem that

the record does not indicate the number of participants, but at most the number of actual bidders.

Hence, the size of a winner�s curse adjustment a bidder ought rationally to make depends on a

variable (or inferences about that variable) unavailable to the empirical analyst.

Proposition 7.[ii ] �nds the di¤erence V (M)�ba (M) takes on the same value for any mechanisms

M;M 0 that attain the same �; let W (�) denote this di¤erence. Then let a simple function R on

the entire unit interval be de�ned by

R (�) =W (�)� c�N: (13)

Corollary 8 R (M) = R [� (M)] for all M 2 MZ ; that is, R (M) can be projected onto [0; 1] to

yield R (�).

Proof. Proposition 7 implies that M in�uences R (M) only through its in�uence on � (M).

Theorem 5 shows that the entire interval [0; 1] can be reached.

Remark 2 Corollary 8 �nally changes auction theory�s view of the comparative roles of the various

surplus-extracting devices available to a seller, from complements (their role in exogenous-number-

of-bidders models in the tradition of Milgrom and Weber [1982]) into their common-sense role

of substitutes. With exogenous n, a seller who had introduced some subset of: switching to an

English auction, releasing public information, setting an entry fee, and adding a nontrival reserve

price, would still gain by incorporating the remaining surplus-extracting devices. With endogenous

participation, it is (solely) the equilibrium probability � that interests seller, and alternative methods

of accomplishing an improvement in this variable are substitutes for each other.

7 The Content of Optimal Auctions

Theorem 5 and Corollary 8 imply that R (�) in (13) is continuous. As its range is obviously

bounded, it attains a maximum. Let R� > 0 be the maximum attainable level of revenue.

Since a screening level is impossible, it is unsurprising that I have not been able to demon-

strate strict concavity of R (�). Accordingly, there may be multiple values of � attaining R�;

let A = f� 2 [0; 1] jR (�) = R�g. By continuity, A contains a minimal and a maximal element, ��0
and ��1 (not necessarily di¤erent). As R (0) = 0, �

�
0 > 0.

Proposition 9 ��1 < 1:
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Proof. Evaluation of (13) as � decreases from 1 to 1�4� shows a revenue gain from decreased

participation costs that is linear in 4�, and a revenue loss from a probability of 0 participants that

is of the order (4�)N .

Proposition 9 heightens the contrast with Bulow and Klemperer [1996]. They recommend

obtaining an (N + 1)st bidder (in a setting where there are otherwise N exogenously speci�ed

bidders) as the most important revenue-enhancing decision a seller can make. Far from seeking

another bidder, when any bidder, including the (N + 1)st, arrives via a rational, expect-pro�t-

seeking decision, a seller is instead always attempting at least some degree of potential bidder

discouragement. Stated di¤erently, a seller might bene�t from extra competition, but does not

wish to give an extra potential competitor an expectation of being able to enter the fray pro�tably.

Indeed, Proposition 9 (like all other results) applies to N = 2 potential bidders. In that case,

it is revenue-inferior to adopt an auction that leads to both bidders participating with probability

one. The seller will have some revenue-superior alternative which will lead potential bidder 1 to

be indi¤erent over participating even when he infers that there will be at least a (1� ��1) > 0

probability of facing no competition.

A little structure enables characterizing the size of the set of optimal auctions. LetMC be the

set of auction forms m for which some variable (explicit, or implicit in m) continuously alters �

and spans [0; 1]. Theorem 5 above shows that the entry fee ' makes the second-price auction form

an element of MC ; the continuity used in that proof is known to hold for the English and �rst-

price auctions. Moreover, there are other modeling options (examples are below in this section)

that may render many auction forms elements of MC . Next, de�ne a set of auction mechanisms

M =
�
M 2M jm 2MC ; r = 0

	
; this is the set of mechanisms selling without reserve for which the

auction form exhibits continuity and spanning in some variable. I treat M as the domain of choice

for seller, in light of Corollary 6; let d denote the (nontrivial) dimensionality of M.26 Without loss

of generality, M can be treated as embedded in <d, and the coordinates of <d can be ordered so

that coordinate i 2 � = f1; : : : ; d�g (0 < d� < d) denotes a spanning, continuous variable. Let

M� = fM �M j� (M) 2 Ag, a collection of optimal auctions. Then,27

26The exact dimensionality depends on modeling choices (as to what constitute the variables) that otherwise distract
from the paper. The entry fee is one dimension. Whether n and a are revealed generates two more. At least one
dimension could be generated by whether the auction is dynamic (if the degree of information dispersal during the
course of the auction is an issue, more than one dimension), and still �rst-price and second-price auctions have not
been distinguished. Mares and Harstad [2002] show that seller�s information disclosure options cannot be summed
up in a single dimension. Note that there is no problem to having dimensions consisting of discrete elements.
27Some readers may question how these optimal auction mechanisms compare to the mechanism which extracts

full surplus in McAfee, McMillan and Reny [1989]. For their mechanism, call it MMMR, the unique equilibrium
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Theorem 10 Any auction inM can be converted into an optimal auction inM� merely by adjusting

any one parameter in �.

Proof. Select an arbitrary �� 2 A, and an arbitrary M0 2 (MnM�), so � (M0) =2 A. Select an

arbitrary coordinate i 2 �. Construct cM 2 M by changing M0 solely in coordinate i, as follows.

Take an arbitrary �� 2 A; if � (M0) < ��, set �(cM) = 1 (by ' = �c � b, for example), else if

� (M0) > �
�, set �(cM) = 0 (by ' = E [V ]). By spanning, this is always possible. As in Theorem

5, continuity implies the existence of a value for this ith coordinate yielding M� 2 M�, with M�

di¤ering from M0 only in this ith coordinate.

Corollary 11 M� contains a subset of dimension d� 1 spanning M.28

Thus, prior optimal-auction characterizations depend critically on the implicit assumption that

a seller has a captive audience: there will be exactly n bidders no matter how the seller changes

auction rules to extract more surplus. When the number of bidders responds endogenously to the

pro�tability of competing, the content of optimal common-value auctions is merely this: choose

any auction form, commit to sell without reserve, and adjust any continuous parameter to avoid

overly encouraging or overly discouraging bidder participation.

Figure 2 may help to visualize Theorem 10. It simpli�es by imagining that M has three dimen-

sions: ' on the vertical axis, plus one dimension in whichM can take on one of three discrete values

(e.g., English, second-price, or �rst-price auction form, for a seller we imagine to be constrained to

those three choices), and one dimension in which a variable can be chosen over an interval, but may

not necessarily span the range of �. The set M is then the union of three rectangles in parallel ver-

tical planes, outlined in Figure 2 by dashed lines. The set of optimal auctions M� is represented by

a collection of curves shown lying in the three rectangles. In this illustration, the space of auctions

continuation is �
�
MMMR

�
= 0, hence R

�
MMMR

�
= 0. To arrive at a sensible comparison, consider mechanisms

MMMR
' with negative entry fees appended. Setting ' < �c� b necessarily generates a revenue-inferior auction; the

reverse inequality su¤ers the same R
�
MMMR
'

�
= 0 problem as MMMR. So consider ' = �c� b: for MMMR

�c�b , every
� 2 [0; 1] is an equilibrium continuation. Selecting � 2 (��1; 1] yields excessive incurrence of participation costs with
no compensation; selecting � 2 [0; ��1] runs into the same problem as a reserve price: there is an excess probability
of no sale (happening anytime a < 2), with no compensation. So any equilibrium selection � is revenue-inferior to
the second-price auction M' of Theorem 5 that attains the same �, hence suboptimal. If a mechanism similar to
Crémer and McLean [1985], [1988] were to apply to a common-value auction, it would su¤er the same problems. So
would the mechanism of McAfee and Reny [1992], which also depends on using information fees, ruled out here (cf.
footnote 24).

28To see that a set of dimension d� 1 has been obtained, construct the projection mapping proj' : <d ! <d�1 by
deleting the 1st component from any d-vector M 2 M. Then the proof of Theorem 10 has shown for every M 2 M an
element M�

M 2 M� such that proj' (M) = proj' (M�
M ). Note that M� is typically a strict superset of the set thus

obtained.
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Figure 2: The Set of Optimal Auctions

with a 0 reserve price is 3-dimensional, and the set of optimal auctions (the union of the curves

shown) a 2-dimensional subset. The optimal auctions M� span M in that, from any point in one

of the three rectangles, it is possible to reach one of the curves by moving only vertically, that is,

by adjusting only the entry fee. (To be consistent with the Theorem, the curves must, collectively,

contain continuous paths from the left to the right edges of all rectangles.)

A variety of surplus-extracting devices might exhibit su¢ cient continuity to apply this logic.

For example, suppose seller observes XN+1 (which is a¢ liated with asset value V ), and consider

mechanisms M1
y , all �rst-price auctions with ' = '0 (arbitrary), r = 0, and with seller making a

public announcement of Zy = XN+1+y�, where � is an independent standard normal (white noise),

and y a scalar parameter of the noisiness of this public announcement. Then (by Theorem 17 in

Milgrom and Weber [1982] and Proposition 6.[iii ] above), �
�
M1
y

�
is nondecreasing in y; assume

(naturally) that it is continuous. Suppose �
�
M1
0

�
< ��0 < �

�
M1
Y

�
for su¢ ciently large Y . That is,

full and honest public announcement of seller�s information is overly extractive of surplus, but not

a public announcement where the signal-to-noise ratio is very small (this is, in essence, a scanning

supposition). Then the argument of Theorem 10 can be applied to derive the existence of a y� such

that M1
y� is an optimal auction.

29

29A similar example: some sellers categorize assets being sold, so each asset in a category has an appraisal in a
given range (e.g., $30K-$40K). For any auction form with the property that a broad enough range is insu¢ ciently
extractive and an exact announcement of the appraisal overly extractive, there exists a range width yielding an
optimal auction. Thus, from an arbitrary auction form, only the range width of this categorization need be altered
to obtain optimality.
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In a world where a wide variety of auction mechanisms are employed by experienced and appar-

ently successful auctioneers and frequent auction sellers or bid-taking procurers, Theorem 10 has

the comforting conclusion that the variety is not per se unambiguous evidence that some of these

sellers and auctioneers must be choosing suboptimally. If some aspect of a particular situation

falling outside the model creates a preference for one auction form over another, nothing in the

model surmounts that preference, so long as some variable remains su¢ ciently adjustable.

How do revenue comparisons across auction choices fare? To formulate a partial answer, note

that the parameters of the model are P = fB; c; b;Ng, the underlying probability measure, the

levels of participation and bid-preparation costs, and the number of potential bidders. For sim-

plicity, assume that B can be speci�ed by a real vector in <D�2+ . Then P 2 P � <D+ � I, where

I =
�
2; 3; : : : ; NU

	
, with NU <1 an arbitrary upper bound on possible values of N , allows P to

represent the economic environments to which the model might be applied.

Corollary 12 In the special case where R (�) is concave, every revenue comparison of two auction

mechanisms with zero reserve prices for an exogenous number of bidders is extended with endogenous

participation to a half-space of P and is reversed in another half-space.

Proof. Any such revenue comparison takes the form R (Ms; n) � R (Mi; n)8n 2 N, for

some superior mechanism Ms and inferior mechanism Mi.30 Any P 2 P determines a mapping

�P (M) on M, speci�ed by (7). By Proposition 7, each (Ms;Mi) comparison can, for any given

P , be represented in P� [0; 1] by a vector gP pointing from (P; �P [Mi]) to (P; �P [Ms]), where

�P (Ms) < �P (Mi). Of course, ��0 and �
�
1 depend on P as well, but for any P , the collection

fgP ; (P; ��0 [P ]) ; (P; ��1 [P ])g are collinear in P� [0; 1]. By de�nition, ��0 [P ] � ��1 [P ]8P 2 P. The

direction of gP implies that a su¢ cient condition for R (Ms) � R (Mi), that is, for extending the

revenue comparison to endogenous participation, is �P (Ms) � ��1 [P ]. Correspondingly, a su¢ cient

condition for R (Ms) � R (Mi), that is, for reversing the revenue comparison with endogenous

participation, is �P (Mi) � ��0 [P ].31

As mentioned at the beginning of this section, concavity is not likely to hold in this general a

model. However, most revenue comparisons in the literature32 presume b = 0, and treat only the

30Examples would include: second-price versus �rst-price auctions in Milgrom and Weber [1982], alternating recog-
nition versus second-price auctions in Harstad and Rothkopf [2000], cases of private revelation of seller�s appraisal
versus public announcement of seller�s appraisal in Mares and Harstad [2002].
31 If concavity of R (�) is not strict, A = [��0; �

�
1] and �

�
0 and �

�
1 may be distinct. If so, these two half-spaces may

not contain all possible parameters.
32These include all comparisons in Milgrom and Weber [1982] that do not involve a reserve price.
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case r = ' = 0; for these assumptions, it is straightforward, though cumbersome, to show that the

points of comparison can lie on a concave R (�).

The sharpness of these results stems partly from the exactness attained via a mixed-strategy

participation decision arrived at simultaneously by ex-ante symmetric (and thus not yet privately

informed) potential bidders. Appendix A �nds the bulk of these results attainable, if granted a

su¢ ciently useful equilibrium selection, when potential bidders sequentially decide whether to par-

ticipate. The intuition is this: if behavior once participating is symmetric, and one potential bidder

who is indi¤erent over whether to participate does take part, then that one participant�s indi¤erence

drives revenue whether his participation decision was made simultaneously or sequentially.

8 Concluding Remarks on Generality

The contrast is striking: Many papers calculate an �optimal auction,� having innocuously (or at

least without comment) assumed there are n bidders. When this number remains �xed as the

role of being a bidder is made far less pro�table, these authors are in essence assuming irrational

behavior, for most situations where they would have us apply their results. Those results typically

�nd a particular auction form to be optimal, and it typically revolves around strategically setting

a reserve price which has a signi�cant chance of preventing a sale.

When bidders are also rational in deciding whether to bid, and the number of bidders is explicitly

recognized as an endogenous variable, these results are completely overturned: the only aspect of

an auction design that, per se, characterizes it as suboptimal is a nontrivial reserve price. Selling

without reserve is the full content of optimal auctions when participation is endogenous.

As contemplated in auction theory, a nontrivial reserve price is almost never seen in practice

(Cassady [1967]). The contemplated reserve price is a credible binding commitment that, if no bid

exceeds it, the asset will not now and never in the future be available to the potential bidders.

In some situations, such a commitment may stretch credibility, but in many, I suspect a tool so

impacting yet so blunt is not used because it would pointlessly introduce ine¢ ciency. What is

common, and in the industry usually called a reserve price, is a price below which the current

auction will end without a sale, but the same asset will be put up for sale again later (often, there

may be negotiations between the seller and the high bidder to buy between the �nal bid and the

reserve price). Such a policy, of course, limits potential ine¢ ciencies to a wholly lower order of

magnitude; introducing it would bring complications of dynamic negotiations into the model, which
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I have avoided.

The principal result of this paper is that while selling without reserve, the set of optimal auctions

is large, consisting of single-parameter adjustments of all auctions. While the demonstration has

hopefully been as straightforward as possible, it is clear that the characterizations allow several

natural extensions:

� The results have been demonstrated for common-value auctions, wherein ine¢ ciencies can

only take the form of a failure to sell. However, complications introduced by adding private-

value aspects to yield a¢ liated-value auctions change little. In particular, a seller has the

same preferences across auction forms as a social planner, and the set of optimal auctions

continues to be as large and dense as above. Arguments in favor of a nontrivial reserve price

remain elusive, though a fully general characterization as strong as revenue-inferiority cannot

quite be reached. Details are provided in Appendix C.

� The oft-seen formulation of an auction problem as an abstract mechanism design problem

contemplates payments to or from losing bidders. Such payments are easily incorporated

here, although Theorems 5 and 7 render them pointless.

� The bid-preparation cost above was exogenous, and independent of the form of the auction.

If strategic issues were to make it more costly to prepare a bid in a �rst-price auction than

in a second-price or an English auction (due to some variant on incentive compatibility), a

more complicated twist on the tools provided here would be needed.33

� The assumption of a single asset for sale does not seem critical to the qualitative results.

However, the ease with which extension to the modal multiple-unit auction model (where

each bidder can acquire but one asset) arises in Milgrom [1981] and Pesendorfer and Swinkels

33Engelbrecht-Wiggans [2001] argues that the strategic simplicity of English auctions, in some simple settings, yields
lower bid-preparation costs than �rst-price sealed-bid auctions, and so English auctions might attract more bidders
and attain higher expected revenue. He demonstrates the possibility in a simple example with independent, uniformly
distributed private values and in�nitely many potential bidders. Unfortunately, the notion of strategic simplicity does
not admit nearly as facile a sensible de�nition when going beyond such a simple setting. In particular, it may be that an
English auction becomes far less simple strategically when a signi�cant entry fee is prepended. (Engelbrecht-Wiggans
does not write as if he is comfortable with the notion that an English auction necessarily remains strategically simpler
once common-value elements enter the model.) Since in the equilibrium above, aggregate expected bid-preparation
costs fall on the seller (Theorem 3), this by itself gives an incentive to favor devices which extract surplus while facing
bidders with lower bid-preparation costs. For a given �, the mechanisms with lower bid-preparation costs yield higher
revenue. For there to be a su¢ ciently large set of such lower-bid-preparation-cost mechanisms to span continuously
the range of participation probabilities, and thus render all higher-bid-preparation-cost mechanisms inferior, is likely
to depend on some controversial assumptions about strategic simplicity.
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[1997] would be somewhat misleading. If k identical assets are sold, the probabilities of

0; : : : ; k � 1 actual bidders would signi�cantly clutter up the expected revenue formula.

� The model has been designed so that adding other sellers who are auctioning related assets is

virtually automatic. (No problems are created if one seller�s auction exhibits a participation

cost of c, while a possibly more distant seller has a cost c0 > c.)

A nontrivial dynamic structure would, however, introduce concerns not yet addressed. Among

them, both sellers and potential bidders may have incentives to invest in building reputations.

Nonetheless, a stride in this direction is made here: if an analysis of such reputational issues is to

be applicable to markets where a subset of �rms in an industry appear as bidders, reputational

investments need to be viewed in terms of their discounted expected pro�tability when responses

of other players include an endogenous decision as to whether and when to play.

This model assumes rational behavior consistent with a symmetric equilibrium. Asymmetric

equilibria at the bidding stage are certainly not going to be unique, so it is unclear how to prepend an

entry stage, without a unique expected pro�tability calculation. Asymmetric participation decisions

are presumably rife for signaling a preferred asymmetric equilibrium. A �symmetric sequential�

entry model which then assumed symmetric behavior following sequential entry decisions can be

built; it yields similar but less sharp results. An outline is provided in Appendix A.

Laboratory evidence suggests the winner�s curse is not easily overcome in common-value auctions

(Kagel, Levin and Harstad [1995]); however, it is far from clear how to model participation decisions

of potential bidders who will not follow up by bidding rationally. Nor can I envision how to model

usefully the participation decision of a potential bidder who will himself behave rationally, but who

cannot predict even the number of irrationally-behaving rivals who will participate.

9 Appendix A: An Alternative Sequential-Entry Model

Consider the following �symmetric sequential� participation model. First, the seller announces

M , as above. An exogenous randomization assigns to the N potential bidders a relabeling of

their indices, with a potential bidder�s realization that he is number i in this relabeling his own

private information, and all reorderings equally likely. Then potential bidders are in order given

the opportunity to participate (at cost c, as above). As soon as a potential bidder declines to

participate (an action that may be the result of a mixed strategy), no other potential bidder is

given the opportunity.
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As a potential bidder knows the step in this order in which he makes his decision, he knows how

many potential bidders have already chosen to participate. As a participant�s stage in the order

does not get revealed, an opportunity to signal a favorite asymmetric equilibrium via becoming

participant 1, for example, is unavailable. After participation decisions have been made, one of

the participants knows privately that he is the marginal participant, but none knows the order in

which rivals became participants.34 For symmetric behavior to be possible, the private information

of the last participant, as to the equilibrium number of participants, must become public; denote

this number ne (M). Hence only mechanisms in MK above can be considered.

The ex-ante probabilities of a participant becoming an actual bidder, and of participants

1; : : : ; a becoming the actual bidders (unconditional and conditional), are exactly the same as

�K [M;ne (M)], �K [M;a; ne (M)], and �K [M;a; ne (M)] above, and s (�) is unchanged from (4)

except that it no longer can depend on �. Lack of dependence on � is also the only change in

p (�) above, so the expected pro�tability of being the ne (M)th participant is still (6) above. Hence,

ne (M) is determined by the equilibrium participation constraint

w [M;ne (M)] � 0 > w [M;ne (M) + 1] : (14)

For equality in (14), participation by ne (M) � 1 potential bidders with probability 1 and by

the ne (M)
th potential bidder with probability � 2 [0; 1] are equilibria for all values of �. Selection

of the � = 1 equilibrium can be based on it being the unique element of this set which is the

limit of equilibria for mechanisms di¤ering from M by having in�nitesimally smaller entry fees.

Of course, virtually as strong a selection argument can be made for the � = 0 equilibrium, as the

unique limit of equilibria for mechanisms di¤ering from M by having in�nitesimally larger entry

fees. However, usual problems with limits of open sets prevent existence of optimal auctions if the

� = 0 equilibrium is selected. I will just consider the self-servingness of the � = 1 selection be a

weakness of the alternative model, and proceed with it.

Revenue is now R (M) = R [M;ne (M)], from (8). De�ne

� (M;n) =

8<: 1; n = ne (M) ;

0; otherwise:

34 It is solely for this reason that the model builds a counterfactual where a potential bidder�s sequence order is his
own private infomation.
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This substitutes for the binomial coe¢ cients � (�) in the formulas for expected value transferred

and the expected number of actual bidders:

V (M) =
X
n

X
a

s (M;a; n)E [V ]

�
n

a

�
�K (M;a; n) � (M;n) ;

a (M) =
X
n

(X
a

a

�
n

a

�
�K (M;a; n)

)
� (M;n) :

Then expected revenue satis�es

R (M) � V (M)� ba (M)� cne (M) ; (15)

with equality for and only for the selected equilibria attaining equality in (14); letM= be the subset

of MK consisting of those mechanismsM for which equality in (14) and (15) can be attained. Note

that
�
MKnM=

�
contains an open and dense subset ofMK . De�neMknk=

�
M 2MK jne (M) = n

	
,

for n = 1; : : : ; N , and MZ =
�
M 2MK jr = 0

	
.

The following results can be obtained for such a model. [i ]. fM0;M1g � M= and ne (M0) =

ne (M1) implies R (M0) = R (M1). This corresponds to a comparative static of the simultaneous

entry model.

[ii ]. Suppose a mechanism M0 2 M= with ne (M0) = n0 participants in equilibrium. Then

there exists M1 2
�
Mkn0k \M= \MZ

�
(i.e., M1 does not use a positive reserve price). This M1

is revenue-maximal in the set Mkn0k; revenue comparisons across auction forms for an exogenous

number of bidders apply withinMkn0k, and surplus-extracting devices are substitutes withinMkn0k,

with the exception that nontrivial reserve prices are revenue-inferior.

[iii ]. Suppose there exist M0 2 M=, M1 2 MK such that 1 � ne (M0) < ne (M1) � N , and

R (M1) > R (M0). Then there exists n� > ne (M0) such that [a] M� =
�
Mkn�k \M= \MZ

�
6= ;

(these are all zero-reserve-price auctions attaining equality in (14) for n� participants), and [b]

every auction in M� is an optimal auction. Moreover, for an arbitrary auction form m0 for which

expected pro�tability is continuous in the entry fee ', if there exists M 0 = (m0; '0; 0) such that

ne (M
0) < n�, then there exists '� such that (m0; '�; 0) 2 M�. In this sense, an arbitrary auction

can be made optimal by the change of a single parameter, attaining a quite similar characterization

to the principal result of the simultaneous entry model.
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Figure 3: The Sequential Participation Model

[iv ]. Let M0;M1 2MK be such that ne (M0) < ne (M1). Suppose

X
a

�
s [M0; a; ne (M0)]

�
ne (M0)

a

�
�a [M;�; ne (M0)]

�
�

X
a

�
s [M1; a; ne (M1)]

�
ne (M1)

a

�
�a [M;�; ne (M1)]

�
;

that is, suppose a sale is at least as likely ex ante under M0 as under M1. Then R (M0) > R (M1),

a sense in which the bidder-discouragement �avor of the simultaneous entry model extends to this

model. Note that the sale-probability supposition is critical to result [iv ]. (Proofs of these results

correspond closely to methods used in the main text and Appendix B.)

Figure 3 illustrates these results, for auctions that use a 0 reserve price. The entry fee ' is

shown horizontally, expected revenue R vertically. The solid curve illustrates one type of auction,

the dotted curve a second type which extracts less surplus for a given number of bidders. For

concreteness, we may call the solid curve English auction revenue, and the dotted curve �rst-

price auction revenue. The vertical line segments on each correspond to values of ' for which

the speci�ed auction mechanism lies in M=. In particular, each point in a vertical line segment

is revenue associated with one of the multiple equilibria: the lower endpoint is associated with

the marginal participant selecting to enter with probability 0, the upper endpoint associated with

probability 1.
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The rightmost vertical segments are where one participant in an English (solid vertical segment)

and in a �rst-price (dotted) auction is enough to make a second potential bidder indi¤erent over

participating. Along the sloped segment of each curve to the left of its rightmost vertical segment,

the second potential bidder strictly prefers to participate, while staying out is the third potential

bidder�s strict preference. Then each curve reaches another vertical segment where the third

potential bidder�s indi¤erence yields multiple equilibria, followed further left by a sloped segment

along which there are three participants.

Each pair of vertical segments corresponding to the multiple equilibria where the ith potential

bidder is indi¤erent over participating peak at exactly the same height. This is a result of equality

in (14) and (15). A curve like those shown could be drawn for any auction form; for example, the

curve for a second-price auction would have vertical segments that lie between the paired vertical

segments shown. The vertical segments shown for the English auction would be shifted to the left

if seller�s information were publicly disclosed. All such curves for auction forms with 0 reserve

prices would reach identical heights at the peaks of vertical segments.

The case illustrated will have as an optimal auction (given the self-serving equilibrium selection

mentioned above) any auction without a reserve price where the entry fee is set so that the second

potential bidder is indi¤erent over participating. Any auction form which is su¢ ciently extractive

to strictly discourage the second potential bidder via a high enough entry fee will have an entry fee

which makes that auction form (with r = 0) optimal.

In the general a¢ liated-values setting (Appendix C), it is possible that the rightmost pair of

vertical line segments in Figure 4 do not attain the height of the pair to the left of them. If so,

then optimal auctions are those where potential bidder i� is indi¤erent over participating, for some

i� > 2 (surely still a small number).

Consider, for an arbitrary auction form m, beginning with n0 participants in equilibrium, im-

pacts of increasing '. Increasing from small enough ', revenue is monotonically increasing, and

w, the expected pro�tability of participating (the l.h.s. of (14)), is monotonically decreasing, while

s, the probability of a sale (here, with r = 0, the probability that a > 0), holds nearly constant.

As ' continues to increase, past some level s starts to decrease nonnegligibly. There will be some

threshold b' at which revenue from n0 participants hits a local maximum and starts to decrease.

Figure 4 is drawn assuming potential bidder n0 is driven down to indi¤erence over participating

before ' reaches b'.
I know of no assumption on the primitives of the model guaranteeing this will always be the case
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(this is why the results above in this appendix are stated with such speci�c conditions). In general,

little is known about the behavior of auction mechanisms above b'. Revenue need not be monotonic
in ' above b', nor need w be monotonic. It is the case that, for (m;'0; 0) 2M=, revenue approaches

from below as ' approaches '0 from below. Also, (m;'; 0) 2Mkn0k ) 9'0j (m;'0; 0) 2M=\Mkn0k.

However, '0 > b' will mean multiple local maxima of revenue in ' for given m, across the set of '
for which an equilibrium with n0 participants is selectable. In the presence of such multiple local

maxima, I know of no argument from primitives that implies the global maximum revenue must

lie in M=. Should it not, in essence the theory of auctions with an exogenous number of bidders

applies.

Several seminar attendees have insistently pursued the following assertion: a seller who (some-

how) had a choice between selling via an auction following the �sequential symmetric� entry of

this Appendix and via an auction following the �simultaneous symmetric�entry in the main text

above would always prefer the former. I �rst provide a counterexample, and then discuss why the

assertion appears to be so appealing.

Example: Let there be N = 2 potential bidders; denote M = (m; 0; 0), a second-price

auction. Fix B; then E [V ] and R
�
M; 2

�
are �xed. Then choosing participation cost c =�

E [V ]�R
�
M; 2

��
=2 and bid preparation cost b = 0 yields an environment for which M is an

optimal auction in the sequential entry model, if the equilibrium is selected in which the second

potential bidder is indi¤erent over participating but participates with probability 1. The expected

revenue attained is R
�
M; 2

�
. In the simultaneous entry model, �

�
M
�
= 1 and R

�
M
�
= R

�
M; 2

�
.

However, by Proposition 9, an increase in ' from 0 to d' increases revenue, to a level unattainable

in the sequential entry model.

The assertion pays attention to an obvious di¢ culty in the main model, the probability (1� �)N

that no potential bidder participates, and thus no gains from trade occur. It neglects a more subtle

advantage: for optimal mechanisms, the probability that a participant faces a smaller-than-average

number of rival participants is far larger than (1� �)N . In the example, a potential bidder making

a sequential participation decision knows for sure that he faces one rival bidder, and is indi¤erent

over participating when ' = 0; an entry fee of d' > 0 will lead to his nonparticipation and a plunge

in revenue (to d'). However, a potential bidder making a simultaneous participation decision will

face one rival bidder with probability �� slightly less than 1. If he faces one rival bidder, his

net expected pro�tability is �d'. Countering this loss is the (1� ��) probability that he faces no

opposition and obtains the asset for a price of d'. The seller gains because the resource costs have
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been reduced from 2c to 2��c, and in each case there is a participant who is indi¤erent.

For those auction forms where the relationship between a bidder�s expected pro�tability and an

exogenously speci�ed number of bidders is known, this relationship is strictly convex. Hence, a seller

can sometimes attain a sizable �, even though the mechanism is strongly surplus-extractive, because

a bidder is weighing in the chances of being the only participant or one of very few participants.

With �sequential symmetric�entry, an optimal auction never faces a participant with fewer than

ne (M)� 1 rival participants. On average, the seller may be able to gain from this di¤erence.

10 Appendix B: Proofs

Proof of Theorem 3: For the proof, shorten � (M) to �, � (M;�; n) to �, �a (M;�; n) to �a,

�a (M;�; n) to �a, and continue to use �n for � (n;N; �), �n�1 for � (n� 1; N � 1; �). Begin by

adding 0 in useful forms at two locations in (9):

R (M)

=
X
n

(X
a

(srE fE [p (�) jV ]� V � ab+ V + abg+ a')
�
n

a

�
�a � cn+ cn

)
�n

=
X
n

(
srE [V ]� b

X
a

a

�
n

a

�
�a (M;�; n)� cn

)
�n

+
X
n

(X
a

(srE fE [p (�) jV ]� V g+ a ['+ b])
�
n

a

�
�a + cn

)
�n

=
X
n

(
srE [V ]� b

X
a

a

�
n

a

�
�a (M;�; n)� cn

)
�n

+
X
n

(X
a

(srE fE [p (�) jV ]� V g+ a ['+ b])
n

a

�
n� 1
a� 1

�
�a�+ cn

)
�n;
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where the last equality uses the Bayes�formulas [(2) or (3)].

R (M)

=
X
n

(
srE [V ]� b

X
a

a

�
n

a

�
�a (M;�; n)� cn

)
�n

+
X
n

(X
a

(srE fE [p (�) jV ]� V g+ ['+ b])
�
n� 1
a� 1

�
�a�+ c

)
n�n

P
i i� (i;N; �)P
i i� (i;N; �)

= V (M)� ba (M)� cn (M)

+

"X
n

(
�
X
a

(srE fE [p (�) jV ]� V g+ ['+ b])
�
n� 1
a� 1

�
�a + c

)
�n�1

#
N�;

where the �rst equality sorts n out of
P
a and multiplies by 1 in a useful form, and the �nal equality

simpli�es the numerator and combines the denominator with n�n. The term in large [�] is 0 by

(7).

34



Proof of Proposition 7: [i ]: The same � implies that (r.h.s.) of (7) attains the same value.

Now reversing the substitutions used in the proof of Theorem 3 demonstrates revenue equality. [ii ]:

f� (M) = � (M 0)g ) fn (M) = n (M 0)g, so [ii ] follows from [i ]. [iii ]: The proof for the equality

has already been shown. Suppose R (M;n) > R (M 0; n) 8n 2 N. Shorten � (M 0) to �0. From (9),

8n 2 N,

X
a

(E fE [p (M; �) jV ]g+ a ['+ b])
�
n

a

�
�a (M;� (M) ; n)

>
X
a

�
E
�
E
�
p
�
M 0; �

�
jV
�	
+ a

�
'0 + b

���n
a

�
�a
�
M 0; �0; n

�
implies, using Bayes�formula as in the previous proof:

X
n

�n�1

(
�
�
M 0; �0; n

�X
a

�
1

a
E
�
V � E

�
p
�
M 0; �

�
jV
�	
� '0 � b

��
n� 1
a� 1

�
�a
�
M 0; �0; n

�)
> c,

implying � (M) < � (M 0). The reverse inequality is identical.

11 Appendix C: A¢ liated Values

This Appendix extends almost all results to the general a¢ liated-values case (Milgrom and Weber

[1982]). For this case, let V as used above be the underlying asset value, with asset value to

a particular participant observing signal Xi a continuous function t (V;Xi), increasing in both

variables (common across participants, in that t does not have a subscript). De�ne

T (M;�; n; '; v) =

8<:
R
�K(M;n;')G

K (M;n; '; x; v) t (v; x) dB1 (xjv) ; M 2MK ;R
�U (M;�;')G

U (M;�; '; x; v) t (v; x) dB1 (xjv) ; M 2MU ;
(16)

where GK (M;n; '; x; v) [resp., GU (M;�; '; x; v)] is the probability of becoming the winning bidder

for a potential bidder who will participate in auction M , when there are n � 1 other participants

[when N � 1 other potential bidders participate with probability �], the entry fee is ', he will

observe signal x, and underlying asset value is v. Then T (M;�; n; '; v) is the expected asset value

to a potential bidder who will participate, conditional on his winning in the circumstances speci�ed

by its arguments.

Assumption A.2 above needs to be adjusted to specify that the expectation of T (�) exceeds

c+ b yet remains �nite. Let p (�) now denote the price in an a¢ liated-values auction, for the same
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arguments. The ex-ante expected payo¤ for a potential bidder who will be one of n participants

and a actual bidders [(5) above] becomes

s (M;�; a; �; n)

a
E fE [T (M;�; n; '; �)� p (M;�; a; �; n; �) jV ]g � '� b� c:

The revenue formulation is unchanged.

For the a¢ liated-values case, expected value transferred becomes

V (M) =
X
n

X
a

srE fT [M;� (M) ; n; '; V ]g
�
n

a

�
�a (M;�; n)�n: (17)

Proof of Corresponding Theorem 3: As before, begin by adding 0 in useful forms at two

locations in (9):

R (M)

=
X
n

(X
a

(srE fE [p (�)� T (�)� ab+ T (�) + abjV ]g+ a')
�
n

a

�
�a � cn+ cn

)
�n

=
X
n

X
a

fsr�aE [T (�)]� ab� cng�a�n

+
X
n

(X
a

(srE fE [p (�)� T (�) jV ]g+ a ['+ b])
�
n

a

�
�a + cn

)
�n

= V (M)� ba (M)� cn (M)

+

"X
n

(
�
X
a

�sr
a
E fE [p (�)� T (�) jV ]g+ '+ b

��n� 1
a� 1

�
�a + c

)
�n�1

#
N�;

by the same substitutions as in the previous proof. The term in large [�] is 0 by an equilibrium

participation equation corresponding to (7) for the a¢ liated-values case.

Corollary 4 and Theorem 5 can be extended to the a¢ liated-values case by identical proofs. A

corresponding proof of Corollary 6, the inferiority of a nontrivial reserve price, now depends on the

existence of a screening level. It is unknown whether a screening level in a¢ liated-values auctions

(where the private-values element is not degenerate) may be internally consistent (the impossibility

result of Landsberger and Tsirelson [2002] no longer applies). It is also unknown whether some

quite di¤erent method of proof could establish Corollary 6 without relying on a screening level. The

intuition underlying Corollary 6 seems not to depend on the absence of private-values elements.

Note that no screening-level assumption is needed or used to extend all other results to general

a¢ liated values.
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The last equation above in the proof for the Corresponding Theorem 3 can be used to extend

Proposition 7, the comparative statics, to the a¢ liated-values case. Corollary 8 remains trivial.

The claims of Proposition 9 (that � = 1 is always suboptimal), Theorem 10 (an arbitrary auction

can be made optimal by altering any one continuous, spanning variable), and Corollaries 11 (a

(d� 1)-dimensional subset of optimal auctions) and 12 (that, given concavity of R (�), antecedent

revenue comparisons are extended, and are reversed, each in a half-space of environments) can be

extended via identical proofs.

Finally, notice that the extension of Proposition 9 and Theorem 10 has made Corollary 4

(e¢ ciency of revenue maximization with endogenous bidders) a much more powerful result. In this

Appendix, ine¢ ciency can result from either a failure to sell or the sale to a bidder other than the

highest-valuing participant (possibly because that participant decides not to pay the entry fee).

Here, optimal auctions often accept a positive probability of selling to a bidder other than the

highest-valuing participant. Nonetheless, the seller and a social planner evaluate these possibilities

identically.
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