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Abstract

We study the recognized open problem of designing revenue-
maximizing combinatorial auctions. It is unsolved even for
two bidders and two items for sale. Rather than pursuing the
pure economic approach of attempting to characterize the op-
timal auction, we explore techniques for automatically mod-
ifying existing mechanisms in a way that increase expected
revenue. We introduce a general family of auctions, based
on bidder weighting and allocation boosting, which we call
virtual valuations combinatorial auctions (VVCA). All auc-
tions in the family are based on the Vickrey-Clarke-Groves
(VCG) mechanism, executed on virtual valuations that are
linear transformations of the bidders’ real valuations. The
restriction to linear transformations is motivated by incentive
compatibility. The auction family is parameterized by the co-
efficients in the linear transformations.
The problem of designing a high revenue mechanism is there-
fore reduced to search in the parameter space of VVCA. We
analyze the complexity of the search for the optimal such
mechanism and conclude that the search problem is computa-
tionally hard. Despite that, optimal parameters for VVCA can
be found at least in settings with few items and bidders (the
experiments show that VVCA yield a substantial increase in
revenue over the traditionally used VCG). In larger auctions
locally optimal parameters, which still yield an improvement
over VCG, can be found.

1 Introduction
Combinatorial auctions (CAs), where agents can bid on bun-
dles of items, are popular autonomy-preserving ways of al-
locating items (goods, tasks, resources, services, etc.). They
are relatively efficient both in terms of process and outcome,
and are extensively used in a variety of allocation problems
in economics and computer science.

One of the main open problems in CAs (and the whole
field of mechanism design) is designingoptimal auctions,
that is, auctions that maximize the seller’s expected rev-
enue (Myerson 1981; Vohra 2001). This problem is un-
solved even for auctions with two distinct items on sale
(e.g. a TV and a VCR) and two agents. A major advance
on the problem was the full characterization of 1-item auc-
tions (Myerson 1981), later extended to the case of selling
multiple units of the same item. However, the characteriza-
tion of multi-item auctions has been obtained only for very
specialized models (two items, two agents drawing valua-

tions for the items from the same binary distribution (Avery
& Hendershott 2000; Armstrong 2000)).

A related line of research is concerned with bundling
decisions of the seller, and the effect they have on rev-
enue. Typically the starting point is theVickrey-Clarke-
Groves (VCG)mechanism (Vickrey 1961; Clarke 1971;
Groves 1973) (aka.Generalized Vickrey Auction), which in
the 1-item case is equivalent to the second-price sealed-bid
auction. The VCG allocates the items in a way that maxi-
mizes the social welfare of the agents (sum of their valua-
tions for the allocated items), and each winning agent pays
the minimal valuation that she would have had to bid in order
to win the bundle she won. Rather than running a standard
VCG, the seller might want to bundle some items together
and decide to either sell the whole bundle or not sell it at all
(in the extreme case, all items are bundled together). Not
surprisingly, a good bundling policy yields higher expected
revenue than the VCG. (Palfrey 1983) proves that in cer-
tain models, the seller is better off (on an expected revenue
basis) bundling the products on sale together when the num-
ber of bidders is small and should auction them separately
when the number of bidders increases. (Jehiel, ter Vehn, &
Moldovanu 2003) show that modifying the objective func-
tion of the VCG in favor of allocations that sell all the items
together can yield higher expected revenue.

We exploit the benefits of both lines of research. We gen-
eralize the idea of artificially making weak bidders more
competitive (from Myerson’s 1-item auction) and ideas on
tweaking the VCG allocation rule (from bundling research).
Using these ideas we design aparametric familyof CAs.
Since all attempts to obtain an analytic characterization of
the revenue-optimal CA have been unsuccessful, we instead
advocate a computer science approach where we algorithmi-
cally search for good parameters in this CA family, for the
specific setting (seller’s prior over the bidders’ valuations).1

Although it may not construct an optimal auction, this prac-
tical approach yields significant revenue improvement over
the currently used VCG (see Section 6).

1In this sense, our approach parallelsautomated mechanism de-
sign (AMD)(Conitzer & Sandholm 2002). However, in the AMD
work so far, the types of agents had to be discretized, and an op-
timal mechanism was searched forwithout any use of exogenous
ideas/results on how to improve the mechanism. Thus that AMD
work only scales to small CAs (Conitzer & Sandholm 2003).



2 Framework and notation
We index agents with numbers from1 to n. Index0 refers to
the seller. Items are indexed with numbers from1 to k. The
set of all items is denoted byG = (g1, . . . , gk).

In an auction, bidders submit bids for the items and the
auction rules determine the allocationa and the payments
t, whereai is the bundle that bidderi receives andti is the
payment by bidderi. The pair(a, t) is called theoutcome.

2.1 Utilities and valuations
We make the standard assumption that each bidderi has a
quasi-linear utility functionui = vi(a)− ti, wherevi is the
valuation functionof bidderi. We also make the following
standard assumptions: 1)no externalities: the valuation of
any bidderi for each allocationa depends only on the bundle
ai that bidder receives, not on how the items thati does not
receive get allocated, 2)free disposal: the value of a subset
of a bundle is less than or equal to the value of a bundle
(∀ b

′ ⊂ b, vi(b
′
) ≤ vi(b)), and 3) the valuation for an empty

bundle is0.
Let Vi denote the set of all valuation functions for bidder

i. V denotes×i=1...nVi. We make the following standard
assumptions from economics:

1. Vi is a convex, compact subset of<|2k|.

2. Each valuation functionvi is generated from a continuous
densityfi andfi is positive on allVi.

3. The valuations of different bidders are drawn indepen-
dently of each other.

A simple example (and an important special case) is the
Additive Valuations Model:

Definition 2.1 Additive Valuations Model (AVM).

1. The valuation of bidderi for item j, is a real-
ization of the random variableXij with the density
fij : [li, ri] −→ <, and

2. The valuation of bidderi for any bundleb is the sum ofi’s
valuations for the individual items contained inb.

The AVM is the most basic model, with no substitutability
or complementarity effects (valuation for the bundle of items
equals the sum of the valuations for individual items).

In terms of the distributions from which valuations are
drawn, two classes of models are considered in literature. In
the symmetriccase,fi = fj for all biddersi andj. In the
asymmetriccase, valuations of different bidders are drawn
from differentfi. We will consider both cases.

2.2 Mechanism design principles
Each bidder’s valuation function is private information (al-
though the auctioneer and other bidders may know the dis-
tribution from which it is drawn). Thus a concern is that a
bidder might not bid her true valuations for the bundles—she
might be able to obtain higher utility by submitting a differ-
ent valuation function. As is common in much of mecha-
nism design, especially within computer science, we focus
on ondeterministic dominant-strategy mechanisms, that is,

mechanisms where each bidder has a strategy that is opti-
mal regardless of what the other bidders do. Such mecha-
nisms are robust in the sense that the bidders do not bene-
fit from counterspeculating each others’ valuations and ra-
tionality. As is standard in mechanism design, we focus
on incentive-compatiblemechanisms, that is, mechanisms
where each bidder’s dominant strategy is to bid truthfully.
This is without loss of generality in the sense that the well-
known revelation principleshows that anything that can
be accomplished with an arbitrary mechanism can also be
accomplished with a truth-promoting mechanism (see e.g.
(Krishna 2002)).

It is also important that the mechanism motivates the bid-
ders to participate. A mechanism isex post individually ra-
tional if each bidder is no worse off participating than not
participating,for all possible valuations of other bidders. As
does most of auction theory, we focus on such mechanisms.

2.3 Vickrey-Clarke-Groves (VCG) mechanism
A classic example that satisfies the above conditions is the
following mechanism (Vickrey 1961; Clarke 1971; Groves
1973).

Definition 2.2 Vickrey-Clarke-Groves (VCG) mecha-
nism. Each bidderi submits a valuation functionvi. The
allocation,a, is computed to maximize social welfare

SW (v) =
n∑

i=0

vi(a). (2.1)

The payment by bidderi is

ti =
[∑

j 6=i

vj(a−i)−
∑
j 6=i

vj(a)
]

where
a−i = argmaxa

n∑
j=0,j 6=i

vj(a)

is the allocation that is optimal among the allocations where
bidder i does not receive any items. One can also interpret
ti as the minimum valuation forai (the bundle won byi),
whichi would have had to bid in order to winai.

The VCG is the most popular mechanism in the literature.
(In the 1-item case it is also equivalent to the widely used
English auction). It maximizes the welfare of the bidders.
However, it often yields poor revenue for the seller.

3 Revenue maximization in combinatorial
auctions (CAs)

In this section we first explain the non-optimal revenue of
the VCG, and then describe the general idea of revenue
boosting.

3.1 Non-optimality of VCG
There are at least two reasons why the VCG mechanism may
not yield maximal expected revenue.

1. Bundling effect. The following well-known simple ex-
ample shows that bundling decisions of the seller may af-
fect the revenue.



Example 3.1 Consider an auction withk items for sale
(g1, . . . gk), and two bidders in the AVM model. The
VCG would sell each item separately to the higher
bidder, collecting payment equal to the valuation of
the lower bidder for each item. So, the revenue is∑k

j=1 mini∈{1,2} vi(gj). However, should the seller de-
cide to bundle all the items together and sell them as
a whole via a second-price mechanism, she would re-
ceive revenuemini∈{1,2}

[∑k
j=1 vi(gj)

]
which is clearly

greater.

2. Asymmetry of valuation distributions. In the asymmet-
ric case, it may happen that the distribution of valuations
of bidder i for some bundleb stochastically dominates
the distributions of other bidders (we call such bidders
”strong” and ”weak”, respectively). For instance, con-
sider a 1-item auction, where valuation of bidderi for
the item is drawn uniformly from the[2, 3] interval, while
other bidders’ valuations are drawn from[0, 1] interval.
Under the VCG allocation scheme bidderi wins the auc-
tion, paying just the second-highest bid price, while it
would be easy to improve revenue beyond that by charg-
ing (at least)2, which is the lowest possible valuation of
bidderi.

3.2 Priors in mechanism design
Before discussing the methods for boosting revenue, we
need to make a point about the use of priors,fi, (on bidders’
valuations) in mechanism design. The VCG is prior-free,
since it does not use information aboutfi’s in the allocation
rule or payment rule. Although being prior-free is desirable
(because the auctioneer can run the mechanism with less in-
formation), no prior-free mechanism can guarantee even a
fraction of the optimal revenue:

Proposition 3.1 For every prior-free, incentive-compatible,
individually-rational deterministic CA mechanismM , and
everyε > 0, there exist distributions of valuation functions
V , such that Ev(RM (v))

Ev(OPT (v))
< ε

HereOPT (v) denotes the revenue-optimal mechanism and
Ev denotes the expectation overV .

Although in some special cases prior-free mechanisms may
yield good revenue,2 Proposition 3.1 shows that in order to
construct a good general-purpose mechanism we need to use
priors. Therefore, we focus on prior-dependent mechanisms
(where the designer of the mechanism knows the distribu-
tionsfi).

3.3 Ideas from the Myerson auction
For boosting revenue in CAs, we will draw some ideas from
the optimal 1-item auction (Myerson 1981):

Definition 3.1 Myerson 1-item auction. Each bidderi
submits her valuationvi for the item. The mechanism com-
putesvirtual valuationsfor the bidders:

2For example, in the symmetric case, the VCG revenue is
asymptotically optimal as the number of bidders approaches in-
finity (Monderer & Tennenholtz 1999).

ṽi(vi) = vi −
1− Fi(vi)

fi(vi)
(3.1)

The allocation is computed so as to maximize the following
objective:

SW (v) =
n∑

i=0

ṽi. (3.2)

Thus, the item is given to the bidder with highestvirtual
valuation.3 So, the allocation rule is the same as in the
VCG (2.2), except that virtual valuations are used in place of
real valuations. The payment by the winning bidder is equal
to the minimal bid that she would have had to make in order
to win (that is,ṽ−1

i (vj), wherevj is the second highest bid).
The item is sold only if the virtual valuation of the winning
bidder is above0. All losing bidders pay nothing.

The intuition behind the mechanism is that it is biased in
favor of weak bidders, creating an artificial competition be-
tween weak and strong bidders, and extracting more revenue
from strong bidders. It is easy to check that the transforma-
tion (3.1) brings down the valuations of strong bidders more
than those of weak bidders. Such a mechanism allows the
auctioneer to set a high sell price for a strong bidder while
motivating her to stay truthful (even if she is sure that her
valuation exceeds valuation of any other bidder).

Drawing from this intuition, we propose increasing rev-
enue in CAs by designing certain virtual valuations, and then
running VCG on those valuations. We argue that virtual val-
uations are capable of improving VCG in both asymmetry
handling and bundling aspects. In the next section we dis-
cuss the forms of virtual valuations that we use.

4 Techniques for boosting revenue in CAs
In this section we introduce two families of CAs that em-
ploy virtual valuations, and a hybrid family that combines
the two. We then analyze the restrictions that individual ra-
tionality and incentive compatibility impose on virtual valu-
ations.

4.1 Bidder weighting technique
Definition 4.1 Weighted auction.An allocation,a, is cho-
sen that maximizes

SWµ(v) =
n∑

i=0

µivi(a) (4.1)

The parameters,µ, of the mechanism are positive real num-
bers, chosenin advanceby the auctioneer, based on the pri-
ors on bidders’ valuations. The payments by the bidders are

ti =
1
µi

[∑
j 6=i

µjvj(a−i)−
∑
j 6=i

µjvj(a)
]

The mechanism effectively replaces the valuation func-
tion vi of bidder i with µivi. This is useful in asymmet-
ric cases when valuations of some bidders are concentrated
around higher values than those of other bidders. The proof

3For the mechanism to be incentive compatible,ṽi should be in-
creasing invi. If (3.1) does not satisfy this condition, an ”ironing”
technique is used to makẽvi non-decreasing (Myerson 1981).



of incentive compatibility of this mechanism follows that of
the VCG.

In many cases the same bidder can be strong w.r.t. some
bundle and weak w.r.t. another bundle. It would thus seem
to be helpful to allow the mechanism to assign a bidder dif-
ferent weights for different bundles. However it is easy to
show that such a mechanism is not incentive compatible:
Proposition 4.1 No mechanism that chooses an allocation,
a, that maximizesSWµ(a)(v) =

∑n
i=0 µi(ai)vi(a) is incen-

tive compatible for all possible valuations in the CA domain
(unlessµi(ai) is constant overai).
Proofs are omitted due to limited space.

4.2 Allocation boosting technique
Proposition 4.1 shows that there does not exist a general
bundle- and bidder-specific multiplicative weighting mecha-
nism. However, it turns out that it is possible to give a bidder
bundle-specific advantage in an incentive-compatible way
by usingadditiveterms. Letλ{i,b}(a) = c{i,b} for all alloca-
tionsa that give bidderi exactly bundleb, andλ{i,b}(a) = 0
otherwise (as before, lambda’s are chosenin advanceby the
auctioneer, based on the priors on valuations of the bidders).
Here, thec{i,b} values are real numbers that the auction de-
signer sets. We call this theallocation boosting technique.

4.3 Bidder weightingandallocation boosting
Now, a mechanism that uses bothallocation boostingand
bidder weightingcan be defined as follows:
Definition 4.2 Virtual valuations CA (VVCA). The mech-
anism computes an allocationa that maximizes

SWµ
λ (v) =

n∑
i=0

[
µivi(a) + λ{i,a(i)}(a)

]
(4.2)

whereµ are positive. The payment rule is

ti(µ, λ, v) =
1
µi

[∑
j 6=i

[
µjvj(a−i) + λ{j,aj}(a−i)

]
−

∑
j 6=i

[
µjvj(a) + λ{j,aj}(a)

]
− λ{i,ai}(a)

]
VVCA is a family of mechanisms, parameterized byµ and
λ. It also includes the VCG. By analogy to Myerson’s auc-
tion, µivi(a)+λ{i,a(i)} can be viewed as a virtual valuation
[ṽi]

µ
λ of bidderi for allocationa.

The mechanism addsc{i,b} to the value of the objective
on allocations where bidderi gets bundleb.4 Obviously the

4The basic idea of adding an allocation-specific constant to the
objective was introduced in (Jehiel, ter Vehn, & Moldovanu 2003)
for the purpose of tuning the bundling policy. Theirλ-auctioncan
be viewed as a special case of the VVCA where 1) no weights
are used (µ = 1 for all i), and 2) the same fixed additive term
is added to the objective whenever all items are sold to the same
bidder (i.e., λ{i,b}(a) = c if all items are sold in one bundleb to
bidderi, andλ{i,b}(a) = 0 for all other bundles). In the symmetric
AVM model, they show that theλ-auction can increase the revenue
over both pure bundling auctions (which always sells all the items
together) and separate auctioning of individual items (this is what
the VCG does in the AVM model).

probability of bidderi winning b under the rule 4.2 is in-
creasing inc{i,b}. The proof of the truthfulness of the mech-
anism above also follows that of the VCG.

4.4 Impossibility of nonlinear virtual valuations
Incentive-compatibility imposes limitations on the virtual
valuations that can be used in the mechanism. In 1-item
auctions, it is sufficient for the virtual valuations̃vi to be
increasing invi (Myerson 1981). However, this is not suf-
ficient in CAs. (Lavi, Mu’Alem, & Nisan 2003) recently
showed that under certain natural assumptions, every(ex
post) incentive-compatible CA is almost5 an affine maxi-
mizer.
Definition 4.3 Affine Maximizer Auction (AMA). The al-
location is computed so as to maximize

SWµ
λ (v) =

n∑
i=0

µivi(a) + λ(a) (4.3)

Here µi are positive andλ(a) is arbitrary. The payments
are

ti =
1
µi

[∑
j 6=i

µjvj(a−i) + λ(a−i)−
∑
j 6=i

µjvj(a)− λ(a)
]

It is easy to see that VVCA mechanisms are a strict subset of
AMAs. The results of (Lavi, Mu’Alem, & Nisan 2003) im-
ply that every ”reasonable”(ex post)incentive-compatible
and individually-rationalgeneral mechanism is an AMA.
(Non-AMAs might be truthful for some specific distribu-
tions of valuations, only AMAs are truthful forall CA set-
tings.) Therefore, among mechanisms that are based on vir-
tual valuations, only those which use linear virtual valua-
tions (̃vi linear invi) are incentive compatible. Our VVCA
captures all linear virtual valuations, and is thus the most
general class of incentive-compatible CA mechanism that
use virtual valuations.

4.5 Bidder-specific reserve prices
Despite the simple form of VVCA, manipulating the param-
eters(µ, λ) is a powerful tool. For instance, it allows the
auction designer to enforce or prevent any bidder from re-
ceiving a certain bundle. Another important property of the
VVCA is that it allows for bidder-specific reserve prices.
(Bidder-specific reserve prices are also used in Myerson’s
revenue-optimal 1-item auction (3.2). Recall that the item
is sold only if the virtual valuation of the winning bidder
i is above0, which sets a reserve price for this bidder to
ṽ−1

i (0)). However, the reserve-price mechanism does not
generalize straightforwardly to arbitrary CAs. The stan-
dard way to set reserve prices in CAs is to submit fake
bids by the seller. That approach does not supportbidder-
specificreserve prices. On the other hand, bidder-specific
reserve prices can be achieved in the VVCA: to ensure that
bidder i never gets the bundleb for a price belowp0, set
λ{i,b} = −p0.

5A mechanism is an almost affine maximizer if it is an affine
maximizer for sufficiently high valuations. (Lavi, Mu’Alem, &
Nisan 2003) conjecture that the “almost” qualifier is merely tech-
nical, and can be removed in future research.



5 Searching for good parameters
VVCA and AMA define families of mechanisms, parame-
terized by(λ, µ). Depending on the value of the parameters,
the seller’s expected revenue may be greater or less than in
the VCG. In this section we discuss the problem of choosing
parameters that yield high revenue.

The seller’s expected revenue in VVCA is

R(µ, λ, v) =
n∑

i=1

ti(µ, λ, v) = (5.1)

−(n− 1)SWµ
λ (v)−

n∑
i=1

λ{i,a(i)} +
n∑

i=1

[
SW−i

]µ

λ
(v)

The following Proposition proves thatEv

[
R(µ, λ, v)

]
is a

”well behaved” function of(λ, µ) and therefore suggests the
use of numerical methods (as hill-climbing) for estimating
(locally) optimal values of those parameters. That requires
evaluatingEv

[
R(µ, λ, v)

]
for given(λ, µ), which can be es-

timated by sampling valuations from the distributionsfi.

Proposition 5.1 The expected revenue of the AMA (and
consequently VVCA) is continuous and almost everywhere
differentiable inµ andλ.

FindingR(µ, λ, v) for a given set of valuationsv requires
determining the affine maximizing allocation (4.2). This
winner determination problem is known to be NP-complete,
but can be optimally solved for relatively large instances in
practice. Any optimal winner determination algorithm for
CAs can be used here; the affine maximization problem can
be converted into the standard combinatorial auction win-
ner determination problem by preprocessing the bids with
the multiplicative and additive terms. In the AVM model,
an important special case, the optimal allocation is trivial to
find: every item is sold to the bidder with highest[ṽi]

µ
λ.

The main problem in optimization is that the number of
parameters in(λ, µ) is exponential in the number of items
for sale: µ is just a vector of sizen, but the length ofλ is
n ∗ 2k (for every bidder we have one parameter for every
bundle) for VVCA andnk for AMA. It would be helpful
if we could discard some choices ofλ{i,b} beforehand (e.g.
by setting them to0), thereby simplifying the optimization
process. Unfortunately, the theorem below shows that there
cannot exist a polynomial-time algorithm capable of always
determining the optimal value foranyλ{i,b}, even if the val-
uations of the bidders are given. Moreover, no polynomial-
time algorithm can always determine whether the mecha-
nism withλ{i,b} set to some particular valueλ1 yields higher
revenue then the mechanism withλ{i,b} set toλ2.

Theorem 5.1 For any bundling parameter in VVCA (and
AMA) - λ{i,b} - and any pair of values of this parameter
- (λ1 and λ2) there does not exist an algorithm that deter-
mines whetherR(µ, (λ−{i,b}, λ1)) > R(µ, (λ−{i,b}, λ2)) in
polynomial time, even if the valuationsv of the bidders are
given, unless P=NP. (Hereλ−{i,b} denotes the set of allλ
parameters except forλ{i,b}.)

Theorem 5.1 shows that there is no easygeneralmethod
to decide whether one set of parameters is better than an-
other. Therefore, there is no easy way to fix some of the

parameters up front without compromising optimality. Any
search algorithm that guarantees the optimum foranydistri-
bution of valuations must run optimization in alln ∗ 2k pa-
rameters (and therefore uses an exponential number of op-
timization runs). A related problem is that the surface of
Ev

[
R(µ, λ, v)

]
is non-convex even in simple mechanisms,

see Figure 6.1. The latter makes optimization complicated.
However, the problem can be addressed as follows. If the

number of items and bidders is small, run optimization in
all n ∗ 2k parameters and find a close to optimal solution
(see Section 6). For larger problems we can find the local
optimum (for example, by hill climbing with the VCG as the
starting point, thus yielding higher revenue than the VCG).
Also, for somespecialdistributions, mechanisms for finding
the optimal values of parameters might exist.

6 Experiments

In this section we demonstrate how the suggested method-
ology can be used. The approach of this paper is a form
of automated mechanism design (AMD) (Conitzer & Sand-
holm 2002; 2003). The main difference is that the mecha-
nisms’ space is restricted to mechanisms of the VVCA form.
Although this may not yield an optimal mechanism (while
traditional AMD does), this approach drastically simplifies
the computation. It thus scales to larger problem instances.
It also handles settings where the distributions of valuations
are continuous (unlike in traditional AMD).

We now consider several example problems. We compare
the revenue of VVCA to the revenue of the VCG and AMA.
(The parameters of VVCA and AMA were determined us-
ing a hill-climbing procedure, starting at all points of a fine
multidimensional grid; this does not guarantee optimality of
the solution, but it is extremely likely that this method finds
the optimum for the examples considered). The expected
revenues were computed by sampling the valuations from
the specified distributions (100000 samples were drawn,
where each sample included one valuation function for
each bidder) and running the auction in question on each
sample. Consider an auction setting with 2 items,g1

g2, and 2 bidders with valuation functionsv1 and v2,
correspondingly. Assumev1(g1) andv1(g2) are drawn from
the distributionF1. v2(g1), andv2(g2) are drawn from the
distributionF2. The valuation of bidder1 for the bundle of
two items is given byv1(g12) = v1(g1) + v1(g2) + c1 where
c1 is a complementarity parameter drawn from distribution
C. Similarly v2(g12) = v2(g1) + v2(g2) + c2 wherec2 is
also drawn fromC.
The results for various distributionsF1, F2, C are given
in the following table. The columns correspond to the
experiments with various valuation models:Ex. I - AMA
model, Ex. II - symmetric model with substitutabili-
ties/complementarities,Ex. III - asymmetric model with
substitutabilities/complementarities. The first three rows
specify distributionsF1, F2, C, the last three - the expected
revenue on these distributions in VCG, optimal AMA found
and optimal VVCA found. We give the revenue estimate
and 95% confidence intervals for the estimated values (in
tiny font). U [a, b] denotes a uniform distribution on[a, b].



Figure 6.1:3-dimensional projection in(µ, λ) space of the
expected revenue surface of the AMA mechanism in Experi-
ment I. Allµ andλ are fixed, except for the followingλ pa-
rameters:λ00 favors allocations where both items are kept
by the seller, andλ10 favors allocations where item1 is allo-
cated to bidder1 and the other item is kept. The analogous
parametersλ01 (referring to bidder1 and item2), λ20 (bid-
der2 and item1) andλ02 (bidder2 and item2) are set equal
to λ10.

Ex. I Ex. II Ex. III
F1 U [0, 1] U [1, 2] U [1, 2]
F2 U [0, 1] U [1, 2] U [1, 5]
C 0 U [−1, 1] U [−1, 1]
V CG 2/3 2.45(2.72,2.78) 2.85(2.82,2.88)

AMA 0.88(0.86,0.9) 2.78(2.75,2.81) 4.21(4.16,4.26)

V V CA 0.87(0.85,0.89) 2.78(2.75,2.81) 4.20(4.15,4.25)

The experiments show that both the general AMA mech-
anism and our VVCA mechanisms yield substantial
improvement over the VCG even in symmetric auc-
tions. Also, the VVCA is as good as AMA (within the
confidence)—at least on these small problem instances.

7 Conclusions and future research
In this paper we developed a new approach to the prob-
lem of maximizing revenue in combinatorial auctions (CAs).
Instead of attempting a full characterization (a recognized
elusive problem), we developed methods for automatically
modifying existing auction mechanisms to increase revenue.

We introduced two techniques: bidder weighting and al-
location boosting and a general family of auctions that uses
those techniques. We call such auctionsvirtual valuations
combinatorial auctions (VVCA). All auctions in the family
are based on the Vickrey-Clarke-Groves mechanism, exe-
cuted on virtual valuations that are linear transformations of
the bidders’ valuations. The restriction to linear transforma-
tions is motivated by incentive compatibility (truthfulness).
The auction family is parameterized by the multipliers and
constants in the linear transformations. VVCAs are a subset
of an even more general parametric family ofaffine maxi-
mizer auctions (AMAs).

For VVCA and AMA, the problem of mechanism design
is therefore reduced to search in the parameter space (AMA
has many more parameters). We proved that the revenue of

both VVCA and AMA is a well-behaved function, suggest-
ing the use of hill-climbing methods for parameter search.
However, finding the optimal parameters turned out to be
a computationally hard problem for both families. Despite
that, close to optimal parameters for VVCA and AMA can
be found at least in settings with few items and bidders (the
experiments on small auctions showed that VVCA yields a
drastic increase in revenue over the VCG, and the same rev-
enue (within tolerance) as AMA). In larger auctions, locally
optimal parameters can be used. This still yields higher rev-
enue than the VCG because the hill-climbing in parameter
space can be started from the VCG auction.

We plan to pursue several extensions to this approach.
The most important problem is to show that the proposed
mechanism yields a good approximation of revenue com-
pared to the (unknown) revenue-optimal mechanism (if the
parameters are set optimally). Another line of research is
concerned with the organization of the search of the param-
eter space: although we proved that any search algorithm
which guarantees the optimum foranygiven distribution of
valuations must run optimization in an exponential number
of parameters, better algorithms might exist for specific dis-
tributions. Finally, the approach could be extended to com-
binatorial exchanges with multiple sellers.
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