Query-Based Data Pricing

Dan Suciu – U. of Washington

Joint with M. Balazinska, B. Howe, P. Koutris, Daniel Li, Chao Li, G. Miklau, P. Upadhyaya

Data Has Value

And it is increasingly being sold/bought on the Web

- Big data vendors
- Data Markets
- Private data

Pricing digital goods is challenging [Shapiro&Varian]

Pricing Data

Pricing data lies at the intersection of several areas:

Data management

- Mechanism design
- Economics

1. Big Data Vendors

High value data

- Gartner report: \$5k, even if you need only one chart
- Navteq Maps
- Factual
- A few others [Muschalle]:
 - Thomson Reuters, Mendeley Ltd., DataMarket Inc, Vico Research & Consulting GmbH, TEMIS S.A., Neofonie GmbH, Inovex GmbH

Expensive datasets, available only to major customers

2. Data Markets

- Azure DataMarkets 100+ data sources
- Infochimps 15,000 data sets
- Xignite financial data
- Aggdata
- Gnip social media data
- PatientsLikeMe

These datasets are available to the little guy. The markets themselves are struggling, because they are just facilitators; no innovation

3. Private Data

- Private data has value
 A unique user: \$4 at FB, \$24 at Google [JPMorgan]
- Today's common practice:
 - Companies profit from private data without compensating users
- New trend: allow users to profit financially
 - Industry: personal data locker
 <u>https://www.personal.com/</u>, <u>http://lockerproject.org/</u>
 - Academia: mechanisms for selling private data [Ghosh11,Gkatzelis12,Aperjis11,Roth12,Riederer12]

Sample Data Markets

Follow us on Twitter

8

A Criticism of Today's Pricing Schemes

• Small buyers want to purchase only a tiny amount of data: if they can't, they give up

• Large buyers have specific needs: price is often negotiated in a room-full-of-lawyers

 Sellers can't easily anticipate all possible queries that buyers might ask

Needed: more flexible pricing scheme, parameterized by queries

Outline

Framework and examples

- Results so far
- Conclusions

Query-based Pricing

- Seller defines <u>price-points</u>: (V₁,p₁), (V₂, p₂), ... Meaning: price(V_i)=p_i.
- Buyer may buy any <u>query</u> Q
- System will determine price_D(Q) based on:
 - The price points
 - The current database instance D
 - The query Q

Arbitrage Freeness

" $Q_1, ..., Q_k$ determine Q" means that Q(D) can be answered from Q₁(D), ..., Q_k(D), without accessing the database instance D

S(Shape,Color,Picture)

Shape	Color	Picture
Swan	White	
Swan	Yellow	
Dragon	Yellow	Je se
Car	Yellow	
Fish	White	
$Price(\sigma_{Shape}) = $		
	ShapeSwanSwanDragonCarFish $rice(\sigma_{Shape})=$ \$2	ShapeColorSwanWhiteSwanYellowDragonYellowCarYellowFishWhite $rice(\sigma_{shape})=$ \$2Price

<u>P</u>	Price list		Price
V	1 =	$\sigma_{Shape=`Swan'}(S)$	\$2
V	2 =	$\sigma_{Shape='Dragon'}$ (S)	\$2
V	₃ =	$\sigma_{\text{Shape= 'Car'}}(S)$	\$2
V	4 =	$\sigma_{\text{Shape= 'Fish'}}(S)$	\$2

$$W_1 = \sigma_{Color='White'}(S)$$

$$W_2 = \sigma_{Color='Yellow'}(S)$$
 \$3

$$W_3 = \sigma_{Color='Red'}(S)$$
 \$3

S(Shape,Color,Picture)

$Price(\sigma_{Shape}) = $		

Price list	<u>Price</u>
$V_1 = \sigma_{\text{Shape='Swan'}}(S)$	\$2 Get all
$V_2 = \sigma_{\text{Shape='Dragon'}}(S)$	\$2 for \$2
$V_3 = \sigma_{Shape= 'Car'}(S)$	\$2
$V_4 = \sigma_{\text{Shape= 'Fish'}}(S)$	\$2
$W_1 = \sigma_{Color='White'}(S)$	\$3
$W_2 = \sigma_{Color='Yellow'}(S)$	\$3
$W_3 = \sigma_{Color='Red'}(S)$	\$3 Get all Red Origami for \$3

S(Shape,Color,Picture)

	Shape	Color	Picture	
	Swan	White	3	
	Swan	Yellow		
	Dragon	Yellow		
	Car	Yellow		
	Fish	White		
Pi	rice(σ _{Shape})= <mark>\$2</mark>	Price	(σ _{Color})= \$3	\$1? \$4?
Fir	nd the pric	ce of the	entire db	\$8?
				γ∠∪ { /

S(Shape,Color,Picture)

	Shape	Color	Picture	
	Swan	White	3	
	Swan	Yellow		
	Dragon	Yellow		
	Car	Yellow		
	Fish	White		
Price(σ_{Shape})=\$2 Price(σ_{Color})=\$3 \$1? \$4?				
Fir	nd the pric	e of the	entire db	\$ <u>20?</u>
V_1, V_2, V_3, V_4 determine Q, price(Q) \leq \$8 W_1, W_2, W_3 determine Q, price(Q) \leq \$9				

Price
\$2 Get all Dragons
\$2 for \$2
\$2
\$2
\$3
\$3
\$3 For \$3

To ensure aribitrage-freeness, we can charge only **\$8** for the entire database.

$R^{Price(\sigma_{Shape})=\$99}$		
Shape	Instructions	
Swan	Fold,fold,fold	
Dragon	Cut,cut,cut,	

Price(σ _{Sha}	_{pe})=\$2	Price(σ_{Color})=\$3
Shane	Color	Picture

Shape	COIDI	FICIUIE
Swan	White	5
Swan	Yellow	
Dragon	Yellow	len and and a second se
Car	Yellow	
Fish	White	

Color	PaperSpecs
White	15g/100
Black	20g/100

 $(Price(\sigma_{Color})=$ \$55

Find the price of the full join: $Q = R \bowtie S \bowtie T$

$R^{Price(\sigma_{Shape})=\$99}$		
Shape	Instructions	
Swan	Fold,fold,fold	
Dragon	Cut,cut,cut,	

Shape	Color	Picture
Swan	White	r
Swan	Yellow	
Dragon	Yellow	
Car	Yellow	
Fish	White	

$(Price(\sigma_{Color})=$ \$55)

Color	PaperSpecs
White	15g/100
Black	20g/100

Find the price of the full join: $Q = R \bowtie S \bowtie T$

Shape	Instructions	Color	Picture	PaperSpecs
Swan	Fold,fold,fold	White	8	15g/100

Find the price of the full join:

$\mathbf{S}^{Price(\sigma_{Shape})=\$2} \qquad Price(\sigma_{Color})=\$3}$				
Shape	Color	Picture		
Swan	White	5		
Swan	Yellow			
Dragon	Yellow			

Yellow

White

 $\mathbf{Q} = \mathbf{R} \bowtie \mathbf{S} \bowtie \mathbf{T}$

 $Price(\sigma_{Color}) = 55

Color	PaperSpecs
White	15g/100
Black	20g/100

Not obvious! E.g. no Yellow Cars in the join.

What to pay for? $\sigma_{\text{Shape='car'}}(R)$ or $\sigma_{\text{Color='yellow'}}(T)$

ShapeInstructionsColorPicturePaperSpecsSwanFold,fold,fold...White15g/100

Car

Fish

Pictures credits: http://www.toysperiod.com/blog/uncategorized/the-modern-art-and-science-of-origami/

Discussion

Why not charge per row in the answer?

- Q₁(x,y) = Fortune500(x,y)
 Q(x,y) = Fortune500(x,y),StrongBuyRec(x)
- $Q \subseteq Q_1$, yet $Price(Q) >> Price(Q_1)$
- "Containment" is unrelated to pricing
- "Determinacy" is the right concept for studying pricing

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

- Buyer: query $c = x_1 + x_2 + ... + x_{1000}$
- User compensation: \$10
- Price for the buyer: \$10,000

Differential privacy

Perturbation is necessary for privacy [Dwork'2011]

Selling private data

- Perturbation is a cost saving feature
- Two extremes:
 - Raw data = no perturbation = high price
 - Differentially private = high perturbation = low price

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

- Buyer: $c = x_1 + x_2 + ... + x_{1000}$
 - Tolerates error ±300
 - Equivalently: variance v = 5000*
- Answer: $\hat{c} = c + Lap(\sqrt{v/2})$
- User compensation: \$10 \$0.001 (query is 0.1-DP**)
- Price for the buyer: \$10,000 \$1

*Probability($|\hat{c} - c| \ge 3 \sqrt{2} \sigma$) < 1/18=0.056 (Chebyshev), where $\sigma = \sqrt{v} = 50\sqrt{2}$ ** $\epsilon = \sqrt{2}$ sensitivity(**q**)/ $\sigma = 5\sqrt{2}$ / $50\sqrt{2} = 0.1$

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

- Another buyer: $c = x_1 + x_2 + ... + x_{1000}$
 - Zero error, error ± 300 error ± 30
 - Variance = 0, variance = 5000 variance = 50
- User compensation: \$10/item,\$0.001/item \$0.1/item? \$1/item?
- Price for the buyer: \$10000, \$1 \$100? \$1000?
 - If price > \$100 → arbitrage! Buy100 × queries with variance 5000, take average. Cost = 100 × \$1.

3. Multiple queries: must be arbitrage-free.

Outline

• Framework and examples

- Results so far
- Conclusions

Price of Relational Queries **Given**: Price points $(V_1, p_1), \ldots, (V_k, p_k)$ Database D Arbitrary query Q. **Compute**: $Price_{\Box}(Q)$ Must ensure this: **Arbitrage-freeness:** For all queries, if Q₁, ..., Q_k <u>determine</u> Q then price_D(Q) \leq price_D(Q₁) + ... + price_D(Q_k)

Price of Relational Queries

- Simple algorithm for computing price_D(Q) given an oracle for checking <u>deteminacy</u>
- Two options for <u>determinacy</u>
 - <u>Instance-independent</u>: used by RDBMS today in query-answering using views; <u>undecidable</u>!
 - <u>Instance-dependent</u>: seems more natural for pricing; Π_{2}^{p} in the database
- If (a) price-points (V_i,p_i) are selection queries, and (b) Q is a Union of Conjunctive Queries then price_D(Q) is NP-complete in the database
- Reduction to ILP makes pricing (almost) practical

Price of Relational Queries

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

Query c = $x_1+x_2+...+x_{1000}$ Variance v = 50

How much should we pay Carol?

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

Differential Privacy

Def. [Dwork'11] Fix ε . Mechanism \hat{c} is called ε -differential private, if for all D, D' that differ in one item, and any set S P[$\hat{c}(D) \in S$] $\leq \exp(\varepsilon) \times P[\hat{c}(D') \in S$] Query c = $x_1 + x_2 + ... + x_{1000}$ Variance v = 50

How much should we pay Carol?

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

Differential Privacy

is *ɛ*-differential private

Def.[Dwork'11] Fix ε. Mechanism ĉis called ε-differential private,if for all D, D' that differ in one item,and any set SP[ĉ(D) ∈ S] ≤ exp(ε) × P[ĉ(D') ∈ S]Variance v=2(Δc/ε)²Ĉ(D) = c(D) + Lap(Δc/ε)Carol gets

no money!

Query c = $x_1 + x_2 + ... + x_{1000}$ Variance v = 50

How much should we pay Carol?

Variance $v=2(\Delta c/\epsilon)^2$

Carol gets

no money!

UID	User	Rating (05)	
1	Alice	3	\$10
2	Bob	0	\$10
3	Carol	1	\$10
4	Dan	0	\$10
1000	Zoran	2	\$10

Differential Privacy

<u>**Def</u>**. [Dwork'11] Fix ε . Mechanism \hat{c} is called ε -differential private, if for all D, D' that differ in one item, and any set S P[$\hat{c}(D) \in S$] $\leq \exp(\varepsilon) \times P[\hat{c}(D') \in S$]</u>

Thm. The mechanism \geq $\hat{c}(D) = c(D) + Lap(\Delta c/\epsilon)$ is ϵ -differential private

Query c = $x_1 + x_2 + ... + x_{1000}$ Variance v = 50

How much should we pay Carol?

Data Pricing Fix variance v Carol's compensation W depends on ε which depends on ν

 $\underline{\text{Def}}. \text{ Carol's privacy loss is} \\ \hline \epsilon(v) = \sup_{S} \log(P[\hat{c}(D) \in S]/P[\hat{c}(D') \in S])$

 $W(\varepsilon)$ = Carol's valuation function

Incentivizing Carol to reveal her valuation W(ε) is difficult! [Ghosh'11,Gkatzelis'12,Riederer'12] We use an idea from [Aperjis&Huberman'11]:

- Option A: risk neutral
- Option B: risk averse
- Option C: opt-out

Incentivizing Carol to reveal her valuation W(ε) is difficult! [Ghosh'11,Gkatzelis'12,Riederer'12] We use an idea from [Aperjis&Huberman'11]:

Outline

• Framework and examples

- Results so far
- Conclusions

The Third Wave of Computing

- First wave = hardware
 - IBM, DEC, Sun, ...
 - 1950 1980
- Second wave = software
 - Microsoft, Borland, Fox Software, Oracle, ...
 - 1980 -- 2010
- Third wave = data!
 - Google maps v.s. IOS maps
 - Facebook's users

Conclusions

- Data has (lots of) value!
- Pricing data: at the intersection of three areas:

This talk

- Data management
- Mechanism design
- Economics
- Key concepts:
 - Arbitrage-free
 - Compensation = function of privacy loss

References

• Koutris et al., PODS, 2012

- Li et al., ICDT, 2013
- Koutris et al, under review