Budget Feasible Mechanisms for Experimental Design

Thibaut Horel
Joint work with Stratis Ioannidis and S. Muthukrishnan

February 26, 2013

Motivation

Motivation

Data minin
engine

Motivation

Motivation

Challenges

- Value of data?
- How to optimize it?
- Strategic users?

Challenges

- Value of data?
- How to optimize it?
- Strategic users?

Challenges

- Value of data?
- How to optimize it?
- Strategic users?

Challenges

- Value of data?
- How to optimize it?
- Strategic users?

Contributions

- case of the linear regression
- deterministic mechanism
- generalization (randomized mechanism)

Contributions

- case of the linear regression
- deterministic mechanism
- generalization (randomized mechanism)

Contributions

- case of the linear regression
- deterministic mechanism
- generalization (randomized mechanism)

Contributions

- case of the linear regression
- deterministic mechanism
- generalization (randomized mechanism)

Outline

Outline

Reverse auction

- set of N sellers: $\mathcal{A}=\{1, \ldots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^{+}$
- $c_{i} \in \mathbb{R}^{+}$price of seller's i good
- B budget constraint of the buyer
- Find $S \subset \mathcal{A}$ maximizing $V(S)$
- Find payment pi to seller $i \in S$

Reverse auction

- set of N sellers: $\mathcal{A}=\{1, \ldots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^{+}$
- $c_{i} \in \mathbb{R}^{+}$price of seller's i good
- B budget constraint of the buyer
- Find $S \subset \mathcal{A}$ maximizing $V(S)$
- Find payment pi to seller $i \in S$

Reverse auction

- set of N sellers: $\mathcal{A}=\{1, \ldots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^{+}$
- $c_{i} \in \mathbb{R}^{+}$price of seller's i good
- B budget constraint of the buyer
- Find $S \subset \mathcal{A}$ maximizing $V(S)$
- Find payment pi to seller $i \in S$

Reverse auction

- set of N sellers: $\mathcal{A}=\{1, \ldots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^{+}$
- $c_{i} \in \mathbb{R}^{+}$price of seller's i good
- B budget constraint of the buyer
- Find $S \subset \mathcal{A}$ maximizing $V(S)$
- Find payment pi to seller $i \in S$

Reverse auction

- set of N sellers: $\mathcal{A}=\{1, \ldots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^{+}$
- $c_{i} \in \mathbb{R}^{+}$price of seller's i good
- B budget constraint of the buyer

Goal

- Find $S \subset \mathcal{A}$ maximizing $V(S)$
- Find payment p_{i} to seller $i \in S$

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in s} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O D T) \leq a V(S)$ with:

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O P T) \leq \alpha V(S)$ with:

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O P T) \leq \alpha V(S)$ with:

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O P T) \leq \alpha V(S)$ with:

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O P T) \leq \alpha V(S)$ with:

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O P T) \leq \alpha V(S)$ with:

Objectives

Payments $\left(p_{i}\right)_{i \in S}$ must be:

- individually rational: $p_{i} \geq c_{i}, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_{i} \leq B$

Mechanism must be:

- computationally efficient: polynomial time
- good approximation: $V(O P T) \leq \alpha V(S)$ with:

$$
O P T=\arg \max _{S \subset \mathcal{A}}\left\{V(S) \mid \sum_{i \in S} c_{i} \leq B\right\}
$$

Known results

When V is submodular:

- randomized budget feasible mechanism, approximation ratio: 7.91 (Chen et al., 2011)
- deterministic mechanisms for:
- Knapsack: $2+\sqrt{2}$ (Chen et al., 2011)

Matching: 7.37 (Singer, 2010)

- Coverage: 31 (Singer, 2012)

Known results

When V is submodular:

- randomized budget feasible mechanism, approximation ratio: 7.91 (Chen et al., 2011)
- deterministic mechanisms for:
- Knapsack: $2+\sqrt{2}$ (Chen et al., 2011)
- Matching: 7.37 (Singer, 2010)
- Coverage: 31 (Singer, 2012)

Known results

When V is submodular:

- randomized budget feasible mechanism, approximation ratio: 7.91 (Chen et al., 2011)
- deterministic mechanisms for:
- Knapsack: $2+\sqrt{2}$ (Chen et al., 2011)
- Matching: 7.37 (Singer, 2010)
- Coverage: 31 (Singer, 2012)

Outline

Linear Regression

N users

Linear Regression

x_{i} : public features (e.g. age, gender, height, etc.)

Linear Regression

y_{i} : private data (e.g. disease, etc.)

Linear Regression

Gaussian Linear model: $y_{i}=\beta^{T} x_{i}+\varepsilon_{i}$

$$
\beta^{*}=\arg \min _{\beta} \sum_{i}\left|y_{i}-\beta^{T} x_{i}\right|^{2}
$$

Linear Regression

Linear Regression

Linear Regression

Experimental design

- Public vector of features $x_{i} \in \mathbb{R}^{d}$
- Private data $y_{i} \in \mathbb{R}$

Gaussian linear model:

$$
y_{i}=\beta^{T} x_{i}+\varepsilon_{i}, \quad \beta \in \mathbb{R}^{d}, \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Which users to select? Experimental design \Rightarrow D-optimal criterion

Experimental Design

Experimental design

- Public vector of features $x_{i} \in \mathbb{R}^{d}$
- Private data $y_{i} \in \mathbb{R}$

Gaussian linear model:

$$
y_{i}=\beta^{T} x_{i}+\varepsilon_{i}, \quad \beta \in \mathbb{R}^{d}, \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Which users to select? Experimental design \Rightarrow D-optimal criterion

Experimental design

- Public vector of features $x_{i} \in \mathbb{R}^{d}$
- Private data $y_{i} \in \mathbb{R}$

Gaussian linear model:

$$
y_{i}=\beta^{T} x_{i}+\varepsilon_{i}, \quad \beta \in \mathbb{R}^{d}, \varepsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Which users to select? Experimental design \Rightarrow D-optimal criterion

Experimental Design

maximize $\quad V(S)=\log \operatorname{det}\left(I_{d}+\sum_{i \in S} x_{i} x_{i}^{T}\right) \quad$ subject to $\quad|S| \leq k$

Budgeted Experimental design

maximize $\quad V(S)=\log \operatorname{det}\left(I_{d}+\sum_{i \in S} x_{i} x_{i}^{T}\right) \quad$ subject to $\quad \sum_{i \in S} c_{i} \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

Budgeted Experimental design

maximize $\quad V(S)=\log \operatorname{det}\left(I_{d}+\sum_{i \in S} x_{i} x_{i}^{T}\right) \quad$ subject to $\quad \sum_{i \in S} c_{i} \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

Budgeted Experimental design

maximize $\quad V(S)=\log \operatorname{det}\left(I_{d}+\sum_{i \in S} x_{i} x_{i}^{T}\right) \quad$ subject to $\quad \sum_{i \in S} c_{i} \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

Budgeted Experimental design

maximize $\quad V(S)=\log \operatorname{det}\left(I_{d}+\sum_{i \in S} x_{i} x_{i}^{T}\right) \quad$ subject to $\quad \sum_{i \in S} c_{i} \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

Main result

Theorem

There exists a budget feasible, individually rational and truthful mechanism for budgeted experimental design which runs in polynomial time. Its approximation ratio is:

$$
\frac{10 e-3+\sqrt{64 e^{2}-24 e+9}}{2(e-1)} \simeq 12.98
$$

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:
- $\left\{i^{*}\right\}$ if $V\left(\left\{i^{*}\right\}\right) \geq V\left(O P T_{-i^{*}}\right)$
S_{G} otherwise

Valid mechanism, approximation ratio: 8.34
Problem: $O P T_{-i^{*}}$ is NP-hard to compute

Solution:
Replace V(OPT-i*)
with L^{*}

- computable in polynomial time
- close to $V\left(O P T_{-i^{*}}\right)$
- Knapsack (Chen et al., 2011)
- Coverage (Singer, 2012)

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:
- $\left\{i^{*}\right\}$ if $V\left(\left\{i^{*}\right\}\right) \geq V\left(O P T_{-i^{*}}\right)$
S_{G} otherwise

Valid mechanism, approximation ratio: 8.34
Problem: $O P T_{-i^{*}}$ is NP-hard to compute

Replace $V\left(O P T_{-i^{*}}\right)$ with L^{2}

- computable in polynomial time
- close to $V\left(O P T_{-i *}\right)$
- Knapsack (Chen et al., 2011)
- Coverage (Singer, 2012)

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:
$\left\{i^{*}\right\}$ if $V\left(\left\{i^{*}\right\}\right) \geq V\left(O P T_{-i^{*}}\right)$
S_{G} otherwise

Valid mechanism, approximation ratio: 8.34
Problem: $O P T_{-i^{*}}$ is NP-hard to compute

- computable in polynomial time
- close to $V\left(\right.$ ODT $\left._{i *}\right)$

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:

$$
\begin{aligned}
& \left\{i^{*}\right\} \text { if } V\left(\left\{i^{*}\right\}\right) \geq L^{*} \\
& S_{G} \text { otherwise }
\end{aligned}
$$

Valid mechanism, approximation ratio: 8.34

Problem: $O P T_{-i^{*}}$ is NP-hard to compute Solution: Replace $V\left(O P T_{-i^{*}}\right)$ with L^{*} :

- computable in polynomial time
- close to $V\left(O P T_{-i^{*}}\right)$

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:

$$
\begin{aligned}
& \left\{i^{*}\right\} \text { if } V\left(\left\{i^{*}\right\}\right) \geq L^{*} \\
& S_{G} \text { otherwise }
\end{aligned}
$$

Valid mechanism, approximation ratio: 8.34

Problem: $O P T_{-i^{*}}$ is NP-hard to compute
Solution: Replace $V\left(O P T_{-i^{*}}\right)$ with L^{*} :

- computable in polynomial time
- close to $V\left(O P T_{-i *}\right)$

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:

$$
\begin{aligned}
& \left\{i^{*}\right\} \text { if } V\left(\left\{i^{*}\right\}\right) \geq L^{*} \\
& S_{G} \text { otherwise }
\end{aligned}
$$

Valid mechanism, approximation ratio: 8.34

Problem: $O P T_{-i^{*}}$ is NP-hard to compute
Solution: Replace $V\left(O P T_{-i^{*}}\right)$ with L^{*} :

- computable in polynomial time
- close to $V\left(O P T_{-i^{*}}\right)$

Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^{*}=\arg \max _{i} V(\{i\})$
- Compute S_{G} greedily
- Return:

$$
\begin{aligned}
& \left\{i^{*}\right\} \text { if } V\left(\left\{i^{*}\right\}\right) \geq L^{*} \\
& S_{G} \text { otherwise }
\end{aligned}
$$

Valid mechanism, approximation ratio: 8.34

Problem: $O P T_{-i^{*}}$ is NP-hard to compute Solution: Replace $V\left(O P T_{-i^{*}}\right)$ with L^{*} :

- computable in polynomial time
- close to $V\left(O P T_{-i^{*}}\right)$
- Knapsack (Chen et al., 2011)
- Coverage (Singer, 2012)

Sketch of proof (2)

$$
L^{*}=\arg \max _{\lambda \in[0,1]^{n}}\left\{\log \operatorname{det}\left(I_{d}+\sum_{i} \lambda_{i} x_{i} x_{i}^{T}\right) \mid \sum_{i=1}^{n} \lambda_{i} c_{i} \leq B\right\}
$$

- polynomial time? convex optimization problem
- close to $V\left(O P T_{-i^{*}}\right)$?

Sketch of proof (2)

$$
L^{*}=\arg \max _{\lambda \in[0,1]^{n}}\left\{\log \operatorname{det}\left(I_{d}+\sum_{i} \lambda_{i} x_{i} x_{i}^{T}\right) \mid \sum_{i=1}^{n} \lambda_{i} c_{i} \leq B\right\}
$$

- polynomial time? convex optimization problem
- close to $V\left(O P T_{-i^{*}}\right)$?

$$
L^{*} \leq 2 V(O P T)+V\left(\left\{i^{*}\right\}\right)
$$

Sketch of proof (2)

$$
L^{*}=\arg \max _{\lambda \in[0,1]^{n}}\left\{\log \operatorname{det}\left(I_{d}+\sum_{i} \lambda_{i} x_{i} x_{i}^{T}\right) \mid \sum_{i=1}^{n} \lambda_{i} c_{i} \leq B\right\}
$$

- polynomial time? convex optimization problem
- close to $V\left(O P T_{-i^{*}}\right)$?

Technical lemma

Sketch of proof (2)

$$
L^{*}=\arg \max _{\lambda \in[0,1]^{n}}\left\{\log \operatorname{det}\left(I_{d}+\sum_{i} \lambda_{i} x_{i} x_{i}^{T}\right) \mid \sum_{i=1}^{n} \lambda_{i} c_{i} \leq B\right\}
$$

- polynomial time? convex optimization problem
- close to $V\left(O P T_{-i^{*}}\right)$?

Technical lemma

$$
L^{*} \leq 2 V(O P T)+V\left(\left\{i^{*}\right\}\right)
$$

Outline

Generalization

- Generative model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \mathcal{A}$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy $H(f)$
- after observing $\left\{y_{i}, i \in S\right\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$
V(S)=H(f)-H(f \mid S), \quad S \subset \mathcal{A}
$$

Generalization

- Generative model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \mathcal{A}$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy $H(f)$
- after observing $\left\{y_{i}, i \in S\right\}$, uncertainty: $H(f \mid S)$

V is submodular \Rightarrow randomized budget feasible mechanism

Generalization

- Generative model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \mathcal{A}$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy $H(f)$
- after observing $\left\{y_{i}, i \in S\right\}$, uncertainty: $H(f \mid S)$

$$
V(S)=H(f)-H(f \mid S),
$$

V is submodular \Rightarrow randomized budget feasible mechanism

Generalization

- Generative model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \mathcal{A}$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy $H(f)$
- after observing $\left\{y_{i}, i \in S\right\}$, uncertainty: $H(f \mid S)$

$$
V(S)=H(f)-H(f \mid S),
$$

Generalization

- Generative model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \mathcal{A}$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy $H(f)$
- after observing $\left\{y_{i}, i \in S\right\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$
V(S)=H(f)-H(f \mid S), \quad S \subset \mathcal{A}
$$

V is submodular \Rightarrow randomized budget feasible mechanism

Generalization

- Generative model: $y_{i}=f\left(x_{i}\right)+\varepsilon_{i}, i \in \mathcal{A}$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy $H(f)$
- after observing $\left\{y_{i}, i \in S\right\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$
V(S)=H(f)-H(f \mid S), \quad S \subset \mathcal{A}
$$

V is submodular \Rightarrow randomized budget feasible mechanism

Conclusion

- Experimental design + Auction theory $=$ powerful framework
- deterministic mechanism for the general case? other learning tasks?
- approximation ratio $\simeq 13$. Lower bound: 2

Conclusion

- Experimental design + Auction theory = powerful framework
- deterministic mechanism for the general case? other learning tasks?
- approximation ratio $\simeq 13$. Lower bound: 2

Conclusion

- Experimental design + Auction theory = powerful framework
- deterministic mechanism for the general case? other learning tasks?
- approximation ratio $\simeq 13$. Lower bound: 2

