Budget Feasible Mechanisms for Experimental Design

Thibaut Horel Joint work with Stratis Ioannidis and S. Muthukrishnan

February 26, 2013

• Value of data?

• How to optimize it?

• Value of data?

• How to optimize it?

• Value of data?

• How to optimize it?

• Value of data?

• How to optimize it?

• case of the linear regression

• deterministic mechanism

• case of the linear regression

• deterministic mechanism

• case of the linear regression

• deterministic mechanism

• case of the linear regression

• deterministic mechanism

Outline

Outline

- set of N sellers: $\mathcal{A} = \{1, \dots, N\}$; a buyer
- *V* value function of the buyer, $V : 2^{\mathcal{A}} \rightarrow \mathbb{R}^+$
- $c_i \in \mathbb{R}^+$ price of seller's *i* good
- B budget constraint of the buyer

- Find $S \subset \mathcal{A}$ maximizing V(S)
- Find payment p_i to seller $i \in S$

- set of N sellers: $\mathcal{A} = \{1, \dots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^+$
- $c_i \in \mathbb{R}^+$ price of seller's *i* good
- B budget constraint of the buyer

- Find $S \subset \mathcal{A}$ maximizing V(S)
- Find payment p_i to seller $i \in S$

- set of N sellers: $\mathcal{A} = \{1, \dots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}}
 ightarrow \mathbb{R}^+$
- $c_i \in \mathbb{R}^+$ price of seller's *i* good
- B budget constraint of the buyer

- Find $S \subset \mathcal{A}$ maximizing V(S)
- Find payment p_i to seller $i \in S$

- set of N sellers: $\mathcal{A} = \{1, \dots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^+$
- $c_i \in \mathbb{R}^+$ price of seller's *i* good
- B budget constraint of the buyer

- Find $S \subset \mathcal{A}$ maximizing V(S)
- Find payment p_i to seller $i \in S$

- set of N sellers: $\mathcal{A} = \{1, \dots, N\}$; a buyer
- V value function of the buyer, $V: 2^{\mathcal{A}} \rightarrow \mathbb{R}^+$
- $c_i \in \mathbb{R}^+$ price of seller's *i* good
- B budget constraint of the buyer

- Find $S \subset \mathcal{A}$ maximizing V(S)
- Find payment p_i to seller $i \in S$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \le \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \leq \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \leq \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \le \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \le \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \le \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Payments $(p_i)_{i \in S}$ must be:

- individually rational: $p_i \ge c_i, i \in S$
- truthful: reporting one's true cost is a dominant strategy
- budget feasible: $\sum_{i \in S} p_i \leq B$

- computationally efficient: polynomial time
- good approximation: $V(OPT) \le \alpha V(S)$ with:

$$OPT = rg\max_{S \subset \mathcal{A}} \left\{ V(S) \mid \sum_{i \in S} c_i \leq B
ight\}$$

Known results

When V is submodular:

• randomized budget feasible mechanism, approximation ratio: 7.91 (Chen et al., 2011)

• deterministic mechanisms for:

- Knapsack: $2 + \sqrt{2}$ (Chen et al., 2011)
- Matching: 7.37 (Singer, 2010)
- Coverage: 31 (Singer, 2012)

Known results

When V is submodular:

• randomized budget feasible mechanism, approximation ratio: 7.91 (Chen et al., 2011)

- deterministic mechanisms for:
 - Knapsack: $2 + \sqrt{2}$ (Chen et al., 2011)
 - Matching: 7.37 (Singer, 2010)
 - Coverage: 31 (Singer, 2012)

Known results

When V is submodular:

• randomized budget feasible mechanism, approximation ratio: 7.91 (Chen et al., 2011)

- deterministic mechanisms for:
 - Knapsack: $2 + \sqrt{2}$ (Chen et al., 2011)
 - Matching: 7.37 (Singer, 2010)
 - Coverage: 31 (Singer, 2012)

Outline

x_i: public features (e.g. age, gender, height, etc.)

y_i: private data (e.g. disease, etc.)

Gaussian Linear model:
$$y_i = \beta^T x_i + \varepsilon_i$$

$$\beta^* = \arg\min_{\beta} \sum_i |y_i - \beta^T x_i|^2$$

Experimental design

- Public vector of features $x_i \in \mathbb{R}^d$
- Private data $y_i \in \mathbb{R}$

Gaussian linear model:

$$y_i = \beta^T x_i + \varepsilon_i, \quad \beta \in \mathbb{R}^d, \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Which users to select? Experimental design \Rightarrow D-optimal criterion

Experimental Design
maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $|S| \le k$

Experimental design

- Public vector of features $x_i \in \mathbb{R}^d$
- Private data $y_i \in \mathbb{R}$

Gaussian linear model:

$$y_i = \beta^T x_i + \varepsilon_i, \quad \beta \in \mathbb{R}^d, \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Which users to select? Experimental design \Rightarrow D-optimal criterion

Experimental Design
maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $|S| \le k$

Experimental design

- Public vector of features $x_i \in \mathbb{R}^d$
- Private data $y_i \in \mathbb{R}$

Gaussian linear model:

$$y_i = \beta^T x_i + \varepsilon_i, \quad \beta \in \mathbb{R}^d, \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Which users to select? Experimental design \Rightarrow D-optimal criterion

Experimental Design
maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $|S| \le k$

maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $\sum_{i \in S} c_i \leq B$

• the non-strategic optimization problem is NP-hard

• V is submodular

- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $\sum_{i \in S} c_i \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $\sum_{i \in S} c_i \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

maximize
$$V(S) = \log \det \left(I_d + \sum_{i \in S} x_i x_i^T \right)$$
 subject to $\sum_{i \in S} c_i \leq B$

- the non-strategic optimization problem is NP-hard
- V is submodular
- previous results give a randomized budget feasible mechanism
- deterministic mechanism?

Main result

Theorem

There exists a budget feasible, individually rational and truthful mechanism for budgeted experimental design which runs in polynomial time. Its approximation ratio is:

$$\frac{10e-3+\sqrt{64e^2-24e+9}}{2(e-1)}\simeq 12.98$$

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:

$${i^*}$$
 if $V({i^*}) \ge V(OPT_{-i^*})$

 S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: *OPT*_{*i**} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

- Knapsack (Chen et al., 2011)
- Coverage (Singer, 2012)

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:

$$\{i^*\} \text{ if } V(\{i^*\}) \ge V(OPT_{-i^*})$$

S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_{-i^*} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

- Knapsack (Chen et al., 2011)
- Coverage (Singer, 2012)

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:

$$\{i^*\} \text{ if } V(\{i^*\}) \geq V(OPT_{-i^*})$$

S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_{-i^*} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

• Knapsack (Chen et al., 2011)

• Coverage (Singer, 2012)

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:
 - $\{i^*\}$ if $V(\{i^*\}) \ge L^*$ • S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_{-i^*} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

• Knapsack (Chen et al., 2011)

• Coverage (Singer, 2012)

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:
 - $\{i^*\}$ if $V(\{i^*\}) \ge L^*$ • S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_{-i^*} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

Knapsack (Chen et al., 2011)Coverage (Singer, 2012)

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:
 - $\{i^*\}$ if $V(\{i^*\}) \ge L^*$ • S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_{-i^*} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

Knapsack (Chen et al., 2011)Coverage (Singer, 2012)

Mechanism (Chen et. al, 2011) for submodular V

- Find $i^* = \arg \max_i V(\{i\})$
- Compute S_G greedily
- Return:
 - $\{i^*\}$ if $V(\{i^*\}) \ge L^*$ • S_G otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_{-i^*} is NP-hard to compute

Solution: Replace $V(OPT_{-i^*})$ with L^* :

- computable in polynomial time
- close to $V(OPT_{-i^*})$

- Knapsack (Chen et al., 2011)
- Coverage (Singer, 2012)

$$L^* = \arg \max_{\lambda \in [0,1]^n} \left\{ \log \det \left(I_d + \sum_i \lambda_i x_i x_i^T \right) \mid \sum_{i=1}^n \lambda_i c_i \le B \right\}$$

• polynomial time? convex optimization problem

• close to $V(OPT_{-i^*})$?

$$L^* \le 2V(OPT) + V(\{i^*\})$$

$$L^* = \arg \max_{\lambda \in [0,1]^n} \left\{ \log \det \left(I_d + \sum_i \lambda_i x_i x_i^T \right) \mid \sum_{i=1}^n \lambda_i c_i \le B \right\}$$

• polynomial time? convex optimization problem

• close to
$$V(OPT_{-i^*})$$
?

$$L^* \leq 2V(OPT) + V(\{i^*\})$$

$$L^* = \arg \max_{\lambda \in [0,1]^n} \left\{ \log \det \left(I_d + \sum_i \lambda_i x_i x_i^T \right) \mid \sum_{i=1}^n \lambda_i c_i \le B \right\}$$

- polynomial time? convex optimization problem
- close to $V(OPT_{-i^*})$?

$$L^* \le 2V(OPT) + V(\{i^*\})$$

$$L^* = \arg \max_{\lambda \in [0,1]^n} \left\{ \log \det \left(I_d + \sum_i \lambda_i x_i x_i^T \right) \mid \sum_{i=1}^n \lambda_i c_i \le B \right\}$$

- polynomial time? convex optimization problem
- close to $V(OPT_{-i^*})$?

$$L^* \leq 2V(OPT) + V(\{i^*\})$$

Outline

• Generative model: $y_i = f(x_i) + \varepsilon_i, i \in A$

- prior knowledge of the experimenter: *f* is a random variable
- uncertainty of the experimenter: entropy H(f)
- after observing $\{y_i, i \in S\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$V(S) = H(f) - H(f \mid S), \quad S \subset \mathcal{A}$$

• Generative model: $y_i = f(x_i) + \varepsilon_i, i \in A$

- prior knowledge of the experimenter: *f* is a random variable
- uncertainty of the experimenter: entropy H(f)
- after observing $\{y_i, i \in S\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$V(S) = H(f) - H(f \mid S), \quad S \subset \mathcal{A}$$

- Generative model: $y_i = f(x_i) + \varepsilon_i, i \in A$
- prior knowledge of the experimenter: f is a random variable
 uncertainty of the experimenter: entropy H(f)
- after observing $\{y_i, i \in S\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$V(S) = H(f) - H(f \mid S), \quad S \subset \mathcal{A}$$

- Generative model: $y_i = f(x_i) + \varepsilon_i, i \in A$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy H(f)
- after observing $\{y_i, i \in S\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$V(S) = H(f) - H(f \mid S), \quad S \subset \mathcal{A}$$

- Generative model: $y_i = f(x_i) + \varepsilon_i, i \in A$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy H(f)
- after observing $\{y_i, i \in S\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$V(S) = H(f) - H(f \mid S), \quad S \subset \mathcal{A}$$

- Generative model: $y_i = f(x_i) + \varepsilon_i, i \in A$
- prior knowledge of the experimenter: f is a random variable
- uncertainty of the experimenter: entropy H(f)
- after observing $\{y_i, i \in S\}$, uncertainty: $H(f \mid S)$

Value function: Information gain

$$V(S) = H(f) - H(f \mid S), \quad S \subset \mathcal{A}$$

Conclusion

• Experimental design + Auction theory = powerful framework

• deterministic mechanism for the general case? other learning tasks?

• approximation ratio \simeq 13. Lower bound: 2

Conclusion

• Experimental design + Auction theory = powerful framework

• deterministic mechanism for the general case? other learning tasks?

• approximation ratio \simeq 13. Lower bound: 2

Conclusion

• Experimental design + Auction theory = powerful framework

• deterministic mechanism for the general case? other learning tasks?

• approximation ratio \simeq 13. Lower bound: 2