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Contributions

@ case of the linear regression

@ deterministic mechanism

o generalization (randomized mechanism)
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Reverse auction

o set of N sellers: A= {1,...,N}; a buyer

V value function of the buyer, V : 24 — R

c; € RT price of seller's i good

B budget constraint of the buyer

Goal
e Find S C A maximizing V/(S)

@ Find payment p; to seller i € S
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Objectives

Payments (pj)ics must be:
@ individually rational: p; > ¢;, i € S
@ truthful: reporting one's true cost is a dominant strategy

o budget feasible: >, s pi < B

Mechanism must be:

@ computationally efficient: polynomial time

@ good approximation: V(OPT) < aV/(S) with:

OPT = arggnai{V(S) ] Zc; < B}
C

ieS
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Known results

When V is submodular:

e randomized budget feasible mechanism, approximation ratio: 7.91
(Chen et al., 2011)

@ deterministic mechanisms for:
» Knapsack: 2 + /2 (Chen et al., 2011)
» Matching: 7.37 (Singer, 2010)
» Coverage: 31 (Singer, 2012)
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Linear Regression

~
X1 g Y1 y =
~
X2 g | Y2
(o) Linear
X3- y3 regression

N users
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Linear Regression

~
X1 g Y1 y =
~
X2 g | Y2
(o) Linear
X3- y3 regression

Gaussian Linear model: y; = 87 x; + ¢
B* = arg mﬁin Z lyi — BT xi|?
i
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Experimental design

@ Public vector of features x; € R
@ Private data y; € R

Gaussian linear model:

yi=B"xi+ei, BER? g ~N(0,0°
Which users to select? Experimental design = D-optimal criterion

Experimental Design

maximize V/(S) = logdet </d + Zx,-x,-T> subject to  |S| < k

i€S
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Budgeted Experimental design

maximize V/(S) = log det (ld + Zx;xiT) subject to Z ¢ <B
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@ the non-strategic optimization problem is NP-hard
e V is submodular
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Main result

Theorem

There exists a budget feasible, individually rational and truthful mechanism
for budgeted experimental design which runs in polynomial time. Its
approximation ratio is:

10e — 3+ v/64e2 —24e+9

~ 12.
2(e—1) %
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Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V
e Find i* = argmax; V({i})
o Compute S¢ greedily
@ Return:

{"}if V({i*}) > V(OPT_;-)
S¢ otherwise
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{ryif v({irh) = L0

S¢ otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT_;« is NP-hard to compute

Solution: Replace V(OPT_;+) with L*:
e computable in polynomial time o Knapsack (Chen et al., 2011)
o close to V(OPT_;-) e Coverage (Singer, 2012)
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Sketch of proof (2)

L* = logdet ( Iy + ) Aixix;” Aici < B
arg)\g&ii(]n{oge <d Z xx)|; ¢ }

@ polynomial time?
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Sketch of proof (2)

L = logdet | Iy + Y Aixix| Aici < B
arg)\g&iﬁn{oge <d Z xx>|; c }

@ polynomial time? convex optimization problem

@ close to V(OPT_;-)?

Technical lemma J

L* < 2V(OPT) + V({i*})
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prior knowledge of the experimenter: f is a random variable
uncertainty of the experimenter: entropy H(f)

after observing {y;, i € S}, uncertainty: H(f | S)

Value function: Information gain J

V(S) = H(f) — H(f | S), Sc A

V is submodular = randomized budget feasible mechanism
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Conclusion

@ Experimental design + Auction theory = powerful framework

@ deterministic mechanism for the general case? other learning tasks?

@ approximation ratio ~ 13. Lower bound: 2
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