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Reverse auction

set of N sellers: A = {1, . . . ,N}; a buyer

V value function of the buyer, V : 2A → R+

ci ∈ R+ price of seller’s i good

B budget constraint of the buyer

Goal
Find S ⊂ A maximizing V (S)

Find payment pi to seller i ∈ S
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Objectives

Payments (pi )i∈S must be:

individually rational: pi ≥ ci , i ∈ S

truthful: reporting one’s true cost is a dominant strategy

budget feasible:
∑

i∈S pi ≤ B

Mechanism must be:

computationally efficient: polynomial time

good approximation: V (OPT ) ≤ αV (S) with:

OPT = argmax
S⊂A

{
V (S) |

∑
i∈S

ci ≤ B

}
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Known results

When V is submodular:

randomized budget feasible mechanism, approximation ratio: 7.91
(Chen et al., 2011)

deterministic mechanisms for:

I Knapsack: 2 +
√

2 (Chen et al., 2011)

I Matching: 7.37 (Singer, 2010)

I Coverage: 31 (Singer, 2012)
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Experimental design

Public vector of features xi ∈ Rd

Private data yi ∈ R

Gaussian linear model:

yi = βT xi + εi , β ∈ Rd , εi ∼ N (0, σ2)

Which users to select? Experimental design ⇒ D-optimal criterion

Experimental Design

maximize V (S) = log det

(
Id +

∑
i∈S

xixT
i

)
subject to |S | ≤ k
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Budgeted Experimental design

maximize V (S) = log det

(
Id +

∑
i∈S

xixT
i

)
subject to

∑
i∈S

ci ≤ B

the non-strategic optimization problem is NP-hard

V is submodular

previous results give a randomized budget feasible mechanism

deterministic mechanism?
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Main result

Theorem
There exists a budget feasible, individually rational and truthful mechanism
for budgeted experimental design which runs in polynomial time. Its
approximation ratio is:

10e − 3+
√
64e2 − 24e + 9

2(e − 1)
' 12.98
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Sketch of proof

Mechanism (Chen et. al, 2011) for submodular V
Find i∗ = argmaxi V ({i})
Compute SG greedily
Return:

I {i∗} if V ({i∗}) ≥ V (OPT−i∗)
I SG otherwise

Valid mechanism, approximation ratio: 8.34

Problem: OPT−i∗ is NP-hard to compute

Solution: Replace V (OPT−i∗) with L∗:
computable in polynomial time
close to V (OPT−i∗)

Knapsack (Chen et al., 2011)
Coverage (Singer, 2012)
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Sketch of proof (2)

L∗ = arg max
λ∈[0,1]n

{
log det

(
Id +

∑
i

λixixT
i

)
|

n∑
i=1

λici ≤ B

}

polynomial time? convex optimization problem

close to V (OPT−i∗)?

Technical lemma

L∗ ≤ 2V (OPT ) + V ({i∗})
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Generalization

Generative model: yi = f (xi ) + εi , i ∈ A
prior knowledge of the experimenter: f is a random variable
uncertainty of the experimenter: entropy H(f )
after observing {yi , i ∈ S}, uncertainty: H(f | S)

Value function: Information gain

V (S) = H(f )− H(f | S), S ⊂ A

V is submodular ⇒ randomized budget feasible mechanism
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Conclusion

Experimental design + Auction theory = powerful framework

deterministic mechanism for the general case? other learning tasks?

approximation ratio ' 13. Lower bound: 2
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